2020届河南省开封市高考数学一模试卷(理科 )(解析版)
【附20套高考模拟试题】2020届河南省开封高中高考数学模拟试卷含答案

(Ⅰ)因为 底面 , 平面 ,所以
又因为正方形 中, ,
所以 平面
又因为 平面 ,所以
因为 分别是 、 的中点,所以
所以
(Ⅱ)(方法一)由(Ⅰ)可知, , , 两两垂直,以 为 轴,以 为 轴,以 为 轴,设 ,
, , , ,
, ,
设平面 的一个法向量 ,
,解得
设直线 与平面 所成角为 ,则
1.设复数 ,则复数 的共轭复数的模为( )
A. B.1C.2D.
2.设全集 ,函数 的定义域为M,则 为( )
A. B. C. D.
3.偶函数 在 上单调递减,则 的大小关系是( )
A B C D不能确定
4.已知 为等差数列且公差 ,其首项 ,且 成等比数列, 为 的前 项和, ,则 的值为( )
设 ,则由题意知 , , , ,
, ,
设平面 的法向量为 ,
则由 得 ,令 ,则 , ,
所以取 ,显然可取平面 的法向量 ,
由题意: ,所以 .
由于 平面 ,所以 在平面 内的射影为 ,
所以 为直线 与平面 所成的角,
易知在 中, ,从而 ,
所以直线 与平面 所成的角为 .
【点睛】
本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.
【解析】
【分析】
(1)设出数列的公差为d,根据等比中项列出等式,得到公差,即可得到通项公式;(2)利用裂项相消求和法可得结果.
【详解】
(1)设数列{an}的公差为d,
2020届开封市高三一模数学试卷(理科)+答案

2020年开封市高三一模数学试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-x-6<0},B=N,则A∩B=()A. {-1,0,1,2}B. {0,1,2}C. {-2,-1,0,1}D. {0,1}2.在复平面内,复数对应的点位于直线y=x的左上方,则实数a的取值范围是()A. (-∞,0)B. (-∞,1)C. (0,+∞)D. (1,+∞)3.设与都是非零向量,则“”是“向量与夹角为锐角”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知角α的顶点与原点重合,始边与x轴正半轴重合,终边经过点(1,-2),则tan2α=()A. B. C. D.5.已知定义在[m-5,1-2m]上的奇函数f(x),满足x>0时,f(x)=2x-1,则f(m)的值为()A. -15B. -7C. 3D. 156.某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为A,B,C,D,E五个等级,A等级15%,B等级30%,C等级30%,D,E等级共25%.其中E 等级为不合格,原则上比例不超过5%.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到C级及以上级别的学生人数有()A. 45人B. 660人C. 880人D. 900人7.国庆阅兵式上举行升旗仪式,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,第一排和最后一排的距离为25米,则旗杆的高度约为()A. 17米B. 22米C. 3l米D. 35米8.已知{F n}是斐波那契数列,则F1=F2=1,F n=F n-1+F n-2(n∈N*且n≥3),如图程序框图表示输出斐波那契数列的前n项的算法,则n=()A. 10B. 18C. 20D. 229.设m=ln2,n=lg2,则()A. m-n>mn>m+nB. m-n>m+n>mnC. m+n>mn>m-nD. m+n>m-n>mn10.已知F为双曲线C:的右焦点,圆O:x2+y2=a2+b2与C在第一象限、第三象限的交点分别为M,N,若△MNF的面积为ab,则双曲线C的离心率为()A. B. C. 2 D.11.将函数f(x)=a sin x+b cos x的图象向右平移个单位长度得到g(x)的图象,若g(x)的对称中心为坐标原点,则关于函数f(x)有下述四个结论:①f(x)的最小正周期为2π②若f(x)的最大值为2,则a=1③f(x)在[-π,π]有两个零点④f(x)在区间[-,]上单调其中所有正确结论的标号是()A. ①③④B. ①②④C. ②④D. ①③12.已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量,,若,则m=______.14.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为______.15.设点P为函数f(x)=ln x-x3上任意一点,点Q为直线2x+y-2=0上任意一点,则P,Q两点距离的最小值为______.16.若数列{a n}满足,则称数列{a n}为“差半递增”数列.若数列{a n}为“差半递增”数列,且其通项a n与前n项和S n满足,则实数t的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}满足a n+1+n=2a n+1.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,求数列的前n项和T n.18.底面ABCD为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若DA=DH=DB=4,AE=CG=3.(1)求证:EG⊥DF;(2)求二面角A-HF-C的正弦值.19.在平面直角坐标系xOy中,已知点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,动点Q满足:RQ⊥PF,PQ⊥l.(1)求动点Q的轨迹方程E;(2)若直线PF与曲线E交于A,B两点,过点F作直线PF的垂线与曲线E相交于C,D两点,求的最大值.20.某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,有以下两种检验方式:①逐份检验,列需要检验n次;②混合检验,将其k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(Ⅰ)运用概率统计的知识,若Eξ1=Eξ2,试求p关于k的函数关系式p=f(k);(Ⅱ)若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094.21.已知函数f(x)=a•e-x+sin x,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(-∞,0],f(x)≥1;(2)若函数f(x)在(0,)上存在两个极值点,求实数a的取值范围.22.在直角坐标系xOy中,曲线C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=(1)求曲线C1的极坐标方程和C2的直角坐标方程;(2)设P是曲线C1上一点,此时参数φ=,将射线OP绕原点O逆时针旋转交曲线C2于点Q,记曲线C1的上顶点为点T,求△OTQ的面积.23.已知a,b,c为一个三角形的三边长.证明:(1)++≥3;(2)>2.答案和解析1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】D10.【答案】A11.【答案】D12.【答案】B13.【答案】114.【答案】4815.【答案】16.【答案】17.【答案】解:(1)由已知{a n}为等差数列,记其公差为d.①当n≥2时,,两式相减可得d+1=2d,所以d=1,②当n=1时,a2+1=2a1+1,所以a1=1.所以a n=1+n-1=n;(2),,所以=.【解析】(1)设等差数列的公差为d,将已知等式中的n换为n-1,相减可得公差d=1,再令n=1,可得首项,进而得到所求通项公式;(2)由等差数列的求和公式可得S n,求得,再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的定义、通项公式和求和公式,以及数列的裂项相消求和,化简运算能力,属于中档题.18.【答案】(1)证明:连接AC,由可知四边形AEGC为平行四边形,所以EG∥AC.由题意易知AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,因为BD∩BF=B,所以EG⊥平面BDHF,又DF⊂平面BDHF,所以EG⊥DF.(2)解:设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四边形EFGH为平行四边形,所以P为EG的中点,O为AC的中点,所以,从而OP⊥平面ABCD,又OA⊥OB,所以OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,由平面几何知识,得BF=2.则,,F(0,2,2),H(0,-2,4),所以,,.设平面AFH的法向量为,由,可得,令y=1,则z=2,,所以.同理,平面CFH的一个法向量为.设平面AFH与平面CFH所成角为θ,则,所以.【解析】(1)连接AC,证明EG∥AC.推出EG⊥BD,EG⊥BF,证明EG⊥平面BDHF,然后证明EG⊥DF.(2)OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,求出平面AFH的法向量,平面CFH的一个法向量利用空间向量的数量积求解二面角的正弦函数值即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力计算能力,是中档题.19.【答案】解:(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,即|QP|=|QF|,又因为PQ⊥l,即Q点到点F的距离和到直线l的距离相等,设Q(x,y),则,化简得y2=4x,所以动点Q的轨迹方程E为:y2=4x.(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,则,联立可得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,x1•x2=1.因为向量,方向相反,所以=,同理,设C(x3,y3),D(x4,y4),可得,所以,因为,当且仅当k2=1,即k=±1时取等号,所以的最大值为-16.【解析】(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,Q点到点F的距离和到直线l的距离相等,设Q(x,y),运用点到直线的距离公式和两点的距离公式,化简可得所求轨迹方程;(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,分别联立抛物线方程,运用韦达定理和向量数量积的定义和坐标表示,结合基本不等式可得所求最大值.本题考查轨迹方程的求法,注意运用点到直线和两点的距离公式,考查直线方程和抛物线方程联立,运用韦达定理和向量数量积的定义和坐标表示,考查化简运算能力,属于中档题.20.【答案】解:(1)记恰好经过3次检验就能把阳性样本全部检验出来为A事件,则.计算,,所以,由E(ξ1)=E(ξ2),得k=k+1-k(1-p)k,所以(k∈N*且k≥2).(Ⅱ),,所以,即.设,,x>0,当x∈(0,4)时,f'(x)>0,f(x)在(0,4)上单调递增;当x∈(4,+∞)时,f'(x)<0,f(x)在(4,+∞)上单调递减.且f(8)=ln8-2=3ln2-2>0,,所以k的最大值为8.【解析】(1)利用古典概型、排列组合求出恰好经过3次检验能把阳性样本全部检验出来的概率;(2)(Ⅰ)由E(ξ1)=k,ξ2的取值为1,k+1,计算对应概率与数学期望值,由E(ξ1)=E(ξ2)求得p的值;(Ⅱ)由题意得,即,设,利用导数判断f(x)的单调性,从而求得k的最大值.本题考查了概率、函数关系式、实数的最大值的求法,也考查了离散型随机变量的分布列、数学期望的求法,是中档题.21.【答案】解:(1)当a=1时,f(x)=e-x+sin x,f′(x)=-e-x+cos x,当x≤0时,-e-x≤-1,则f′(x)≤0(x≤0)所以f(x)在(-∞,0]上单调递减,f(x)≥f(0)=1;所以:∀x∈(-∞,0],f(x)≥1;(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根;即f′(x)=-ae-x+cos x=0在(0,)上有两个不等实数根;即a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,则g′(x)=e x(cos x-sin x);当时,g′(x)>0,g(x)单调递增;当时,g′(x)<0,g(x)单调递减;又g(0)=1,,;故实数a的取值范围为:【解析】(1)求出f′(x)=-e-x+cos x,得出f′(x)≤0,则f(x)在(-∞,0]上单调递减,结论可证.(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根,分离参数得a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,讨论函数g(x)的单调性即可解决;本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.22.【答案】解:(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程为,由x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程为ρ2cos2θ+2ρ2sin2θ-2=0.由ρ=,得ρ2=2,则C2的直角坐标方程为x2+y2=2;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,∴|OQ|=,|OT|=1,则=.【解析】(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程,结合x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程.由ρ=,得ρ2=2,则C2的直角坐标方程可求;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,求出|OQ|=,|OT|=1,再求出∠QOT的正弦值,代入三角形面积公式求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查计算能力,是中档题.23.【答案】解:(1)a,b,c>0,++≥3•;当且仅当a=b=c取等号,故原命题成立;(2)已知a,b,c为一个三角形的三边长,要证>2,只需证明,即证2,则有,即,所以,同理,,三式左右相加得2,故命题得证.【解析】(1)利用三元的均值不等式直接证明即可;(2)要证>2,只需证明,即证2,由,即得,累加即可证明.考查了基本不等式的应用,中档题.第11页,共11页。
2020年河南高三一模数学试卷(理科)

2020年河南高三一模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合,,则( ).A. B. C. D.2.下列命题中正确的是( ).A.若,则B.若,,则C.若,,则D.若,,则3.设方程的根为,表示不超过的最大整数,则( ).A.B.C.D.4.在中,已知,,,则等于( ).A.或B.C.D.5.下列四个结论:①命题“,”的否定是“,”.②若是真命题,则可能是真命题.③“且”是“”的充要条件.④当时,幂函数在区间上单调递减.其中正确的是( ).A.①④B.②③C.①③D.②④6.已知正项等比数列的前项和为,若,,则( ).A.B.C.D.7.的展开式中的系数为( ).A.B.C.D.8.直线与曲线有且仅有个公共点,则实数的取值范围是( ).A.B.C.D.9.某校有人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分分,统计结果显示数学成绩优秀(高于分)的人数占总人数的,则此次数学考试成绩在分到分之间的人数约为( ).A.B.C.D.10.已知椭圆:的右焦点为,短轴的一个端点为,直线:与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为( ).A.B.C.D.11.若函数与都在区间上单调递减,则的最大值为( ).A.B.C.D.12.已知关于的方程恰有四个不同的实数根,则当函数时,实数的取值范围是( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.若平面向量、满足,平行于轴,,则 .14.实数,满足约束条件:,则的取值范围为 .15.半径为的球面上有,,,四点,且,,两两垂直,则,与面积之和的最大值为 ·16.如图,,分别是椭圆的左、右顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点,则.三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.数列中,,当时,其前项和满足.求的表达式.设,求数列的前项和.(1)(2)18.在如图所示的三棱柱中,平面,,,的中点为,若线段上存在一点使得平面.求的长.求二面角的大小.19.部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过分钟).将统计数据按,,,,分组,制成频率分布直方图:(1)(2)频率组距乘车等待时间甲站(分钟)频率组距乘车等待时间乙站(分钟)假设乘客乘车等待时间相互独立.在上班高峰时段,从甲站的乘客中随机抽取人,记为;从乙站的乘客中随机抽取人,记为.用频率估计概率,求“乘客,乘车等待时间都小于分钟”的概率.从上班高峰时段,从乙站乘车的乘客中随机抽取人,表示乘车等待时间小于分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.(1)(2)20.已知为坐标原点,椭圆:的左、右焦点分别为,,离心率,椭圆上的点到焦点的最短距离为.求椭圆的标准方程.设为直线上任意一点,过的直线交椭圆于点,,且,求的最小值.(1)(2)21.已知函数,.若存在极小值,求实数的取值范围.设是的极小值点,且,证明:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.求的普通方程和的直角坐标方程.已知直线的极坐标方程为,是与的交点,是与的交点,且,均异于原点,,求的值.【答案】解析:,;∴;∴.故选:.解析:构造函数,由于函数与在定义域上都是单调递增函数,故在定义域上单调递增,由,.则函数的零点在之间,故,.解析:由正弦定理知,,∵,∴或又∵,∴,(1)(2)23.已知函数.当,求不等式 的解集.设对恒成立,求的取值范围.C1.或C2.B3.C4.∴∴故选.解析:①命题“,”的否定是“,”.满足命题的否定形式,正确.②若是真命题,是真命题,则是假命题.所以②不正确.③“且”可得“”成立,“”得不到“且”所以③不正确.④当时,幂函数在区间上单调递减,正确,反例:,可知:时,函数是增函数,在上单调递减,所以④正确.故选.解析:正项等比数列的前项和为,,,∴,解得,,∴.故选:.解析:∵,二项展开式的通项为,二项展开式的通项为,令,得,A 5.B 6.C 7.所以,展开式中的系数为.故选:.解析:如图所示,直线过点,圆的圆心坐标,,直线与曲线有且只有个公共点,设为,,则,,直线与曲线相切时,或(舍去),直线与曲线有且仅有个公共点,则实数的取值范围是.故选.解析:∵,∴,∴,∴此次数学考试成绩在分到分之间的人数约为.故选.解析:C 8.C 9.C 10.设椭圆的左焦点为,根据椭圆的对称性可得:,,∴,解得,∵点到直线的距离不小于,∴,解得,又,∴,∴,∴离心率,故选.解析:函数在上单调递增,在上单调递减,在上单调递增,与在区间上单调递减,在上单调递增,所以:这两个函数在区间单调递减,故:即所求的最大值.故选.解析:B 11.B 12.函数,由得,得或,此时为增函数,由得,得,此时为减函数,即当时,函数取得极小值,极小值为,当时,函数取得极大值,极大值为当,,且,作出函数的图象如图:设,则当 时方程有个根,当时,方程有个根,当或时,方程有个根,则方程等价为,若恰有四个不同的实数根,等价为有两个不同的根,当,方程不成立,即,其中或设,则满足,得,即,即,即实数的取值范围是.故选:.解析:方法一:由题设得或,则或.故填或方法二:设,则由及得.又由平行于轴,得,于是,解得:或,从而得,或.方法三:设,那么,由或.解析:作出不等式组表示的平面区域如下图:xyO 其中,因为表示与点连线斜率,由图可得:当点在点处时,它与点连线斜率最小为,所以的取值范围为.故答案为:.解析:或13.14.15.如图所示,将四面体置于一个长方体模型中,则该长方体外接球的半径为,不妨设,﹐,则有:,即.记,从而有,即,从而.当且仅当,即该长方体为正方体时等号成立.从而最大值为.16.解析:连结、,可得是边长为的等边三角形,∴,可得直线的斜率,直线的斜率,因此直线的方程为,直线的方程为,设,联解、的方程可得.(1)(2)∵圆与直线相切于点,∴,可得,直线的斜率,因此直线的方程为,代入椭圆,消去,得,解之得或.直线交椭圆于与点,∴设,可得.由此可得.故答案为:.解析:由和得,即,由题意知,上式两边同除以得.是首项为,公差为的等差数列,..适合,...解析:(1).(2).17.(1).(2).18.(1)(2)由题意知,,两两垂直.以点为原点,,,分别为轴,轴,轴建立建立空间直角坐标系.设,则,,,,,,设,由题意,,,所以,故,设面的法向量为,则,,所以,取,由面,则得,,所以.由()得平面的一个法向量为,设平面的法向量为,,,则,取,,,(1)(2)则.故二面角所成角的大小为.解析:设表示事件“乘客乘车等待时间小于分钟”,表示事件“乘客乘车等待时间小于分钟”,表示事件“乘客,乘车等待时间都小于分钟”,由题意知,乘客乘车等待时间小于分钟的频率为:,故的估计值为,乘客乘车等待时间小于分钟的频率为,故的估计值为,又,故事件的概率为.由可知,乙站乘客乘车等待时间小于分钟的频率为,所以乙站乘客乘车等待时间小于分钟的概率为,显然,的可能取值为,,,且,所以;;;;故随机变量的分布列为:,(1).(2)的分布列为:.19.(1)(2).解析:,而,又,得,,故椭圆的标准方程为.由()知,∵,故,设,∴,直线的斜率为,当时,直线的方程为,也符合方程,当时,直线的斜率为,直线的方程为,设,,将直线的方程与椭圆的方程联立,得,消去,得,,,,,(1).(2).20.(1)(2),当且仅当,即时,等号成立,∴的最小值为.解析:,令,则,所以在上是增函数,又因为当时,,当时,,所以,当时,,,函数在区间上是增函数,不存在极值点,当时,的值域为,必存在使,所以当时,,,单调递减,当时,,,单调递增,所以存在极小值点,综上可知实数的取值范围是.由()知,即,所以,,由,得,令,显然在区间上单调递减,又,所以由,得,令,,当时,,函数单调递增;(1).(2)证明见解析.21.(1)(2)(1)当时,,函数单调递减;所以,当时,函数取最小值,所以,即,即,所以,,所以,即.解析:对于,所以的直角坐标方程为.由,得,又,,所以的直角坐标方程为.由知曲线的普通方程为,所以其极坐标方程为.设点,的极坐标分别为,,则,,所以,所以,即,解得,又,所以.解析:当时,,即,当时,原不等式化为,得,即;当时,原不等式化为,得,即;当时,原不等式化为,得,即.综上,原不等式的解集为.(1),.(2).22.(1).(2).23.(2)因为,所以可化为,所以,即对恒成立,则,所以的取值范围是.。
2020年河南省六市高三数学第一次联考(理科)试题【含答案】

2a
理科数学答案 第 3 页 (共 6 页)
(2)方法一:由(1)知,
x1,
x2
是方程
x 1 ex
2a
的两根,
∴ 1
x1
0
x2
,则
x1
x2
0
x2
x1
0
因为
h(x)
在(0,
)单减,
h( x2
)
h(
x1
), 又h( x2
23. 解:(1)当 a 1时,
2x 1, x 1 f (x) 3,1 x 2
2x 1, x 2
…………………………2 分
当 x 1时,由 f (x) 7 得 2x 1 7 ,解得 x 3 ;
当 1 x 2 时, f (x) 7 无解;
当 x 2 时,由 f (x) 7 得 2x 1 7 ,解得 x 4 ,
1)
即 t ln t t 1 (ln t t 1) 0恒成立 ................................8 分
令 g(t) t ln t t 1 (ln t t 1)
理科数学答案 第 4 页 (共 6 页)
g ' (t)
ln t
1 t t
, g '' (t)
1 t t2
t t2
.............................9 分
当 1 时, g '' (t) 0 , g ' (t) 单减,故 g ' (t) g ' (1) 0
故 g(t)在(0,1)上为增函数 , g(t) g(1) 0 ........................10 分
2020届河南省开封市高考数学一模试卷

2020年河南省开封市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-x-6<0},B=N,则A∩B=()A. {-1,0,1,2}B. {0,1,2}C. {-2,-1,0,1}D. {0,1}2.在复平面内,复数对应的点位于直线y=x的左上方,则实数a的取值范围是()A. (-∞,0)B. (-∞,1)C. (0,+∞)D. (1,+∞)3.设与都是非零向量,则“”是“向量与夹角为锐角”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知角α的顶点与原点重合,始边与x轴正半轴重合,终边经过点(1,-2),则tan2α=()A. B. C. D.5.已知定义在[m-5,1-2m]上的奇函数f(x),满足x>0时,f(x)=2x-1,则f(m)的值为()A. -15B. -7C. 3D. 156.某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为A,B,C,D,E五个等级,A等级15%,B等级30%,C等级30%,D,E等级共25%.其中E 等级为不合格,原则上比例不超过5%.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到C级及以上级别的学生人数有()A. 45人B. 660人C. 880人D. 900人7.国庆阅兵式上举行升旗仪式,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,第一排和最后一排的距离为25米,则旗杆的高度约为()A. 17米B. 22米C. 3l 米D. 35米8. 已知{F n }是斐波那契数列,则F 1=F 2=1,F n =F n -1+F n -2(n ∈N*且n ≥3),如图程序框图表示输出斐波那契数列的前n 项的算法,则n =( ) A. 10 B. 18 C. 20 D. 22 9. 设m =ln2,n =lg2,则( )A. m -n >mn >m +nB. m -n >m +n >mnC. m +n >mn >m -nD. m +n >m -n >mn10. 已知F 为双曲线C :的右焦点,圆O :x 2+y 2=a 2+b 2与C 在第一象限、第三象限的交点分别为M ,N ,若△MNF 的面积为ab ,则双曲线C 的离心率为( )A. B. C. 2 D. 11. 将函数f (x )=a sin x +b cos x 的图象向右平移个单位长度得到g (x )的图象,若g(x )的对称中心为坐标原点,则关于函数f (x )有下述四个结论: ①f (x )的最小正周期为2π②若f (x )的最大值为2,则a =1 ③f (x )在[-π,π]有两个零点 ④f (x )在区间[-,]上单调其中所有正确结论的标号是( ) A. ①③④ B. ①②④ C. ②④ D. ①③12. 已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是( )A.B.C.D.二、填空题(本大题共4小题,共20.0分) 13. 已知向量,,若,则m =______.14.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为______.15.设点P为函数f(x)=ln x-x3上任意一点,点Q为直线2x+y-2=0上任意一点,则P,Q两点距离的最小值为______.16.若数列{a n}满足,则称数列{a n}为“差半递增”数列.若数列{a n}为“差半递增”数列,且其通项a n与前n项和S n满足,则实数t的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}满足a n+1+n=2a n+1.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,求数列的前n项和T n.18.底面ABCD为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若DA=DH=DB=4,AE=CG=3.(1)求证:EG⊥DF;(2)求二面角A-HF-C的正弦值.19.在平面直角坐标系xOy中,已知点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,动点Q满足:RQ⊥PF,PQ⊥l.(1)求动点Q的轨迹方程E;(2)若直线PF与曲线E交于A,B两点,过点F作直线PF的垂线与曲线E相交于C,D两点,求的最大值.20.某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,有以下两种检验方式:①逐份检验,列需要检验n次;②混合检验,将其k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(Ⅰ)运用概率统计的知识,若Eξ1=Eξ2,试求p关于k的函数关系式p=f(k);(Ⅱ)若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094.21.已知函数f(x)=a•e-x+sin x,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(-∞,0],f(x)≥1;(2)若函数f(x)在(0,)上存在两个极值点,求实数a的取值范围.22.在直角坐标系xOy中,曲线C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=(1)求曲线C1的极坐标方程和C2的直角坐标方程;(2)设P是曲线C1上一点,此时参数φ=,将射线OP绕原点O逆时针旋转交曲线C2于点Q,记曲线C1的上顶点为点T,求△OTQ的面积.23.已知a,b,c为一个三角形的三边长.证明:(1)++≥3;(2)>2.答案和解析1.【答案】B【解析】解:∵A={x|x2-x-6<0}=[-2,3],B=N,则A∩B={0,1,2}.故选:B.解不等式先求出集合A,即可求解.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2.【答案】A【解析】解:∵=,∴复数对应的点的坐标为(),由复数对应的点位于直线y=x的左上方,得>0,即a<0.∴实数a的取值范围是(-∞,0).故选:A.利用复数代数形式的乘除运算化简求得复数对应的点的坐标,再由线性规划知识列式求解.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】B【解析】解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,即可判断出结论.本题考查了向量夹角公式、向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.【答案】D【解析】解:由三角函数的定义可知,tanα=-2,tan2α===.故选:D.由三角函数的定义可求tanα,然后再由二倍角正切公式an2α=即可求解.5.【答案】A【解析】解:由奇函数的对称性可知,m-5+1-2m=0,∴m=-4,∵x>0时,f(x)=2x-1,则f(m)=f(-4)=-f(4)=-15.故选:A.先根据奇函数定义域关于原点对称求出m,然后代入即可求解本题考查奇函数的性质,转化思想,正确转化是关键.6.【答案】D【解析】解:根据图形,抽取的总人数10÷20%=50,其中C所占的百分比为:12÷50=0.24,故1000×(0.24+0.2+0.46)=1000×0.9=900,故选:D.利用图形,先算出抽取的总人数,求出C的百分比,最后算出结论.考查直方图,扇形统计图,样本估计总体问题等,基础题.7.【答案】C【解析】解:如图所示,依题意可知∠ADC=45°,∠ACD=180°-60°-15°=105°,∴∠DAC=180°-45°-105°=30°,由正弦定理可知,∴AC==25米.∴在Rt△ABC中,AB=AC•sin∠ACB=25×=≈31米.∴旗杆的高度为31米.故选:C.先求得∠ADC和∠ACD,则∠DAC可求,再利用正弦定理求得AC,最后在Rt△ABC中利用AB=AC•sin∠ACB求得AB的长.本题主要考查了解三角形的实际应用,此类问题的解决关键是建立数学模型,把实际问题转化成数学问题解决,是中档题.8.【答案】B【解析】解:模拟程序的运行,可得i=1,a=1,b=1,满足条件i<10,执行循环,输出斐波那契数列的前2项,a=2,b=3,i=2满足条件i<10,执行循环,输出斐波那契数列的第3,第4项,a=5,b=8,i=3…每经过一次循环,输出了斐波那契数列的2项,i=9时,共输出了斐波那契数列的前18项,此时i=10,不满足条件,退出循环体.故程序框图表示输出斐波那契数列的前n项的算法,n=18.故选:B.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】D【解析】解:∵0<m<1,0<n<1,m>n,=,故m-n>mn,所以,故m+n>mn,由m+n>m-n故m+n>m-n>mn,故选:D.利用倒数,作差法,判断即可.考查对数换底公式,对数的运算性质和不等式比较大小,基础题.10.【答案】A【解析】解:设|MF1|=m,|MF2|=n,由双曲线的定义可得m-n=2a,①由|OM|=|ON|,|OF1|=|OF2|,可得四边形F1NF2M为平行四边形,圆O:x2+y2=a2+b2=c2,由直径所对的圆周角为直角,可得四边形F1NF2M为矩形,即有m2+n2=4c2,②S=mn=ab,③由①②③可得4c2-4ab=4a2,即为b=a,可得e==.故选:A.设|MF1|=m,|MF2|=n,运用双曲线的定义和勾股定理、以及矩形的周长和面积公式,化简可得a,c的关系,进而得到所求离心率.本题考查双曲线的方程和性质,主要是离心率,考查直径所对的圆周角为直角,以及勾股定理和化简运算能力,属于中档题.11.【答案】D【解析】解:f(x)=a sin x+b cos x==.将f(x)的图象向右平移个单位长度得到g(x)的图象,则g(x)=.∵g(x)的对称中心为坐标原点,∴,得,则θ=,k∈Z.∴f(x)=.∴f(x)的最小正周期T=2π,故①正确;若f(x)的最大值为2,则,a不一定为1,故②错误;由f(x)=0,得sin(x+)=0,即sin(x+)=0,在[-π,π]有两个零点,,故③正确;当x∈[-,]时,x+∈,当k为偶数时,f(x)单调递增,当k为奇数时,f(x)单调递减,故④错误.∴其中所有正确结论的标号是①③.故选:D.利用辅助角公式化积,结合函数的图象平移及对称性求得θ,可得函数f(x)的解析式,然后逐一核对四个命题得答案.本题考查命题的真假判断与应用,考查y=A sin(ωx+φ)型函数的图象与性质,考查推理运算能力,属中档题.12.【答案】B【解析】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD-A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.利用正方体棱的关系,判断平面α所成的角都相等的位置,正方体ABCD-A1B1C1D1的本题考查直线与平面所成角的大小关系,考查空间想象能力以及计算能力,属于难题.13.【答案】1【解析】解:∵向量,,若,则•=0,即2×3-6m=0,则m=1,故答案为:1.由题意可得•=0,再利用两个向量垂直的性质,两个向量的数量积公式,求出m的值.本题主要考查两个向量的数量积公式,两个向量垂直的性质,属于基础题.14.【答案】48【解析】解:根据题意,假设有5个位置,第一个位置的舰载机最先着舰,其余的舰载机依次按位置着舰,乙机不能最先着舰,则乙机有4个位置可选,在剩下的位置中任选2个,安排丙机和甲机,要求丙机必须在甲机之前,有C42=6种情况,最后将剩下的2架舰载机安排在剩下的位置,有2种情况;则同的着舰方法有4×6×2=48种;故答案为:48.根据题意,假设有5个位置,据此分2步分析着舰的顺序,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15.【答案】【解析】解:由f(x)=ln x-x3,得f′(x)=ln x-x3=,设与直线2x+y-2=0平行的切线切曲线f(x)于P(),则,整理得,解得x0=1,则切点P(1,-1).∴P到直线2x+y-2=0的距离d=.即P,Q两点距离的最小值为.故答案为:.求出原函数的导函数,再求出与直线2x+y-2=0平行的切线切曲线f(x)的坐标,利用点到直线的距离公式得答案.本题考查利用导数研究过曲线上某点处的切线方程,训练了点到直线距离公式的应用,是中档题.16.【答案】把这两个等式相减,得a n=2a n-2a n-1,所以,因为S1=2a1+2t-1,所以a1=1-2t,则数列{a n}是公比为2的等比数列,所以a n=a1×2n-1=(1-2t)×2n-1,=(1-2t)×2n-2,所以a n-a n-1=3(1-2t)×2n-3,a n+1-=3(1-2t)×2n-2,(a n+1-)-(a n-a n-1)=3(1-2t)×2n-2-3(1-2t)×2n-3>0,解得t<,故答案为:(-∞,).因为S n=2a n+2t-1,则S n-1=2a n-1+2t-1,把这两个等式相减,得a n=2a n-2a n-1,所以,因为S1=2a1+2t-1,所以a1=1-2t,则数列{a n}是公比为2的等比数列,所以a n=a1×2n-1=(1-2t)×2n-1,=(1-2t)×2n-2,根据题意得,(a n+1-)-(a n-a n-1)>0,进而得出答案.本题是考查新定义的“差半递增”数列,属于中档题.17.【答案】解:(1)由已知{a n}为等差数列,记其公差为d.①当n≥2时,,两式相减可得d+1=2d,所以d=1,②当n=1时,a2+1=2a1+1,所以a1=1.所以a n=1+n-1=n;(2),,所以=.【解析】(1)设等差数列的公差为d,将已知等式中的n换为n-1,相减可得公差d=1,再令n=1,可得首项,进而得到所求通项公式;(2)由等差数列的求和公式可得S n,求得,再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的定义、通项公式和求和公式,以及数列的裂项相消求和,化简运算能力,属于中档题.18.【答案】(1)证明:连接AC,由可知四边形AEGC为平行四边形,所以EG∥AC.由题意易知AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,因为BD∩BF=B,所以EG⊥平面BDHF,又DF⊂平面BDHF,所以EG⊥DF.(2)解:设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四边形EFGH为平行四边形,所以P为EG的中点,O为AC的中点,所以,从而OP⊥平面ABCD,又OA⊥OB,所以OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,由平面几何知识,得BF=2.则,,F(0,2,2),H(0,-2,4),所以,,.设平面AFH的法向量为,由,可得,令y=1,则z=2,,所以.同理,平面CFH的一个法向量为.设平面AFH与平面CFH所成角为θ,则,所以.【解析】(1)连接AC,证明EG∥AC.推出EG⊥BD,EG⊥BF,证明EG⊥平面BDHF,然后证明EG⊥DF.(2)OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,求出平面AFH的法向量,平面CFH的一个法向量利用空间向量的数量积求解二面角的正弦函数值即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力计算能力,是中档题.19.【答案】解:(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,即|QP|=|QF|,又因为PQ⊥l,即Q点到点F的距离和到直线l的距离相等,设Q(x,y),则,化简得y2=4x,所以动点Q的轨迹方程E为:y2=4x.(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,则,联立可得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,x1•x2=1.因为向量,方向相反,所以=,同理,设C(x3,y3),D(x4,y4),可得,所以,因为,当且仅当k2=1,即k=±1时取等号,所以的最大值为-16.【解析】(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,Q点到点F的距离和到直线l的距离相等,设Q(x,y),运用点到直线的距离公式和两点的距离公式,化简可得所求轨迹方程;(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,分别联立抛物线方程,运用韦达定理和向量数量积的定义和坐标表示,结合基本不等式可得所求最大值.本题考查轨迹方程的求法,注意运用点到直线和两点的距离公式,考查直线方程和抛物线方程联立,运用韦达定理和向量数量积的定义和坐标表示,考查化简运算能力,属于中档题.20.【答案】解:(1)记恰好经过3次检验就能把阳性样本全部检验出来为A事件,则.(2)(Ⅰ)E(ξ1)=k,ξ2的取值为1,k+1,计算,,所以,由E(ξ1)=E(ξ2),得k=k+1-k(1-p)k,所以(k∈N*且k≥2).(Ⅱ),,所以,即.设,,x>0,当x∈(0,4)时,f'(x)>0,f(x)在(0,4)上单调递增;当x∈(4,+∞)时,f'(x)<0,f(x)在(4,+∞)上单调递减.且f(8)=ln8-2=3ln2-2>0,,所以k的最大值为8.【解析】(1)利用古典概型、排列组合求出恰好经过3次检验能把阳性样本全部检验出来的概率;(2)(Ⅰ)由E(ξ1)=k,ξ2的取值为1,k+1,计算对应概率与数学期望值,由E(ξ1)=E(ξ2)求得p的值;(Ⅱ)由题意得,即,设,利用导数判断f(x)的单调性,从而求得k的最大值.本题考查了概率、函数关系式、实数的最大值的求法,也考查了离散型随机变量的分布列、数学期望的求法,是中档题.21.【答案】解:(1)当a=1时,f(x)=e-x+sin x,f′(x)=-e-x+cos x,当x≤0时,-e-x≤-1,则f′(x)≤0(x≤0)所以f(x)在(-∞,0]上单调递减,f(x)≥f(0)=1;所以:∀x∈(-∞,0],f(x)≥1;(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根;即f′(x)=-ae-x+cos x=0在(0,)上有两个不等实数根;即a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,则g′(x)=e x(cos x-sin x);当时,g′(x)>0,g(x)单调递增;当时,g′(x)<0,g(x)单调递减;又g(0)=1,,;故实数a的取值范围为:【解析】(1)求出f′(x)=-e-x+cos x,得出f′(x)≤0,则f(x)在(-∞,0]上单调递减,结论可证.(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根,分离参数得a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,讨论函数g(x)的单调性即可解决;本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.22.【答案】解:(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程为,由x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程为ρ2cos2θ+2ρ2sin2θ-2=0.由ρ=,得ρ2=2,则C2的直角坐标方程为x2+y2=2;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,∴|OQ|=,|OT|=1,则=.【解析】(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程,结合x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程.由ρ=,得ρ2=2,则C2的直角坐标方程可求;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,求出|OQ|=,|OT|=1,再求出∠QOT的正弦值,代入三角形面积公式求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查计算能力,是中档题.23.【答案】解:(1)a,b,c>0,++≥3•;当且仅当a=b=c取等号,故原命题成立;(2)已知a,b,c为一个三角形的三边长,要证>2,只需证明,即证2,则有,即,所以,同理,,三式左右相加得2,故命题得证.【解析】(1)利用三元的均值不等式直接证明即可;(2)要证>2,只需证明,即证2,由,即得,累加即可证明.考查了基本不等式的应用,中档题.。
2020届河南省开封市高考数学一模试卷(理科 )(解析版)

2020年河南省开封市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-x-6<0},B=N,则A∩B=()A. {-1,0,1,2}B. {0,1,2}C. {-2,-1,0,1}D. {0,1}2.在复平面内,复数对应的点位于直线y=x的左上方,则实数a的取值范围是()A. (-∞,0)B. (-∞,1)C. (0,+∞)D. (1,+∞)3.设与都是非零向量,则“”是“向量与夹角为锐角”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知角α的顶点与原点重合,始边与x轴正半轴重合,终边经过点(1,-2),则tan2α=()A. B. C. D.5.已知定义在[m-5,1-2m]上的奇函数f(x),满足x>0时,f(x)=2x-1,则f(m)的值为()A. -15B. -7C. 3D. 156.某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为A,B,C,D,E五个等级,A等级15%,B等级30%,C等级30%,D,E等级共25%.其中E 等级为不合格,原则上比例不超过5%.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到C级及以上级别的学生人数有()A. 45人B. 660人C. 880人D. 900人7.国庆阅兵式上举行升旗仪式,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,第一排和最后一排的距离为25米,则旗杆的高度约为()A. 17米B. 22米C. 3l 米D. 35米8. 已知{F n }是斐波那契数列,则F 1=F 2=1,F n =F n -1+F n -2(n ∈N*且n ≥3),如图程序框图表示输出斐波那契数列的前n 项的算法,则n =( ) A. 10 B. 18 C. 20 D. 22 9. 设m =ln2,n =lg2,则( )A. m -n >mn >m +nB. m -n >m +n >mnC. m +n >mn >m -nD. m +n >m -n >mn10. 已知F 为双曲线C :的右焦点,圆O :x 2+y 2=a 2+b 2与C 在第一象限、第三象限的交点分别为M ,N ,若△MNF 的面积为ab ,则双曲线C 的离心率为( )A. B. C. 2 D. 11. 将函数f (x )=a sin x +b cos x 的图象向右平移个单位长度得到g (x )的图象,若g(x )的对称中心为坐标原点,则关于函数f (x )有下述四个结论: ①f (x )的最小正周期为2π②若f (x )的最大值为2,则a =1 ③f (x )在[-π,π]有两个零点 ④f (x )在区间[-,]上单调其中所有正确结论的标号是( ) A. ①③④ B. ①②④ C. ②④ D. ①③12. 已知正方体的棱长为1,平面α过正方体的一个顶点,且与正方体每条棱所在直线所成的角相等,则该正方体在平面α内的正投影面积是( )A.B.C.D.二、填空题(本大题共4小题,共20.0分) 13. 已知向量,,若,则m =______.14.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为______.15.设点P为函数f(x)=ln x-x3上任意一点,点Q为直线2x+y-2=0上任意一点,则P,Q两点距离的最小值为______.16.若数列{a n}满足,则称数列{a n}为“差半递增”数列.若数列{a n}为“差半递增”数列,且其通项a n与前n项和S n满足,则实数t的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}满足a n+1+n=2a n+1.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,求数列的前n项和T n.18.底面ABCD为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若DA=DH=DB=4,AE=CG=3.(1)求证:EG⊥DF;(2)求二面角A-HF-C的正弦值.19.在平面直角坐标系xOy中,已知点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,动点Q满足:RQ⊥PF,PQ⊥l.(1)求动点Q的轨迹方程E;(2)若直线PF与曲线E交于A,B两点,过点F作直线PF的垂线与曲线E相交于C,D两点,求的最大值.20.某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,有以下两种检验方式:①逐份检验,列需要检验n次;②混合检验,将其k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(Ⅰ)运用概率统计的知识,若Eξ1=Eξ2,试求p关于k的函数关系式p=f(k);(Ⅱ)若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094.21.已知函数f(x)=a•e-x+sin x,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(-∞,0],f(x)≥1;(2)若函数f(x)在(0,)上存在两个极值点,求实数a的取值范围.22.在直角坐标系xOy中,曲线C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=(1)求曲线C1的极坐标方程和C2的直角坐标方程;(2)设P是曲线C1上一点,此时参数φ=,将射线OP绕原点O逆时针旋转交曲线C2于点Q,记曲线C1的上顶点为点T,求△OTQ的面积.23.已知a,b,c为一个三角形的三边长.证明:(1)++≥3;(2)>2.答案和解析1.【答案】B【解析】解:∵A={x|x2-x-6<0}=[-2,3],B=N,则A∩B={0,1,2}.故选:B.解不等式先求出集合A,即可求解.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2.【答案】A【解析】解:∵=,∴复数对应的点的坐标为(),由复数对应的点位于直线y=x的左上方,得>0,即a<0.∴实数a的取值范围是(-∞,0).故选:A.利用复数代数形式的乘除运算化简求得复数对应的点的坐标,再由线性规划知识列式求解.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】B【解析】解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,即可判断出结论.本题考查了向量夹角公式、向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.【答案】D【解析】解:由三角函数的定义可知,tanα=-2,tan2α===.故选:D.由三角函数的定义可求tanα,然后再由二倍角正切公式an2α=即可求解.5.【答案】A【解析】解:由奇函数的对称性可知,m-5+1-2m=0,∴m=-4,∵x>0时,f(x)=2x-1,则f(m)=f(-4)=-f(4)=-15.故选:A.先根据奇函数定义域关于原点对称求出m,然后代入即可求解本题考查奇函数的性质,转化思想,正确转化是关键.6.【答案】D【解析】解:根据图形,抽取的总人数10÷20%=50,其中C所占的百分比为:12÷50=0.24,故1000×(0.24+0.2+0.46)=1000×0.9=900,故选:D.利用图形,先算出抽取的总人数,求出C的百分比,最后算出结论.考查直方图,扇形统计图,样本估计总体问题等,基础题.7.【答案】C【解析】解:如图所示,依题意可知∠ADC=45°,∠ACD=180°-60°-15°=105°,∴∠DAC=180°-45°-105°=30°,由正弦定理可知,∴AC==25米.∴在Rt△ABC中,AB=AC•sin∠ACB=25×=≈31米.∴旗杆的高度为31米.故选:C.先求得∠ADC和∠ACD,则∠DAC可求,再利用正弦定理求得AC,最后在Rt△ABC中利用AB=AC•sin∠ACB求得AB的长.本题主要考查了解三角形的实际应用,此类问题的解决关键是建立数学模型,把实际问题转化成数学问题解决,是中档题.8.【答案】B【解析】解:模拟程序的运行,可得i=1,a=1,b=1,满足条件i<10,执行循环,输出斐波那契数列的前2项,a=2,b=3,i=2满足条件i<10,执行循环,输出斐波那契数列的第3,第4项,a=5,b=8,i=3…每经过一次循环,输出了斐波那契数列的2项,i=9时,共输出了斐波那契数列的前18项,此时i=10,不满足条件,退出循环体.故程序框图表示输出斐波那契数列的前n项的算法,n=18.故选:B.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】D【解析】解:∵0<m<1,0<n<1,m>n,=,故m-n>mn,所以,故m+n>mn,由m+n>m-n故m+n>m-n>mn,故选:D.利用倒数,作差法,判断即可.考查对数换底公式,对数的运算性质和不等式比较大小,基础题.10.【答案】A【解析】解:设|MF1|=m,|MF2|=n,由双曲线的定义可得m-n=2a,①由|OM|=|ON|,|OF1|=|OF2|,可得四边形F1NF2M为平行四边形,圆O:x2+y2=a2+b2=c2,由直径所对的圆周角为直角,可得四边形F1NF2M为矩形,即有m2+n2=4c2,②S=mn=ab,③由①②③可得4c2-4ab=4a2,即为b=a,可得e==.故选:A.设|MF1|=m,|MF2|=n,运用双曲线的定义和勾股定理、以及矩形的周长和面积公式,化简可得a,c的关系,进而得到所求离心率.本题考查双曲线的方程和性质,主要是离心率,考查直径所对的圆周角为直角,以及勾股定理和化简运算能力,属于中档题.11.【答案】D【解析】解:f(x)=a sin x+b cos x==.将f(x)的图象向右平移个单位长度得到g(x)的图象,则g(x)=.∵g(x)的对称中心为坐标原点,∴,得,则θ=,k∈Z.∴f(x)=.∴f(x)的最小正周期T=2π,故①正确;若f(x)的最大值为2,则,a不一定为1,故②错误;由f(x)=0,得sin(x+)=0,即sin(x+)=0,在[-π,π]有两个零点,,故③正确;当x∈[-,]时,x+∈,当k为偶数时,f(x)单调递增,当k为奇数时,f(x)单调递减,故④错误.∴其中所有正确结论的标号是①③.故选:D.利用辅助角公式化积,结合函数的图象平移及对称性求得θ,可得函数f(x)的解析式,然后逐一核对四个命题得答案.本题考查命题的真假判断与应用,考查y=A sin(ωx+φ)型函数的图象与性质,考查推理运算能力,属中档题.12.【答案】B【解析】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正三角形所在平面或其平行平面为平面α时,满足平面α与正方体每条棱所成的角均相等,并且如图所示的正三角形,为平面α截正方体所形成的三角形截面中,截面面积最大者.因为正三角形的边长为,正方体ABCD-A1B1C1D1的三个面在平面α内的正投影是三个全等的菱形(如图所示),可以看成两个边长为的等边三角形,所以正方体在平面α内的正投影面积是S=2×=.故选:B.利用正方体棱的关系,判断平面α所成的角都相等的位置,正方体ABCD-A1B1C1D1的本题考查直线与平面所成角的大小关系,考查空间想象能力以及计算能力,属于难题.13.【答案】1【解析】解:∵向量,,若,则•=0,即2×3-6m=0,则m=1,故答案为:1.由题意可得•=0,再利用两个向量垂直的性质,两个向量的数量积公式,求出m的值.本题主要考查两个向量的数量积公式,两个向量垂直的性质,属于基础题.14.【答案】48【解析】解:根据题意,假设有5个位置,第一个位置的舰载机最先着舰,其余的舰载机依次按位置着舰,乙机不能最先着舰,则乙机有4个位置可选,在剩下的位置中任选2个,安排丙机和甲机,要求丙机必须在甲机之前,有C42=6种情况,最后将剩下的2架舰载机安排在剩下的位置,有2种情况;则同的着舰方法有4×6×2=48种;故答案为:48.根据题意,假设有5个位置,据此分2步分析着舰的顺序,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.15.【答案】【解析】解:由f(x)=ln x-x3,得f′(x)=ln x-x3=,设与直线2x+y-2=0平行的切线切曲线f(x)于P(),则,整理得,解得x0=1,则切点P(1,-1).∴P到直线2x+y-2=0的距离d=.即P,Q两点距离的最小值为.故答案为:.求出原函数的导函数,再求出与直线2x+y-2=0平行的切线切曲线f(x)的坐标,利用点到直线的距离公式得答案.本题考查利用导数研究过曲线上某点处的切线方程,训练了点到直线距离公式的应用,是中档题.16.【答案】把这两个等式相减,得a n=2a n-2a n-1,所以,因为S1=2a1+2t-1,所以a1=1-2t,则数列{a n}是公比为2的等比数列,所以a n=a1×2n-1=(1-2t)×2n-1,=(1-2t)×2n-2,所以a n-a n-1=3(1-2t)×2n-3,a n+1-=3(1-2t)×2n-2,(a n+1-)-(a n-a n-1)=3(1-2t)×2n-2-3(1-2t)×2n-3>0,解得t<,故答案为:(-∞,).因为S n=2a n+2t-1,则S n-1=2a n-1+2t-1,把这两个等式相减,得a n=2a n-2a n-1,所以,因为S1=2a1+2t-1,所以a1=1-2t,则数列{a n}是公比为2的等比数列,所以a n=a1×2n-1=(1-2t)×2n-1,=(1-2t)×2n-2,根据题意得,(a n+1-)-(a n-a n-1)>0,进而得出答案.本题是考查新定义的“差半递增”数列,属于中档题.17.【答案】解:(1)由已知{a n}为等差数列,记其公差为d.①当n≥2时,,两式相减可得d+1=2d,所以d=1,②当n=1时,a2+1=2a1+1,所以a1=1.所以a n=1+n-1=n;(2),,所以=.【解析】(1)设等差数列的公差为d,将已知等式中的n换为n-1,相减可得公差d=1,再令n=1,可得首项,进而得到所求通项公式;(2)由等差数列的求和公式可得S n,求得,再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的定义、通项公式和求和公式,以及数列的裂项相消求和,化简运算能力,属于中档题.18.【答案】(1)证明:连接AC,由可知四边形AEGC为平行四边形,所以EG∥AC.由题意易知AC⊥BD,AC⊥BF,所以EG⊥BD,EG⊥BF,因为BD∩BF=B,所以EG⊥平面BDHF,又DF⊂平面BDHF,所以EG⊥DF.(2)解:设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE∥平面BCGF,所以EH∥FG,同理可得:EF∥HG,所以四边形EFGH为平行四边形,所以P为EG的中点,O为AC的中点,所以,从而OP⊥平面ABCD,又OA⊥OB,所以OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,由平面几何知识,得BF=2.则,,F(0,2,2),H(0,-2,4),所以,,.设平面AFH的法向量为,由,可得,令y=1,则z=2,,所以.同理,平面CFH的一个法向量为.设平面AFH与平面CFH所成角为θ,则,所以.【解析】(1)连接AC,证明EG∥AC.推出EG⊥BD,EG⊥BF,证明EG⊥平面BDHF,然后证明EG⊥DF.(2)OA,OB,OP两两垂直,如图,建立空间直角坐标系O-xyz,OP=3,DH=4,求出平面AFH的法向量,平面CFH的一个法向量利用空间向量的数量积求解二面角的正弦函数值即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及逻辑推理能力计算能力,是中档题.19.【答案】解:(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,即|QP|=|QF|,又因为PQ⊥l,即Q点到点F的距离和到直线l的距离相等,设Q(x,y),则,化简得y2=4x,所以动点Q的轨迹方程E为:y2=4x.(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,则,联立可得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,x1•x2=1.因为向量,方向相反,所以=,同理,设C(x3,y3),D(x4,y4),可得,所以,因为,当且仅当k2=1,即k=±1时取等号,所以的最大值为-16.【解析】(1)由题意可知R是线段PF的中点,因为RQ⊥PF,所以RQ为PF的中垂线,Q点到点F的距离和到直线l的距离相等,设Q(x,y),运用点到直线的距离公式和两点的距离公式,化简可得所求轨迹方程;(2)由题可知直线PF的斜率存在且不为0,设直线PF:y=k(x-1),CD:,分别联立抛物线方程,运用韦达定理和向量数量积的定义和坐标表示,结合基本不等式可得所求最大值.本题考查轨迹方程的求法,注意运用点到直线和两点的距离公式,考查直线方程和抛物线方程联立,运用韦达定理和向量数量积的定义和坐标表示,考查化简运算能力,属于中档题.20.【答案】解:(1)记恰好经过3次检验就能把阳性样本全部检验出来为A事件,则.(2)(Ⅰ)E(ξ1)=k,ξ2的取值为1,k+1,计算,,所以,由E(ξ1)=E(ξ2),得k=k+1-k(1-p)k,所以(k∈N*且k≥2).(Ⅱ),,所以,即.设,,x>0,当x∈(0,4)时,f'(x)>0,f(x)在(0,4)上单调递增;当x∈(4,+∞)时,f'(x)<0,f(x)在(4,+∞)上单调递减.且f(8)=ln8-2=3ln2-2>0,,所以k的最大值为8.【解析】(1)利用古典概型、排列组合求出恰好经过3次检验能把阳性样本全部检验出来的概率;(2)(Ⅰ)由E(ξ1)=k,ξ2的取值为1,k+1,计算对应概率与数学期望值,由E(ξ1)=E(ξ2)求得p的值;(Ⅱ)由题意得,即,设,利用导数判断f(x)的单调性,从而求得k的最大值.本题考查了概率、函数关系式、实数的最大值的求法,也考查了离散型随机变量的分布列、数学期望的求法,是中档题.21.【答案】解:(1)当a=1时,f(x)=e-x+sin x,f′(x)=-e-x+cos x,当x≤0时,-e-x≤-1,则f′(x)≤0(x≤0)所以f(x)在(-∞,0]上单调递减,f(x)≥f(0)=1;所以:∀x∈(-∞,0],f(x)≥1;(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根;即f′(x)=-ae-x+cos x=0在(0,)上有两个不等实数根;即a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,则g′(x)=e x(cos x-sin x);当时,g′(x)>0,g(x)单调递增;当时,g′(x)<0,g(x)单调递减;又g(0)=1,,;故实数a的取值范围为:【解析】(1)求出f′(x)=-e-x+cos x,得出f′(x)≤0,则f(x)在(-∞,0]上单调递减,结论可证.(2)函数f(x)在(0,)上存在两个极值点;则f′(x)=0在(0,)上有两个不等实数根,分离参数得a=e x cos x在(0,)上有两个不等实数根;设g(x)=e x cos x,讨论函数g(x)的单调性即可解决;本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.22.【答案】解:(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程为,由x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程为ρ2cos2θ+2ρ2sin2θ-2=0.由ρ=,得ρ2=2,则C2的直角坐标方程为x2+y2=2;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,∴|OQ|=,|OT|=1,则=.【解析】(1)由(φ为参数),消去参数φ,可得曲线C1的普通方程,结合x=ρcosθ,y=ρsinθ,可得曲线C1的极坐标方程.由ρ=,得ρ2=2,则C2的直角坐标方程可求;(2)当φ=时,P(1,),sin∠xOP=,cos,将射线OP绕原点O逆时针旋转,交曲线C2于点Q,又曲线C1的上顶点为点T,求出|OQ|=,|OT|=1,再求出∠QOT的正弦值,代入三角形面积公式求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查计算能力,是中档题.23.【答案】解:(1)a,b,c>0,++≥3•;当且仅当a=b=c取等号,故原命题成立;(2)已知a,b,c为一个三角形的三边长,要证>2,只需证明,即证2,则有,即,所以,同理,,三式左右相加得2,故命题得证.【解析】(1)利用三元的均值不等式直接证明即可;(2)要证>2,只需证明,即证2,由,即得,累加即可证明.考查了基本不等式的应用,中档题.。
河南省开封市2020届高三数学第一次模拟考试 理

高三数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4保持卷面清洁,不折叠,不破损。
5做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据1x ,2x ,…n x 的标准差 锥体体积公式 ])()()[(122221x x x x x x n s n -+⋯+-++=Sh V 31= 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 24R S π= 334R V π=其中S 为底面面积,h 为高 其中R 为球的半径第 Ⅰ 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U ={-2,-1,0,1,2,3},M={0,1,2},N ={0,1,2,3},则(∩N=A .{0,1,2}B .{-2,-1,3}C .{0,3}D .{3} 2. i 是虚数单位,复数=+-+=iiz 2332A .0B .-1C .1D .-13. 连续抛两枚骰子分别得到的点数是a ,b ,则向量(a,b)与向量(1,-1)垂直的概率是 A .125 B .61 C .31 D .21 4. 在等差数列{a n }中,已知a 6=5,S n 是数列{a n }的前n 项和,则S 11=A .45B .50C .55D .605. 在△ABC 中,角A 、B 、C 所对边的长分别为a 、b 、c .若b 2+c 2-a 2=56bc ,则cosA 的值为 A.-54 B.54 C.-53 D.53 6. 若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题是 ①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线; ③已知α、β互相垂直,m 、n 互相垂直,若m ⊥α,则n ⊥β; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直. 7. 将函数y=sinx 的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是A.y=sin(2x-10π) B.y=sin(2x-5π) C.y=sin(21x-10π) D.y=sin(21x-[20π)8. 如右框图,当x 1=6,x 2=9,p=8.5时,x 3等于 A .11 B .10 C .8 D .79. 对于函数y=f(x),x ∈R,“y=|f(x)|的图象关于y 轴对称”是“y=f(x)是奇函数”的 A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件10.用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最小体积是A .9B .8C .7D .511. 由曲线xy=1,直线y=x,y=3所围成的平面图形和面积为 A .932B .2-ln3C .4+ln3D .4-ln3 12. 已知函数⎩⎨⎧>+-≤-=)0(1)1()0(12)(x x f x x x f ,把函数g(x)=f(x)-x 的零点按从小到大的顺序排列成一个数列,则该数列的前n 项的和S n ,则S 10=A .210-1 B .29-1 C .45 D .55第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2023年河南省开封市高考数学一模试卷(理科)+答案解析(附后)

2023年河南省开封市高考数学一模试卷(理科)1. 已知集合,则( )A. B. C. D.2. 设命题p:,,则为( )A. ,B. ,C. ,D. ,3. 若是纯虚数,则复数z可以是( )A. B. C. D.4. 已知中,D为BC边上一点,且,则( )A. B. C. D.5. 已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为( )A. B. C. D.6. 如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为( )A. 4B. 2C.D.7. 已知,则的最大值为( )A. 2B. 3C. 5D. 68. 设是定义域为R的偶函数,且在上单调递减,则满足的x 的取值范围是( )A. B. C. D.9. 已知数列的前n项和,若,则( )A. 8B. 16C. 32D. 6410. 已知点到点和点的距离之和为4,则( )A. 有最大值1B. 有最大值4C. 有最小值1D. 有最小值11. 如图,在正方体中,点M,N分别是,的中点,则下述结论中正确的个数为( )①平面ABCD;②平面平面;③直线MN 与所成的角为;④直线与平面所成的角为A. 1B. 2C. 3D. 412. 在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数.若函数为“不动点”函数,则实数a 的取值范围是( )A. B. C.D.13. 若函数的一个零点为,则______ .14.已知点,,C 为y 轴上一点,若,则______ .15. 3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为3D 打印的双曲线型塔筒,该塔筒是由离心率为的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒数据均以外壁即塔筒外侧表面计算的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部最细处的直径为______16.在数列中,,记是数列的前n 项和,则______ .17.在中,角A ,B ,C ,所对的边分别为a ,b ,c ,已知,求的值;若,求18. 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为p ,在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响.已知“星队”在第一轮活动中猜对1个成语的概率为求p 的值;记“星队”在两轮活动中猜对成语的总数为X ,求X 的分布列与期望.19. 如图,是正三角形,在等腰梯形ABEF中,,平面平面ABEF,M,N分别是AF,CE的中点,证明:平面ABC;求二面角的余弦值.20. 已知函数,若是R上的单调递增函数,求实数a的取值范围;当时,求在上的最小值;证明:21. 如图1所示是一种作图工具,在十字形滑槽上各有一个活动滑标M,N,有一根旋杆将两个滑标连成一体,,D为旋杆上的一点且在M,N两点之间,且当滑标M在滑槽EF内做往复运动,滑标N在滑槽GH内随之运动时,将笔尖放置于D处进行作图,当和时分别得到曲线和如图2所示,设EF与GH交于点O,以EF所在的直线为x轴,以GH所在的直线为y轴,建立平面直角坐标系.求曲线和的方程;已知直线l与曲线相切,且与曲线交于A,B两点,记的面积为S,证明:22. 在直角坐标系xOy中,曲线C的参数方程为为参数,为曲线C 上一点的坐标.将曲线C的参数方程化为普通方程;过点O任意作两条相互垂直的射线分别与曲线C交于点A,B,以直线OA的斜率k为参数,求线段AB的中点M的轨迹的参数方程,并化为普通方程.23. 已知函数当时,求的最小值;若,时,对任意,使得不等式恒成立,证明:答案和解析1.【答案】C【解析】解:,,,故选:先求得,再运算可得答案.本题考查交集及其运算,属于基础题.2.【答案】C【解析】解:命题p:,为全称量词命题,则为:,故选:根据全称量词命题的否定为特称量词命题判断即可.本题主要考查全称命题的否定,属于基础题.3.【答案】D【解析】解:设,则,因为是纯虚数,所以,经验证可知,,适合,即复数z可以是故选:设代入化简,根据其为纯虚数,可得a,b的关系,验证得答案.本题主要考查复数的四则运算,以及纯虚数的定义,属于基础题.4.【答案】A【解析】解:因为,所以所以故选:利用向量的线性运算即可求得.本题主要考查了向量的线性运算,属于基础题.5.【答案】B【解析】解:设圆锥母线长为l,高为h,底面半径为,则由得,所以,所以故选:由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.本题主要考查了圆锥的侧面积公式,属于基础题.6.【答案】B【解析】解:由可得,,即甲同学成绩的方差为故选:由平均数相等求出m,再求方差.本题主要考查了茎叶图的应用,考查了方差的计算,属于基础题.7.【答案】C【解析】解:作出可行域如图:由可得:,平移直线经过点A时,z有最大值,由,解得,平移直线经过点A时,z有最大值,故选:作出可行域,根据简单线性规划求解即可.本题主要考查简单线性规划,考查数形结合思想与运算求解能力,属于基础题.8.【答案】D【解析】解:因为是定义域为R的偶函数,所以,又在上单调递减,所以在上单调递增,若,则,解得故选:利用的奇偶性、单调性可得,再解不等式可得答案.主要考查了函数的奇偶性及单调性在不等式求解中的应用,属于基础题.9.【答案】C【解析】解:,,,,时,,符合上式,故,,,故选:根据题意,写出,结合,,计算即可.本题考查数列的通项与前n项和的关系,属于基础题.10.【答案】A【解析】解:因为点到点和点的距离之和为4,所以点P的轨迹是以,为焦点的椭圆,且长轴长,焦距,所以点P的轨迹方程为,设,,则,所以xy有最大值故选:根据题意,求出点P的轨迹方程,利用三角换元法即可求解.本题主要考查轨迹方程的求解,属于基础题.11.【答案】C【解析】解:在正方体中,点M,N分别是,的中点,以D为坐标原点,DA,DB,所在直线分别为x,y,z轴,建立如下图所示的空间直角坐标系,设该正方体的棱长为2,则,,,,,,,由正方体的性质可知:平面ABCD,则平面ABCD的法向量为,,,,平面ABCD,平面ABCD,故①正确;设平面的法向量为,,,,取,得,同理可求出平面的法向量,,,平面平面,故②正确;,,,异面直线所成的角范围为直线MN与所成的角为,故③正确;设直线与平面所成的角为,,平面的法向量为,,直线与平面所成的角不是,故④错误.故选:以D为坐标原点,DA,DB,所在直线分别为x,y,z轴,建立空间直角坐标系,设该正方体的棱长为2,利用向量法求解.本题考查线面平行、面面垂直的判定与性质、异面直线所成角、线面角的定义及求法等基础知识,考查运算求解能力,是中档题.12.【答案】B【解析】解:由题意得,存,使得,即,即,设,,设,所以在单调递减,且,,,,所以在上单调递增,,,,所以在上单调递减,所以,当,则,当,则,所以的图像为:要想成立,则与有交点,所以,故选:根据题意列出关于和a的等式,然后分离参数,转化为两个函数有交点.本题考查利用导数研究函数的单调性,考查函数的零点,考查分离变量思想以及数形结合思想,考查运算求解能力,属于中档题.13.【答案】【解析】解:函数的一个零点为,,,函数,故答案为:由题意,根据三角函数的零点,求得A值,再利用两角差的正弦公式,求得的值.本题主要考查三角函数的零点,两角差的正弦公式,属于基础题.14.【答案】3【解析】解:设,点,,,,,,,,解得或舍去,故答案为:设,依题意,利用平面向量数量积的坐标运算可求得答案.本题考查平面向量数量积的坐标运算,属于基础题.15.【答案】【解析】解:由已知,以最细处所在的直线为x轴,其垂直平分线为y轴建立平面直角坐标系,设双曲线方程为,由已知可得,,且,所以,所以双曲线方程为,底直径为6cm,所以双曲线过点,下底直径为9cm,高为9cm,所以双曲线过点,代入双曲线方程得:,解得:,,所以喉部最细处的直径为故答案为:由已知,根据题意,以最细处所在的直线为x轴,其垂直平分线为y轴建立平面直角坐标系,设出双曲线方程,并根据离心率表示出a,b之间的关系,由题意底直径为6cm,所以双曲线过点,下底直径为9cm,高为9cm,所以双曲线过点,代入双曲线方程即可求解方程从而得到喉部最细处的直径.本题主要考查了双曲线的性质在实际问题中的应用,属于中档题.16.【答案】【解析】解:由题知,,,当n为奇数时,,所以奇数项构成等差数列,首项为1,公差为2,当n为偶数时,,所以,所以故答案为:根据当n为奇数时,,当n为偶数时,,分组求和即可.本题主要考查数列的求和,数列递推式,考查转化思想与运算求解能力,属于中档题.17.【答案】解:,,,则,由正弦定理得,又,则,又A,B均为三角形内角,,即,又,即,即,又,则;若,则,由得,由余弦定理可得,即,解得或,当时,,则,即为等腰直角三角形,又,此时不满足题意,故【解析】先由三角形内角和的关系将代换,再由正弦定理将边化角,求得角A,B的关系,即可得出答案;由得的值,根据余弦定理公式展开列方程求解c,即可得出答案.本题考查解三角形,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.18.【答案】解:甲每轮猜对的概率为,乙每轮猜对的概率为p,“星队”在第一轮活动中猜对1个成语的概率为,,解得;由得,“星队”在两轮活动中猜对成语的总数为X,则随机变量X的取值可能有0,1,2,3,4,当,即甲、乙两人组成“星队”在两轮活动中都没有猜对成语,则,当,即甲、乙两人组成“星队”在两轮活动中有1个猜对一个成语和有1个一个都没有猜对成语,则,当,即甲、乙两人组成“星队”在两轮活动中甲一个都没猜对和乙全对、乙一个都没猜对和甲全对、甲乙两人两轮都只猜对一个,则,当,即甲、乙两人组成“星队”在两轮活动中甲猜对1个和乙全对、乙猜对1个和甲全对,则,当,即甲、乙两人组成“星队”在两轮活动中两人都全对,则,随机变量X得分布列如下所示:X01234P【解析】根据题意可得,求解即可得出答案;由得,“星队”在两轮活动中猜对成语的总数为X,则随机变量X的取值可能有0,1,2,3,4,根据概率的乘法法则和加法法则分别计算其概率,即可得到分布列,即可得出答案.本题考查随机变量的分布列和数学期望,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.19.【答案】解:证明:取CF的中点D,连接DM,DN,,N分别是AF,CE的中点,,,又平面ABC,平面ABC,平面ABC,又,,同理可得,平面ABC,平面MND,平面MND,,平面平面ABC,又平面MND,平面ABC;取AB的中点O,连接OC,OE,由已知得,,是平行四边形,,,是正三角形,,又平面平面ABEF,且平面平面,平面ABEF,又平面ABEF,,设,,在中,由,解得,即,取EF的中点P,连接OP,则,以OP,OB,OC所在直线分别为x,y,z轴,建系如图,在根据题意可得:,,,,,,易知平面ABM的一个法向量为,设平面ABN的法向量为,则,,取,,又由图可知二面角为锐角,二面角的余弦值为【解析】取CF的中点D,连接DM,DN,只需证明平面平面ABC,从而即可证明;取AB的中点O,连接OC,求出,取EF的中点P,连接OP,以O为原点,OP,OB,OC所在直线分别为x,y,z轴,建立直角坐标系如图所示.利用向量法求解即可.本题考查线面平行的证明,线面平行的判定定理,面面平行的判定定理,面面平行的性质,向量法求解二面角问题,向量夹角公式的应用,属中档题.20.【答案】解:由已知,可得恒成立,即恒成立,又,所以,即由已知,可得,则,令,则在上单调递减,又因为,,所以存在,使得,则有x正负递增递减又有,,所以在上,则在上单调递增,所以最小值为证明:由可得在上恒成立,令,在上,所以单调递增且,所以,,从而当时,,令,,,…,得到,,,…,,相加得【解析】由是R上的单调递增函数,得到的恒成立,再求出a的取值范围;对求导,判断单调性,再求出在上的最小值即可;由可得在上恒成立,用导数证明恒大于0,则,令,,,…,不等式左右累加即可证.本题考查利用导数研究函数的单调性,极值及最值,考查不等式的证明,考查逻辑推理能力及运算求解能力,属于中档题.21.【答案】解:由题意,,设,,,所以,,所以,即,解得,又因为,所以,则,将和分别代入,得,;证明:①直线l斜率不存在时,,代入方程得,所以;②直线l斜率存在时,设l:,l与曲线相切,所以,即,联立可得,由得,所以,,于是得,,因为,所以,,综合①②可证,【解析】根据,设,,,利用向量等式关系确定坐标转化关系,由,即得,按照坐标代换可得x,y所满足的方程,最后取和,即可得曲线和的方程;根据直线l与曲线相切,且与曲线交于A,B两点,讨论直线l的方程情况,按照面积公式分别求证即可.本题主要考查了椭圆的标准方程,考查了直线与椭圆的位置关系,属于中档题.22.【答案】解:因为曲线C的参数方程为为参数,消去参数t可得:,将点代入可得,所以曲线C的普通方程为;由已知得OA,OB的斜率存在且不为0,设OA的斜率为k,方程为,则OB的方程为,联立方程,可得,同理可得,设,所以为参数,所以,所以,即为点M轨迹的普通方程.【解析】根据曲线C的参数方程为为参数,消去参数t求解;设OA的斜率为k,方程为,则OB的方程为:,分别与抛物线方程联立,求得A,B的坐标,再利用中点坐标求解.本题主要考查参数方程的应用,考查转化能力,属于中档题.23.【答案】解:当时,,当,,;当,,;当,,;当时,的最小值为证明:,,当时,恒成立可化为恒成立,令,,,,,当且仅当时取得等号;又当时,,故【解析】分段求解的最小值和范围,即可求得结果;将问题转化为,结合二次函数在区间上的最值和基本不等式,即可证明.本题考查了分段函数的最值问题以及不等式的证明问题,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由①②③可得 4c2-4ab=4a2, 即为 b=a,
可得 e= = .
故选:A. 设|MF1|=m,|MF2|=n,运用双曲线的定义和勾股定理、以及矩形的周长和面积公式,化 简可得 a,c 的关系,进而得到所求离心率. 本题考查双曲线的方程和性质,主要是离心率,考查直径所对的圆周角为直角,以及勾 股定理和化简运算能力,属于中档题.
tan2α=
= =.
故选:D.
由三角函数的定义可求 tanα,然后再由二倍角正切公式 an2α=
即可求解.
本题主要考查了三角函数的定义及二倍角的正切公式的简单应用,属于基础试题.
第 6 页,共 15 页
5.【答案】A
【解析】解:由奇函数的对称性可知,m-5+1-2m=0, ∴m=-4, ∵x>0 时,f(x)=2x-1, 则 f(m)=f(-4)=-f(4)=-15. 故选:A. 先根据奇函数定义域关于原点对称求出 m,然后代入即可求解 本题考查奇函数的性质,转化思想,正确转化是关键.
16. 若数列{an}满足
,则称数列{an}为“差半递
增”数列.若数列{an}为“差半递增”数列,且其通项 an 与前 n 项和 Sn 满足
,则实数 t 的取值范围是______.
三、解答题(本大题共 7 小题,共 82an+1.
(1)求{an}的通项公式;
tan2α=( )
A.
B.
C.
D.
5. 已知定义在[m-5,1-2m]上的奇函数 f(x),满足 x>0 时,f(x)=2x-1,则 f(m) 的值为( )
A. -15
B. -7
C. 3
D. 15
6. 某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为 A,B,C,D,
E 五个等级,A 等级 15%,B 等级 30%,C 等级 30%,D,E 等级共 25%.其中 E
个垂直于地面的平面上,某同学在该列的第一排和最后一排测得旗杆顶端的仰角分
别为 60°和 30°,第一排和最后一排的距离为 25 米,则旗杆的高度约为( )
第 1 页,共 15 页
A. 17 米
B. 22 米
C. 3l 米
8. 已知{Fn}是斐波那契数列,则 F1=F2=1,Fn=Fn-1+Fn-(2 n∈N*
1.【答案】B
答案和解析
【解析】解:∵A={x|x2-x-6<0}=[-2,3],B=N, 则 A∩B={0,1,2}. 故选:B. 解不等式先求出集合 A,即可求解. 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键
2.【答案】A
【解析】解:∵ =
,
∴复数 对应的点的坐标为(
),
由复数 对应的点位于直线 y=x 的左上方,得
且 n≥3),如图程序框图表示输出斐波那契数列的前 n
项的算法,则 n=( )
A. 10
B. 18
C. 20
D. 22
D. 35 米
9. 设 m=ln2,n=lg2,则( )
A. m-n>mn>m+n B. m-n>m+n>mn C. m+n>mn>m-n D. m+n>m-n>mn
10. 已知 F 为双曲线 C:
河南省开封市高考数学一模试卷(理科)
题号 得分
一
二
三
总分
一、选择题(本大题共 12 小题,共 60.0 分)
1. 已知集合 A={x|x2-x-6<0},B=N,则 A∩B=( )
A. {-1,0,1,2}
B. {0,1,2}
C. {-2,-1,0,1}
D. {0,1}
2. 在复平面内,复数 对应的点位于直线 y=x 的左上方,则实数 a 的取值范围是
(2)若函数 f(x)在(0, )上存在两个极值点,求实数 a 的取值范围.
22. 在直角坐标系 xOy 中,曲线 C1 的参数方程为
(φ 为参数),以坐标原
点 O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 ρ= (1)求曲线 C1 的极坐标方程和 C2 的直角坐标方程;
7.【答案】C
【解析】解:如图所示,依题意可知∠ADC=45°, ∠ACD=180°-60°-15°=105°, ∴∠DAC=180°-45°-105°=30°,
由正弦定理可知
,
∴AC=
=25 米.
∴在 Rt△ABC 中,
AB=AC•sin∠ACB=25 × = ≈31 米.
∴旗杆的高度为 31 米. 故选:C. 先求得∠ADC 和∠ACD,则∠DAC 可求,再利用正弦定理求得 AC,最后在 Rt△ABC 中利 用 AB=AC•sin∠ACB 求得 AB 的长. 本题主要考查了解三角形的实际应用,此类问题的解决关键是建立数学模型,把实际问 题转化成数学问题解决,是中档题.
④f(x)在区间[- , ]上单调
其中所有正确结论的标号是( )
A. ①③④
B. ①②④
C. ②④
D. ①③
12. 已知正方体的棱长为 1,平面 α 过正方体的一个顶点,且与正方体每条棱所在直线
所成的角相等,则该正方体在平面 α 内的正投影面积是( )
A.
B.
C.
D.
二、填空题(本大题共 4 小题,共 20.0 分)
13. 已知向量
,
,若
,则 m=______.
第 2 页,共 15 页
14. 我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有 5 架“歼-15” 舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻), 那么不同的着舰方法种数为______.
15. 设点 P 为函数 f(x)=lnx-x3 上任意一点,点 Q 为直线 2x+y-2=0 上任意一点,则 P, Q 两点距离的最小值为______.
的右焦点,圆 O:x2+y2=a2+b2 与 C 在第
一象限、第三象限的交点分别为 M,N,若△MNF 的面积为 ab,则双曲线 C 的离心
率为( )
A.
B.
C. 2
D.
11. 将函数 f(x)=asinx+bcosx 的图象向右平移 个单位长度得到 g(x)的图象,若 g
(x)的对称中心为坐标原点,则关于函数 f(x)有下述四个结论: ①f(x)的最小正周期为 2π ②若 f(x)的最大值为 2,则 a=1 ③f(x)在[-π,π]有两个零点
10.【答案】A
【解析】解:设|MF1|=m,|MF2|=n, 由双曲线的定义可得 m-n=2a,① 由|OM|=|ON|,|OF1|=|OF2|, 可得四边形 F1NF2M 为平行四边形,圆 O: x2+y2=a2+b2=c2, 由直径所对的圆周角为直角,可得 四边形 F1NF2M 为矩形, 即有 m2+n2=4c2,②
>0,即 a<0.
∴实数 a 的取值范围是(-∞,0). 故选:A.
利用复数代数形式的乘除运算化简求得复数 对应的点的坐标,再由线性规划知识列
式求解. 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
3.【答案】B
【解析】解: 与 都是非零向量,则“向量 与 夹角为锐角”⇒“
等级为不合格,原则上比例不超过 5%.该省某校高二年级学生都参加学业水平考
试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校
高二年级共有 1000 名学生,则估计该年级拿到 C 级及以上级别的学生人数有( )
A. 45 人
B. 660 人
C. 880 人
D. 900 人
7. 国庆阅兵式上举行升旗仪式,在坡度为 15°的观礼台上,某一列座位与旗杆在同一
第 7 页,共 15 页
本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的 结论,是基础题.
9.【答案】D
【解析】解:∵0<m<1, 0<n<1,m>n,
=
,
故 m-n>mn, 所以
,故
m+n>mn, 由 m+n>m-n 故 m+n>m-n>mn, 故选:D. 利用倒数,作差法,判断即可. 考查对数换底公式,对数的运算性质和不等式比较大小,基础题.
”,反之不成
立,可能同向共线.
因此“
”是“向量 与 夹角为锐角”的必要不充分条件.
故选:B.
与 都是非零向量,则“向量 与 夹角为锐角”⇒“
”,反之不成立,即可判断
出结论. 本题考查了向量夹角公式、向量共线定理、简易逻辑的判定方法,考查了推理能力与计 算能力,属于基础题.
4.【答案】D
【解析】解:由三角函数的定义可知,tanα=-2,
6.【答案】D
【解析】解:根据图形,抽取的总人数 10÷20%=50,其中 C 所占的百分比为:12÷50=0.24, 故 1000×(0.24+0.2+0.46)=1000×0.9=900, 故选:D. 利用图形,先算出抽取的总人数,求出 C 的百分比,最后算出结论. 考查直方图,扇形统计图,样本估计总体问题等,基础题.
于 C,D 两点,求
的最大值.
第 3 页,共 15 页
20. 某医院为筛查某种疾病,需要检验血液是否为阳性,现有 n(n∈N*)份血液样本, 有以下两种检验方式:①逐份检验,列需要检验 n 次;②混合检验,将其 k(k∈N* 且 k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这 k 份的血液 全为阴性,因而这 k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了 明确这 k 份血液究竟哪几份为阳性,就要对这 k 份再逐份检验,此时这 k 份血液的 检验次数总共为 k+1 次.假设在接受检验的血液样本中,每份样本的检验结果是阳 性还是阴性都是独立的,且每份样本是阳性结果的概率为 p(0<p<1). (1)假设有 5 份血液样本,其中只有 2 份样本为阳性,若采用逐份检验的方式, 求恰好经过 3 次检验就能把阳性样本全部检验出来的概率. (2)现取其中 k(k∈N*且 k≥2)份血液样本,记采用逐份检验方式,样本需要检验 的总次数为 ξ1,采用混合检验方式,样本需要检验的总次数为 ξ2. (Ⅰ)运用概率统计的知识,若 Eξ1=Eξ2,试求 p 关于 k 的函数关系式 p=f(k);