流体力学第五章

合集下载

流体力学 第5章孔口管嘴出流与管路水力计算

流体力学 第5章孔口管嘴出流与管路水力计算

5.2.3 其他类型管嘴出流
对于其他类型的管嘴出流,其流速、流量的计算公式与圆柱形管嘴公式形式相似。但 流速系数及流量系数各不相同,下面是几种常用的管嘴。
1. 流线形管嘴 如图 5.4(a)所示,流速系数ϕ = μ = 0.97 ,适用于水头损失小,流量大,出口断面上速 度分布均匀的情况。
2. 扩大圆锥形管嘴 如图 5.4(b)所示,当θ = 5°~7°时,μ=ϕ=0.42~0.50 。适合于将部分动能恢复为压能的 情况,如引射器的扩压管。
流体力学
收缩产生的局部损失和断面 C―C 与 B―B 间水流扩大所产生的局部损失,相当于一般锐缘
管道进口的局部损失,可表示为 hw

VB 2 2g
。将
hw 代入上式可得到:
H0
=


) VB2 2g
其中, H 0
=
H
+
α
AV
2 A
2g
,则可解得:
V=
1 α + ζ 2gH 0

2gH 0
(5-8)
1. 自由出流 流体经孔口流入大气的出流称为自由出流。薄壁孔口的自由出流如图 5.1 所示。孔口 出流经过容器壁的锐缘后,变成具有自由面周界的流股。当孔口内的容器边缘不是锐缘状 时,出流状态会与边缘形状有关。
图 5.1 薄壁孔口自由出流
由于质点惯性的作用,当水流绕过孔口边缘时,流线不能成直角地突然改变方向,只 能以圆滑曲线逐渐弯曲,流出孔口后会继续弯曲并向中心收敛,直至离孔口约 0.5d 处。流
5.3.1 短管计算
1. 自由出流
流 体 经 管 路 流 入 大 气 , 称 为 自 由 出 流 ( 图 5.5) 。 设 断 面 A ― A 的 总 水 头 为

流体力学第五章 量纲分析和相似理论

流体力学第五章 量纲分析和相似理论

第五章 量纲分析与相似原理
5.2 量纲分析与П定理
2. П定理
提议用量纲分析的是瑞利(L.Reyleigh,1877),奠定理论基础的是美国物理
学家布金汉(E.Buckingham,1914):
Π定理
若某一物理过程包含 n 个物理量,即:
f(q1 , q 2,q 3, ……, q n )=0
其中有 m 个基本量(量纲独立,不能相互导出的物理 量),则该物理过程可由 n个物理量构成的 n-m 个无 量纲的关系表达式来描述。即:
5.1 量纲与物理方程的量纲齐次性
1. 物理量的量纲(因次):物理量的本质属性。
2. 物理量的单位:物理量的度量标准。
基本量纲和导出量纲:根据物理量之间的关系把无 任何联系且相互独立的量纲作为基本量纲,可由基本量 导出的量纲为导出量纲。
SI制中的基本量纲:
dim m = M , dim l = L , dim t = T ,dim θ=Θ
第五章 量纲分析与相似原理
5.1 量致性原则,也叫量纲齐次性原理(量纲和谐原理)
物理方程可以是单项式或多项式,甚至是微分方程等,同 一方程中各项的量纲必须相同。
用基本量纲的幂次式表示时,每个基本量纲的幂次应相等,
这就是物理方程的量纲一致性原则,也叫量纲齐次原则或量纲
1. 客观性 2. 不受运动规模的影响 3. 可以进行超越函数运算
整理课件
第五章 量纲分析与相似原理
5.1 量纲与物理方程的量纲齐次性
2. 量纲一的量(无量纲量)
基本量独立性判别条件:
设A、B、C为三个基本量,他们成立的条件是:指数行列式 不等于零。
diB m M 2L 2T 2 diA m M 1L 1T1 diC m M 3L 3T 3

流体力学 第5章 圆管流动..

流体力学 第5章 圆管流动..

第5章圆管流动一.学习目的和任务1.本章学习目的(1)掌握流体流动的两种状态与雷诺数之间的关系;(2)切实掌握计算阻力损失的知识,为管路计算打基础。

2.本章学习任务了解雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;掌握圆管层流基本规律,了解紊流的机理和脉动、时均化以及混合长度理论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、边界层分离和绕流阻力。

二.重点、难点重点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。

难点:紊流流速分布和紊流阻力分析。

由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。

本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。

5.1 雷诺(Osborne Reynolds)实验和流态判据5.1.1 雷诺实验1883年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。

这就是著名的雷诺实验,它是流体力学中最重要实验之一。

105如图5-1所示为雷诺实验的装置。

其中的阀门T1保持水箱A 内的水位不变,使流动处在恒定流状态;水管B 上相距为l 处分别装有一根测压管,用来测量两处的沿程损失f h ,管末端装有一个调节流量的阀门T3,容器C 用来计量流量;容器D 盛有颜色液体,T2控制其流量。

进行实验时,先微开阀门T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门T2放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图5-2(a )所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow )。

比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。

随后,逐渐开大阀门T3,增大管中液体流速,流速达到一定速度时,管内颜色液体开始抖动,具有波形轮廓,如图5-2(b )所示。

流体力学第五章

流体力学第五章

5.2 边界层流动

5.2 边界层流动


*


0
u 1 u e e
dy
5.2 边界层流动


**



0
u eue
u 1 u dy e
5.2 边界层流动

平面边界层流动方程
边界层近似假定 1. 纵向偏导数远小于横向偏导数
5.2 边界层流动

边界层分离

理想流体能量转换过程 边界层内粘性对机械能的耗散使得流体微团在逆 压区 MF 段间的某个点处 V 降为零,后来的质点 将改道进入主流区,使来流边界层与物面分离; 在分离点下游区域,受逆压作用而发生倒流。
5.2 边界层流动

边界层分离

分离点:紧邻壁面顺流区与倒流区分界点。 边界层分离的必要条件:粘性、逆压梯度。

湍流边界层摩阻系数大
0.664 C fL Re x
C fT
0.0576 /5 Re 1 x
5.2 边界层流动

边界层分离

边界层流动:流体质点受惯性力、粘性力和压力 作用;粘性力阻滞流体质点运动,使流体质点减 速和失去动能;压力的作用取决于绕流物体形状; 顺压梯度有助于流体加速前进,而逆压梯度阻碍 流体运动。



研究方法:实验、数值(RANS、LES、DNS)
5.1 粘流的基本特性

层流、紊流速度型 紊流粘性应力比层流大
5.2 边界层流动

边界层概念的提出




高 Re流动,惯性力远大于粘性力,研究忽略粘 性的流动有实际意义。 阻力、分离、涡扩散等问题,无粘解与实际相 差甚远。 研究表明:虽然 Re很大,但在靠近物面的薄层 流体内,沿物面法向存在很大的速度梯度,粘 性力与惯性力相当而不可忽略。 Prandtl把物面附近粘性力起重要作用的薄层称 为边界层。

流体力学第5章管流损失和阻力计算

流体力学第5章管流损失和阻力计算
流体内部的各种因素
除了流体与管壁之间的摩擦外,流体内部的粘性、湍流等也会导致能量损失。 例如,湍流会使流体的流动变得不规则,增加流体之间的相互碰撞和摩擦,从 而产生更多的能量损失。
损失和阻力的影响
01
能量消耗
管流损失和阻力会导致流体在 流动过程中能量不断损失,这 需要额外提供能量来克服这些 损失,如泵或风机的能耗会增 加。
02 系统效率
管路中的损失和阻力会降低整 个系统的效率,使得系统需要 更多的输入能量才能达到预期 的输出效果。
03
设备选型
04
在进行设备选型时,需要考虑管 路中的损失和阻力,以确保所选 设备能够满足实际需求。例如, 在选择泵时,需要考虑到管路中 的损失和阻力,以确保泵能够提 供足够的扬程和流量。
安全风险
理论发展
实验结果可为流体力学理论的发展提 供实证支持,进一步完善管流损失和 阻力的计算模型。
THANKS
感谢观看
过大的管流损失和阻力可能会导 致流体流动受阻,甚至产生流体 过热、压力过高等问题,这可能 对设备和人员安全造成威胁。因 此,需要进行合理的设计和操作 ,以避免这些问题的发生。
02
管流损失的计算
局部损失计算
局部损失是由于流体在管道中 流动时,遇到突然扩大、缩小、 弯曲等局部障碍而产生的能量 损失。
控制流体流速和压力
降低流体流速
01
适当降低流体在管路中的流速,可以减小流体流动的阻力,从
而降低管流损失。
控制流体压力
02
合理控制流体在管路中的压力,避免过高的压力导致流体流动
阻力的增加。
使用减压阀和稳压阀
03
在管路中安装减压阀和稳压阀,可以稳定流体压力,减小流体

高等流体力学第五章

高等流体力学第五章

5.5 空间区域离散
5.4 例子-一维稳态导热
导热方程
d dT k S 0 dx dx
导热方程对控制容积积分
dT dT k k Sdx 0 dx e dx w w
用分段线性分布来计算方程dT/dx所得的方程将为:
e
k e (TE TP ) k w TP TW S x 0 x e x w
d dT k S 0 dx dx
其中k是导热系数,T是温度, S是单位容积的发热率
5.4 例子-一维稳态导热
( δ x )w
w W P Δx
(δ x )e
e E
X
d dT k S 0 dx dx
5.4 例子-一维稳态导热



网格结点P,该点以网格结点E及W作为 它的两个邻点。 (E表示东例,即正的x方向,而W表示西 侧,或是负的x方向).虚线表示控制容 积面。字母e与w代表控制面. 对于所考虑的一维问题,假设在y与z方 向为单位厚度。

离散方程标准形式 a P TP a E TE aW TW b
其中
ke aE x e
kw aW x w
a P a E aW
b S x
5.5 空间区域离散
把所计算的区域划分成许多互不重迭的子区域,确 定节点在于区域中的位置及其代表的容积(即控制容 积),这一过程称为区域离散化。 区域离散化过程结束后,可以得到以下四种几何要 素: 1)节点— 需要求解的未知物理量的几何位置; 2)控制容积—应用控制方程或守恒定律的最小儿何 单位; 3)界面 —它规定了与各节点相对应的控制容积的 分界面位置; 4)网格线 — 沿坐标轴方向联结相邻两节点而形成 的曲线簇

流体力学实验_第五章

流体力学实验_第五章
28
§5.4 流动显示的光学方法
1. 适用范围 光学显示方法:利用流场的光学性质,如流体的密 度变化会造成光学折射率或传播速度的变化,通过 适当的光学装置可以显示流体的流动特性。
流场的温度、压力、浓度和马赫数等状态参数与密度 有确定的函数关系,而流体的光学折射率是其密度的 函数,因此下列流动可以采用光学流动显示的方法:
分光镜 补偿片
单色 点光 源
全反镜
风洞实验段
屏幕
40
密度均匀:干涉条纹彼此平行 密度不均匀:干涉条纹发生移动或变形,干涉条纹的改变与
流体密度的变化有关
干涉条纹 41
§5.5 流动显示技术的新发展——定量的流 动显示和测量技术
1. 激光诱导荧光(LIF)技术
激光诱导荧光技术:是一种20世纪80年代发展起来的光 致发光流动显示与测量技术,把某些物质(如碘、钠或 荧光染料等)溶解或混合于流体中,这些物质的分子在 特定波长的激光照射下能激发荧光。
照明光源:高亮度的白光碘钨灯
25
26
27
3. 荧光微丝法
采用直径为0.01 ~0.02mm的合成 纤维丝,经柔化 和抗静电处理, 使微丝染上荧光 物质,粘贴于模 型表面。
光源:采用连续 紫外光源
照相:选用合适 的滤光片
Flourescent minitufts on aircraft wing
在定常流动中,流线、迹线和染色线相同。
但在非定常流动中,是互不相同的。
4
3. 流动显示方法的分类
(1)示踪粒子流动显示:在透明无色的气流或水流中加
入一些可见的粒子,通过可见的外加粒子跟随流体微团的运 动来使各种流动现象显示出来。 固态示踪粒子:
水流(铝粉、有机玻璃粉末或聚苯乙烯小球等) 气流(烟颗粒) 液态示踪粒子:水流(牛奶、染料溶液) 气态示踪粒子:水流(氢气泡、空气泡)

《流体力学》第五章孔口管嘴管路流动

《流体力学》第五章孔口管嘴管路流动

2g
A
C O
C
(C
1)
vc2 2g

(ZA
ZC )
pA


pC


Av
2 A
2g

H0

(Z A
ZC )
pA


pC
AvA2
2g
§5.1孔口自由出流
1
则有
vc

c 1
2gH0
H0

(Z A
ZC )
pA


pC
AvA2
2g
H0称为作用水头,是促使
力系数是不变的。
§5.4 简单管路
SH、Sp对已给定的管路是一个定数,它综合 反映了管路上的沿程和局部阻力情况,称为 管路阻抗。
H SHQ2
p SpQ2
简单管路中,总阻力损失与体积流量平方成 正比。
§5.4 简单管路
例5-5:某矿渣混凝土板风道,断面积为1m*1.2m, 长为50m,局部阻力系数Σζ=2.5,流量为14m3/s, 空气温度为20℃,求压强损失。

2v22
2g
1
vc2 2g
2
vc2 2g
令 H0 (H1 ζH12:局)液部体p阻1 经力p孔2系口数处1v的122g1 2v22
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2突ζ然2:液扩体大在的收局缩部断阻面力之系后数 C
C
§5.2 孔口淹没出流
1
c 1
2gH0
Q A 2gH0 A 2gH0
出流
H0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

布西内斯克 兰哈尔
L*=0.065dRe L*=0.058dRe
紊流: L*≈(25~40)d
L*(层流)> L*(紊流)
二、充分发展的流动(入口段以后的流动)
第五节 圆管中的层流流动
一、圆管有效截面上的切应力分布.
1.
取微体:如图. 半径 r ,长 dl
中心线和轴重合.
w
g
mg
vl
l
2.
受力分析
七、其它系数:
因沿程损失而消耗的功率: 动能修正系数: 动量修正系数:
2 128LqV P pqV d 4
vl 3 1 16 r0 2 2 3 ( ) dA 8 (r0 r ) rdr 2 AA v r0 0
vx 2 1 8 ( ) dA 6 A v r0
(a)


水力光滑


δ>ε 光滑管
(b)
水力粗糙
δ <ε 粗糙管
第六节 粘性流体的紊流流动
2. 圆管中紊流的速度分布
1)紊流光滑管 vx 5.75lg yv 5.5 或:
v v 2 vxmax (n 1)(n 2)
v
v* ——切应力常数
n f ( Re )
2)紊流粗糙管 vx 5.75lg y 8.48
由前述沿程损失公式: 及
d 2 qV Ava va 4
h f p g
2 2 2 p 128Lqv 64 L va 64 L va L va hf 4 g gd va d d 2 g Re d 2 g d 2g
得: 64 Re
可见 ,层流流动的沿程损失与平均流速的一次方成正比
3. 总能量损失:
hw hf hj
能量损失的量纲为长度,工程中也称其为水头损失
第三节 粘性流体的两种流动状态
粘性流体两种流动状态:

紊流状态 层流状态
第三节 粘性流体的两种流动状态
一、雷诺实验.
1. 装置如图.
5 6 1 7 2 3
(揭示两种六种状态)
2. 实验条件. 液面高度恒定——保证 v 恒定. 水温恒定——保证 u c .
y

vx vx vy x
o
F v Av
' ' y
' x
t v v
, , x y
脉动速度示意图
普朗特的混合长假说 :
dvx vx ~ l dy
'
l
—做混合长度
第六节 粘性流体的紊流流动
v y ~ vx
' '
dvx vy ~ l dy
'
' x ' y 2
dvx 2 t v v l ( ) dy
第四节 管道进口段中粘性流体的流动
第四节 管道进口段中粘性流体的流动
d
L
层流边界层
充分发展的流动
紊流边界层
d
L
粘性底层
圆管进口段的流动
第四节 管道进口段中粘性流体的流动
一、入口段 (边界层相交之前的管段L*) 0.89max
希累尔
{
L* 经 验 公 式
L*=0.2875dRe
层流:

(r02
4 r ) rdr 3
2 2
对水平放置的圆管
w
r r0
r0 p 2 v 2L 8
此式对于圆管中粘性流体的层流和紊流流动都适用
第六节 粘性流体的紊流流动
一、紊流流动时均值
时均速度 脉动速度 瞬时速度 同理
1 vx v xi dt t 0
t
vxi
2 12a 2 p1 p2 z1 1 z2 2 a hw g 2g g 2g
第一节 粘性流体总流的伯努利方程
方程适用条件:
1. 流动为定常流动;
2. 流体为粘性不可压缩的重力流体;
3. 沿总流流束满足连续性方程,即qv=常数;
4. 方程的两过流断面必须是缓变流截面,而不必顾

8
v2
第五节 圆管中的层流流动
二、速度分布.
dv l 根据牛顿内摩擦定律: , dr 1 d dvl ( p gh)rdr 2 dl
对r积分,得
vl
1 d ( p gh)r 2 C 4 dl
边界条件 当r=r0时,vl=0
r02 d C ( p gh), 4 dl
r2 p r2 ( p
由:sin d h /d l ;
p ) 2 rdl r 2dl gsin 0 l p gh 不随r变化
方程两边同除 r 2 dl 得: r d ( p gh)
2 dl
粘性流体在圆管中作层流流动时,同一截面上的切向应力 的大小与半径成正比
ro2 r 2 d vl ( p gh) 4 dl
旋转抛物面
第五节 圆管中的层流流动
三、最大流速:
vl max ro2 d ( p gh) 4 dl
四、平均流速: 旋转抛物体的体积等于它的外切圆柱体体积
的一半,
r02 d 1 va vl max ( p gh) 2 8 dl
a ——截面平均速度
第一节 粘性流体总流的伯努利方程
流体微团间摩擦 热 损失——用hw表示 内能: 温度升高 内能增大 机械能
1 u u 1 ( g dA g dA) gqV A2 g g gqV A1
qV
(u
2
u1 )dqV hw
粘性流体单位重量形式的伯努力方程:
洛巴耶夫公式
1.42 lg Re 1.42 lg 1.273 V
d
2

q
2
V. 湍流平方阻力区
λ=f ( ε / d )
工程流体力学
第五章 粘性流体的一维流动
第一节 粘性流体总流的伯努利方程
能量方程式(3-44)
u 2 p u 2 p g ( z )dA g ( z )dA 0 g 2g g g 2g g A2 A1
内能+动能+势能(位置势能+压强势能)=常数
及两截面间是否有急变流。
第一节 粘性流体总流的伯努利方程
伯努利方程的几何意义:
2 1
hw
总水头线 静水头线
2
1
2g
p1
2g
2 2
p2
g dA
g
z1
z2
例题:
已知: a 4m/s;
0
a
0
h1 9m;h2 0.7m;
H 2 h2 2
hw 13m
求: H
h1
2 p p 解: (H h1 ) a 0 h2 a 2 2 hw g g 2g
dv t t x dy
dv x t l dy
2
u t 与 μ 不同,它不是流体的属性,它只决定
于流体的密度、时均速度梯度和混合长度
第六节 粘性流体的紊流流动
三、圆管中的速度分布和沿程损失
1.圆管中的紊流区划,粘性底层,水力光滑与水力粗糙 1) 区划 :如图
层流底层
过渡区
紊流充分发展区
紊流流动: 2 2
1 .0
42 H hw h2 h1 13 0.7 9 5.52 (m) 2g 2 9.806
第二节 粘性流体管内流动的两种损失
1. 沿程损失:发生在缓变流整个流程中的能量损失,是由
流体的粘滞力造成的损失。 达西——魏斯巴赫公式 :
式中 :
紊流 层流
v vcr ——上临界速度 vcr vcr
——下临界速度
第三节 粘性流体的两种流动状态
二、流态的判别
雷诺数
Re
d
cr d Recr
' ' cr d Recr
对于圆管流:Recr 2320
工程上取
Recr 2000
当Re≤2000时,流动为层流;当Re>2000时,即认为流动是紊流。 对于非圆形截面管道: 雷诺数 Re de
v x
v x
v xi v x v
pi p p'
, x
v xi
o
t
vx
t
瞬时轴向速度与时均速度图
时均参数不随时间改变的紊流流动称为准定常流动或时均定常流
第六节 粘性流体的紊流流动
二、雷诺应力 t
定义: 流体质点在相邻流层 之间的交换,在流层之间进行 动量交换,增加能量损失 dv x v t ( t ) dy

3.圆管中的沿程损失
紊流光滑管
紊流粗糙管
1
1 d 2lg 1.74
2lg Re 0.8


第七节 沿程损失的实验研究
一、实验
1. 目的:
f ( Re .

d
)
2. 原理和装置: 用不同粗糙度的人工粗糙管,测出
不同雷诺数下的 hf ,然后由
l v2 hf d 2g
4
排水 进水
第三节 粘性流体的两种流动状态
3.
实验步骤
(a)
层流状态 过渡状态 紊流状态
(b)
(c)
第三节 粘性流体的两种流动状态
实验说明:
a.
v 0 vcr
层流=>过渡状态
b.
c. d.
v vcr
相关文档
最新文档