名词解释 第一章 蛋白质的结构与功能
生物化学名词解释

生物化学名词解释第一章蛋白质的结构和功能等电点(isoelectric point, pI):氨基酸分子带有相等正、负电荷时,溶液的pH值称为该氨基酸的等电点肽键(peptide bond) : 是由一个氨基酸的a-羧基与另一个氨基酸的a-氨基脱水缩合而形成的化学键。
肽键平面(peptide bond) :由于肽键具有部分双键的性质,使参与肽键构成的六个原子被束缚在同一平面上,这一平面称为肽键平面模体(motif) :在蛋白质分子中,若干具有二级结构的肽段在空间上相互接近,形成具有特殊功能的结构区域,称模体结构域(domain) :在一级结构上相距较远的氨基酸残基,通过三级结构的形成,多肽链的弯折,彼此聚集在一起,从而形成一些在功能上相对独立的,结构较为紧凑的区域,称为结构域(domain)。
亚基(subunit):就是指参与构成蛋白质四级结构的、每条具有三级结构的多肽链变构效应(allosteric effect): 由于蛋白质分子构象改变而导致蛋白质分子功能发生改变的现象称为变构效应。
蛋白质的变性(denaturation):在某些物理或化学因素的作用下,蛋白质严格的空间结构被破坏(不包括肽键的断裂),从而引起蛋白质若干理化性质和生物学性质的改变,称为蛋白质的变性。
第二章核酸遗传密码(coden):mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码。
核酶(ribozyme):某些小分子RNA具有催化特定RNA降解的活性,这种具有催化作用的小RNA被称为核酶(ribozyme)。
DNA的变性(denaturation): 在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称为DNA 的变性。
融解温度(melting temperature, Tm):加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是DNA的变性温度(融解温度)。
生化名词解释与简答题

第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。
答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。
2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。
3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。
5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。
如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。
引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。
2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。
3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。
当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。
碱中,这种现象称为蛋白质的凝固作用。
生物化学名词解释总结

第一篇生物分子的结构与功能第一章蛋白质的结构与功能1.蛋白质的二级结构:多肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链等等构象。
2.肽键:是一个氨基酸α-羧基与另一个氨基酸α-氨基脱水缩合形成的键,本质是一种酰胺键。
3.肽单元:在多肽链中,参与形成肽键的六个原子——Ca1、Ca2、C、O、N、H六个原子固定在同一个刚性平面上,又称为肽键平面4.蛋白质的一级结构:多肽链中从N-端到C-端氨基酸残基的排列顺序5.蛋白质的等电点:pI。
当蛋白质溶液处于某一pH值时,其分子不解离或解离成正负离子的趋势相等,即净电荷为零,成为兼性离子,此时该溶液的pH值称为该蛋白质的等电点6.蛋白质的变性:在某些理化因素的作用下,是蛋白质的空间结构发生变化,导致理化性质改变和生物学活性丧失称为蛋白质变性7.蛋白质的复性:去除变性因素后,变性蛋白质可自发恢复其原有空间结构和生物学功能,称为复性第二章核酸的结构与功能*1.Tm值:即解链温度,又称溶解温度,指DNA接连过程中A260值达到最大的50%时的温度2.核酸:由单核苷酸通过磷酸二酯键连接而成的高分子化合物3.DNA变性:在某些理化因素作用下,DNA双链互补碱基对之间的氢键断裂,解链成两条单链的过程4.DNA复性:当变性条件缓慢的除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构的现象5.核酸的杂交:不同来源的DNA单链之间或RNA与DNA单链之间,只要存在着一定程度的碱基互补配对关系,就有可能形成杂化双链,这个过程称为核酸的杂交6.DNA的一级结构:是指DNA分子中脱氢核苷酸从5’-末端到3’-末端的排列顺序第三章酶*1.酶:是由活细胞合成对特异的底物起高效催化作用的蛋白质,是体内催化各种代谢反应最主要的催化剂2.酶的活性中心:必需基团在空间上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合转化为产物,这一区域称为酶的活性中心3.同工酶:是提催化相同的反应,但酶蛋白的分子结构、理化性质乃至免疫学特征不同的一组酶4.核酶:具有催化活性的RNA5.Km值:酶的特征常数,最大反应速度一半时的底物浓度第四章维生素1.维生素:维持人体正常功能所必须的营养素,是人体内不能合成或合成量不足,必须由食物供给的一类低分子有机化合物2.脂溶性维生素:一类不溶于水,而溶于有机溶剂的维生素,在食物中与脂类共存,在肠道吸收时需胆汁酸协助,吸收后在肝内储存。
最新第七版生物化学名词解释

第七版生物化学名词解释第一章蛋白质的结构与功能(1)肽键:蛋白质中前一氨基酸的α-羧基与后一氨基酸的α-氨基脱水形成的酰胺键。
(2)多肽链:由许多氨基酸借肽键连接而形成的链状化合物。
(3)肽键平面:肽键中的C-N键具有部分双键的性质,不能旋转,因此,肽键中的C、O、N、H 四个原子处于一个平面上,称为肽键平面。
(4)蛋白质分子的一级结构:蛋白质分子的一级结构是指构成蛋白质分子的氨基酸在多肽链中的排列顺序和连接方式。
(5)亚基:在蛋白质分子的四级结构中,每一个具有三级结构的多肽链单位,称为亚基。
(6)蛋白质的等电点:在某-pH溶液中,蛋白质分子可游离成正电荷和负电荷相等的兼性离子,即蛋白质分子的净电荷等于零,此时溶液的pH值称为该蛋白质的等电点。
⑺蛋白质变性:在某些理化因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质改变和生物学活性的丧失的现象。
⑻协同效应: 一个亚基与其配体结合后,能影响另一亚基与配体结合的能力。
(正、负)如血红素与氧结合后,铁原子就能进入卟啉环的小孔中,继而引起肽链位置的变动。
⑼变构效应: 蛋白质分子因与某种小分子物质(效应剂)相互作用而致构象发生改变,从而改变其活性的现象。
⑽分子伴侣:分子伴侣是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。
细胞至少有两种分子伴侣家族——热休克蛋白和伴侣素。
第二章核酸的化学结构与功能(1) 核酸变性:在某些理化因素的作用下,核酸双链间氢键断裂,双螺旋解开,变成无规则的线团,此种作用称核酸的变性。
(2) DNA的复性作用:变性的DNA在适当的条件下,两条彼此分开的多核苷酸链又可重新通过氢键连接,形成原来的双螺旋结构,并恢复其原有的理化性质,此即DNA的复性。
(3) 杂交:两条不同来源的单链DNA,或一条单链DNA,一条RNA,只要它们有大部分互补的碱基顺序,也可以复性,形成一个杂合双链,此过程称杂交。
生物化学重点总结归纳

第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。
等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。
三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸。
3,紫外吸收法(280 nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。
5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构。
DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构。
三、填空题1,核酸可分为 DNA 和 RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸 3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同?4,叙述DNA双螺旋结构模式的要点。
DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触。
腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C),碱基平面与线性分子的长轴相垂直。
一条链的走向是5’→3’,另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
生物化学名词解释

生物化学名词解释第一章蛋白质结构与功能1.肽单元(peptide unit):参与肽键的6个原子—Cα1,C,O,N,H,Cα2位于同一平面,Cα1和Cα2在平面上所处的位臵为反式(trans)构型,此同一平面上的6个原子构成肽单元。
2.模体(motif):由二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象, 并发挥特殊的功能,如锌指结构,β α β等。
模体通常有其特征性的氨基酸序列。
有的模体仅由几个氨基酸残基组成,如RGD (Arg-Gly-Asp)模体。
3.结构域(domain):分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。
4.蛋白质等电点(Isoelectric point, pI):在某一pH溶液中,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,其所带的净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
5.蛋白质的变性(denaturation of protein):在某些物理和化学因素(如加热,强酸,强碱,有机溶剂, 重金属离子等)作用下,蛋白质的特定空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。
变性不涉及一级结构中氨基酸序列的改变。
第二章酶1.酶的活性中心(active center of enzyme):酶分子中与酶活性密切相关的基团(必需基团)在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合,并将其转变为产物,该区域称酶的活性中心。
辅酶参与酶活性中心的组成。
2.同工酶(isoenzyme):催化相同的化学反应,但酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶。
3.变构酶和变构调节(allosteric enzyme and allosteric regulation):一些代谢物(变构效应剂)可与酶蛋白分子活性中心外的某一部位可逆地结合,使酶发生变构而改变其催化活性。
(完整)生物化学名词解释

生物化学名词解释第一章蛋白质的结构与功能1。
肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。
2. 等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
3. 模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。
4. 结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域.5。
亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。
6. 肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。
7. 蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。
第二章核酸的结构与功能1。
DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性.2。
Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度.在Tm时,核酸分子50%的双螺旋结构被破坏。
3. 增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应.4. HnRNA:核内不均一RNA。
在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。
hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中.5。
核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
6. 核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交.第三章酶1. 酶:由活细胞产生的具有催化功能的一类特殊的蛋白质。
分子生物学名词解释

第一章蛋白质的结构与功能分子病:由蛋白质分子发生变异导致的疾病,为基因突变所致。
一级结构:蛋白质分子中氨基酸的排列顺序。
二级结构:蛋白质主链的局部空间结构,不涉及氨基酸残基侧链构象。
三级结构:整条肽链中所有原子在三维空间的排列位置。
四级结构:肽链与肽链之间靠非共价键维系的布局与相互作用。
即各亚基间的空间排列。
超二级结构:二级结构单元相互聚集形成有规律的更高一级的但又低于三级结构的结构,现在已知的超二级结构有三种基本的组合形式:αα,βαβ,ββ。
结构域:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体。
等电点:对于一种蛋白质而言,当在某一pH时,其所带正负电荷恰好相等(静电荷为零),这一pH值成为该蛋白质的等电点。
层析:按照在移动相和固定相之间的分配比例将混合成分分开的技术。
离子交换层析:使用带有固定的带电集团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。
凝胶过滤层析:一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其他分子混合物的层析技术。
亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的层析技术。
蛋白质组学:研究各种生物基因组在细胞(包括正常细胞、癌细胞等)和组织中表达的全部蛋白质的分子结构、功能及其相互作用。
最终目的为发现新药。
别构效应:也称为变构效应。
当某些寡聚蛋白与别构效应剂发生作用时,可以通过蛋白质构象的变化来改变蛋白质的活性,这种改变可以是活性的增加或减少。
这里的别构效应剂可以是蛋白质本身的作用物也可以是作用物以外的物质。
协同效应:别构效应的一种特殊类型,是亚基之间的一种相互作用。
它是寡聚蛋白的某一亚基与配基(蛋白质本身的作用物)结合时可改变蛋白质其它亚基的构象,进而改变蛋白质的生物活性的现象。
锌指结构:锌指(zinc finger):一种常出现在DNA结合蛋白中的一种结构基元。
是由一个含有大约30个氨基酸的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn2+构成,形成的结构像手指状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学名词解释
第一章蛋白质
1.amino acid:An organic acid with an α-carbon atom linked to a carboxylic acid, an
amino group, a hydrogen atom, and a side chain (the R group). Twenty different amino acids are the building blocks of proteins.
2.peptide bond: A covalent linkage formed between the α-carboxyl group of one amino
acid and the α- amino group of another. Also known as an amide bond.
3.peptide: Two or more amino acids covalently joined by peptide bonds.
4.polypeptide: A long chain of amino acids linked by peptide bonds; the molecular weight
is generally less than 10,000.
5.Configuration. The spatial arrangement in which atoms are covalently linked in a
molecule.
6.Conformation. The spatial arrangement of atoms in a protein is called its conformation.
7.primary structure :In a polymer, the sequence of amino acids and any interchain and
intrachain disulfide bonds of a protein. This sequence is specified by genetic information.
8.secondary structure:The localized conformation of a protein. As the polypeptide chain
folds, it forms certain localized arrangements of adjacent amino acids .
9.peptide unit: The six atoms of the peptide group (Cα1、C、O、N、H、Cα2) lie in a single
plane, with the oxygen atom of the carbonyl group and the hydrogen atom of the amide nitrogen trans to each other.
10.T ertiary structure :The overall three-dimensional conformation of a protein in its
native folded state.
11.The molecular chaperones are large, multisubunit proteins that accelerate the folding
process by providing a protected environment where polypeptides fold into native conformations and form quaternary structures.
12.quaternary structure:In proteins containing more than one polypeptide chain, the
spatial arrangements of those chains (subunits) and the nature of contacts among them.
13.subunit: The independently three-dimensional structure in a protein with quaternary
structure.
14.allosteric effect:an effect that a small molecule, called an effector, noncovalently binds to
a protein and alters its activity.
15.Bohr effect : increase in the concentration of H+ and Pco2 reduces oxygen affinity to
hemoglobin
16.isoelectric point of protein: The pH at which a protein solute has no net electric charge
and thus does not move in an electric field.
17.denaturation of protein : Many physical and chemical reagents (urea or SDS, etc.) that
break noncovalent bonds disrupt secondary, tertiary, and quaternary structure of protein with attendant loss of biologic activity.。