排序算法总结
十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它通过依次比较相邻的两个元素,如果顺序不对则交换位置。
这样,每一趟排序都会将最大的元素移动到末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。
它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。
它通过将未排序的元素逐个插入到已排序部分的正确位置。
每次插入一个元素,已排序部分都是有序的。
通过多次重复这个过程,直到所有元素按照升序排列为止。
4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。
它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。
然后对这两部分递归地进行快速排序。
通过多次重复这个过程,直到所有元素按照升序排列为止。
5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。
它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。
通过多次重复这个过程,直到所有元素按照升序排列为止。
6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。
它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。
通过多次重复这个过程,直到所有元素按照升序排列为止。
7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。
它通过统计每个元素的个数来排序。
首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。
通过多次重复这个过程,直到所有元素按照升序排列为止。
8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。
它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。
各种排序算法的作用和意义

各种排序算法的作用和意义在计算机科学和数据处理领域,排序是一个基本而重要的问题。
排序算法是解决排序问题的一种方法,通过对数据进行重新排列,使其按照特定的顺序排列。
不同的排序算法有着不同的作用和意义,下面将介绍几种常见的排序算法及其作用和意义。
1. 冒泡排序算法冒泡排序是一种简单直观的排序算法,通过不断比较相邻的元素并交换位置,将最大的元素逐渐“冒泡”到最后。
冒泡排序的作用是将一个无序的序列转化为一个有序的序列,适用于数据量较小且基本有序的情况。
冒泡排序的意义在于其简单易懂的思想和实现方式,对于初学者来说是一个很好的入门算法。
2. 插入排序算法插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序的作用是将一个无序的序列转化为一个有序的序列,适用于数据量较小且基本有序的情况。
插入排序的意义在于其相对简单的实现和较好的性能,在某些特定情况下比其他排序算法更高效。
3. 选择排序算法选择排序是一种简单直观的排序算法,通过不断选择剩余元素中的最小值,并与未排序部分的第一个元素交换位置,将最小的元素逐渐放到已排序的部分。
选择排序的作用是将一个无序的序列转化为一个有序的序列,适用于数据量较小的情况。
选择排序的意义在于其简单直观的思想和实现方式,对于初学者来说是一个很好的入门算法。
4. 快速排序算法快速排序是一种高效的排序算法,通过选择一个基准元素,将序列分成两部分,一部分元素小于基准,一部分元素大于基准,然后递归地对两部分进行排序。
快速排序的作用是将一个无序的序列转化为一个有序的序列,适用于数据量较大的情况。
快速排序的意义在于其高效的性能和广泛应用,是一种常用的排序算法。
5. 归并排序算法归并排序是一种稳定的排序算法,通过将序列拆分成长度为1的子序列,然后逐步合并子序列,直到合并为一个有序序列。
归并排序的作用是将一个无序的序列转化为一个有序的序列,适用于数据量较大的情况。
各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。
从本质上来说,它是归并排序的就地版本。
快速排序可以由下面四步组成。
(1 )如果不多于1 个数据,直接返回。
(2 )一般选择序列最左边的值作为支点数据。
(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4 )对两边利用递归排序数列。
快速排序比大部分排序算法都要快。
尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。
快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。
2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。
合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。
3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。
堆排序不需要大量的递归或者多维的暂存数组。
这对于数据量非常巨大的序列是合适的。
比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。
接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。
4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。
平均效率是O(nlogn) 。
其中分组的合理性会对算法产生重要的影响。
现在多用D.E.Knuth 的分组方法。
Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。
Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。
数据结构排序算法总结表格

在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
数学排序知识点总结

数学排序知识点总结一、排序算法的概念及分类1.1 排序算法的概念排序算法是一种用来对一组数据进行排序的算法。
它使得数据按照一定的顺序排列,方便我们进行查找、统计、分析等操作。
在实际应用中,排序算法扮演着非常重要的角色,例如在数据库检索、数据压缩、图像处理等领域都有着广泛的应用。
1.2 排序算法的分类排序算法一般可以分为两大类,即比较排序和非比较排序。
比较排序是指通过比较待排序元素之间的大小关系来进行排序的算法,其时间复杂度一般为O(nlogn),包括常见的快速排序、归并排序、堆排序等;非比较排序则是通过其他辅助信息来确定元素的顺序,其时间复杂度通常较低,包括计数排序、桶排序、基数排序等。
二、常见的排序算法及其应用2.1 快速排序快速排序是一种常用的比较排序算法,其基本思想是通过一次划分将待排序数组分成两个部分,使得左边的元素均小于右边的元素,然后再对左右部分递归进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
快速排序可以在很多实际应用中发挥作用,例如在数据库查询、数据压缩、图像处理等领域都有着广泛的应用。
2.2 归并排序归并排序也是一种常用的比较排序算法,其基本思想是将待排序数组分成两个部分,分别进行递归排序,然后再将两个有序的子数组合并成一个有序的数组。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
归并排序可以在很多实际应用中发挥作用,例如在文件排序、数据库排序等领域都有着广泛的应用。
2.3 堆排序堆排序是一种利用堆这种数据结构进行排序的算法,其基本思想是通过建立一个大顶堆或小顶堆,然后将堆顶元素与最后一个元素交换,并调整堆,再将堆顶元素与倒数第二个元素交换,以此类推,直到所有元素都有序。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
堆排序在优先队列、事件排序等领域有着广泛的应用。
2.4 计数排序计数排序是一种非比较排序算法,其基本思想是通过对待排序数组进行统计,然后根据统计信息将元素放置到正确的位置上。
各种排序方法总结

选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序题方法总结

排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。
时间复杂度为O(n^2)。
2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。
时间复杂度为O(n^2)。
3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。
时间复杂度为O(n^2)。
4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。
时间复杂度为O(nlogn)。
5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。
时间复杂度为O(nlogn)。
6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。
时间复杂度为O(nlogn)。
7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。
时间复杂度为O(n+k),其中k是值的范围。
8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。
时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。
以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞鱼科技排序算法总结思想&代码实现付英奇2016-2-24In-place sort (不占用额外内存或占用常数内存):插入排序、选择排序、冒泡排序、堆排序、快速排序。
Out-place sort:归并排序、基数排序、桶排序。
Stable sort:插入排序、冒泡排序、归并排序、基数排序、桶排序。
Unstable sort:选择排序、快速排序、堆排序。
时间复杂度为O(N*logN)的算法:归并排序、快速排序、堆排序、希尔排序。
时间复杂度为O(N*N)的算法:冒泡排序,选择排序、插入排序时间复杂度为O(N)的算法【桶排序思想】:基数排序,计数排序。
空间复杂度O(1)的算法:插入排序、选择排序、冒泡排序、堆排序、希尔排序。
空间复杂度O(logN)~O(N)的算法:快速排序。
空间复杂度O(N)的算法:归并排序空间复杂度O(M)的算法:基数排序、计数排序。
插入排序:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。
voidinsertionSort(intnums[],int length){inti, j, temp;for(i = 1;i < length; ++i){j = i - 1;temp = nums[i];while(j >= 0 && temp <nums[j]) //两个条件的顺序不能互换,否则数组越界{nums[j+1] = nums[j];--j;}nums[j+1] = temp; //插入数的位置}}桶排序:工作的原理是将阵列分到有限数量的桶子里。
每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序)。
voidbuctekSort(intnums[], int length){intbuc[100] = {0};inti, k;for(i = 0;i < length; ++i)buc[nums[i]]++;for(i = 0;i < 100; ++i){if(buc[i] != 0){for(k = buc[i]; k > 0; --k)cout<<i<<'\t';}}}希尔排序:插入排序的改良版。
选择排序:每一趟从待排序的记录中选择出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕。
常用的选择排序有简单选择排序和堆排序。
voidshellSort(intnums[],int length) { int group, i, j, temp; for(group = length/2; group > 0; group /= 2) //增量的取值规则为第一次取总长度的一半 { for(i = group; i< length; ++i) //第二次取一半的一半,依次累推直到1为止 { for(j = i - group; j >= 0; j -= group) { if(nums[j] >nums[j + group]) { temp = nums[j]; nums[j] = nums[j + group]; nums[j + group] = temp; } } }}}堆排序:voidHeapAdjust(intnums[], inti, int size) { int temp = nums[i]; intleftChild = 2*i + 1; intrightChild = leftChild + 1; while(leftChild< size) { // 如果有右孩子结点,并且右孩子结点的值大于左孩子结点,则选取右孩子结点 if(rightChild< size &&nums[rightChild] >nums[leftChild]) { leftChild++; } // 如果父结点的值已经大于孩子结点的值,则直接结束 if(nums[leftChild] <= temp) { break; }// 把孩子结点的值赋给父结点nums[i] = nums[leftChild];// 选取孩子结点的左孩子结点,继续向下筛选 i = leftChild; leftChild = 2*i + 1;rightChild = leftChild + 1;}nums[i] = temp;}voidInitHeap(intnums[], int size) { for(inti = size/2 - 1; i>= 0; i--) { HeapAdjust(nums, i, size); } }voidHeapSort(intnums[], int size) { InitHeap(nums, size); for(inti = size -1; i> 0; i--) { myswap(&nums[i], &nums[0]); HeapAdjust(nums, 0, i); } }voidmyswap(int* a, int* b){int temp = *a;*a = *b; *b = temp; }冒泡排序:原理是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束。
voidbubbleSort(intnums[],int length){inti, k, temp, iExchanged;for(i = 0; i< length - 1; ++i){iExchanged = 0; //iExchanged = 0标志位没有换过for(k = 1; k < length - i; ++k){if(nums[k-1] >nums[k]){iExchanged = 1; //iExchanged = 1标志位换过temp = nums[k];nums[k] = nums[k-1];nums[k-1] = temp;}}if(!iExchanged) //一次都没有交换,就是有序的,直接退出{return;}}}快速排序:时间复杂度O(N*logN) 最坏O(N^2) 空间复杂度:O(N*logN) intAdjustArray(intnums[], int left, int right){int base = nums[left];while(left < right){while(left < right &&nums[right] >= base){right--;}if(left < right){nums[left] = nums[right];left++;}while(left < right &&nums[left] =< base){left++;}if(left < right){nums[right] = nums[left];right--;}}nums[left] = base;return left;}voidQuickSort(intnums[], int left, int right){if(left < right){int pivot = AdjustArray(nums, left, right);QuickSort(nums,left, pivot-1);QuickSort(nums,pivot+1, right);}}基数排序:数组实现#define RADIX_10 10 //基数0--9#define KEYNUM_31 10 //关键字位数[10位数]//----------------------------------------------intGetNumInPos(intnum, intpos){int temp = 1;for(inti = 0; i< pos-1; i++){temp *= 10;}return (num/temp) % 10; //返回第Pos位置上的数据}voidRadixSort(intnums[], int length){int *radixArrays[RADIX_10];for(inti = 0; i< 10; i++){radixArrays[i] = (int*)malloc(sizeof(int) * (length + 1));radixArrays[i][0] = 0; //index为0处记录这组数据的个数}for(intpos = 1; pos<= KEYNUM_31; pos++) //从个位开始到31位{inti, j;for(i = 0; i< length; i++) //分配过程{intnum = GetNumInPos(nums[i], pos);int index = ++radixArrays[num][0];radixArrays[num][index] = nums[i];}for(i = 0, j = 0; i< RADIX_10; i++) //收集{for(int k = 1; k <= radixArrays[i][0]; k++){nums[j++] = radixArrays[i][k];}radixArrays[i][0] = 0; //复位}}}。