八年级数学初二下数学教案
八年级下学期数学教学计划3篇

八年级下学期数学教学计划3篇八班级下学期数学教学方案1一、教学内容:1.分式2.反比例函数3.勾股定理4.四边形5.数据分析二、课程学习目标(一):1、以描述实际问题中的数量关系为背景,抽象处分式概念,体会分式是刻画现实世界中数量关系的一类代数式。
2、类比分数的基本性质,并了解分式的基本性质,把握分式的约分和通分法则。
3、类比分数的四则运算法则,探究分式的四则运算,把握这些法则。
4、结合分式的运算,将指数的争辩范围从正整数扩大到全体整数,构建和进展相互联系的学问体系。
5、结合分析和解决实际问题,争辩可以化为一元一次方程的分式方程,把握这种方程的解法,体会解方程中的化归思想。
(二):1、理解反比例函数的概念,依据实际问题中的条件确定反比例函数的解析式y=(k为常数,k≠0),能推断一个给定的函数是否为反比例函数。
2、能画出反比例函数的图象,会用待定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析法和图象的各自特点。
3、能依据图象数形结合地分析并把握反比例函数y=(k为常数,k≠0)的函数关系和性质,能利用这些函数的性质分析和解决一些简洁的实际问题。
4、进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点,进一步熟识数形结合的思想方法。
(三):1、体验勾股定理的探究过程,会运用勾股定理解决简洁问题。
2、会运用勾股定理的逆定理判定直角三角形。
3、通过具体例子,了解逆命题、逆定理的概念,知道原命题成立其逆命题不愿定成立。
(四):1、把握平四边形、矩形、菱形、正方形、体形的概念,了解它们之间的关系。
2、探究并把握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并能用这些学问进行有关的证明和计算。
3、探究并了解线段、矩形、平行四边形、三角形的重心的物理意义。
4、进一步培育同学的合情推理力气、规律思维力气、推理论证力气。
(五):1、进一步理解平均数、中位数和众数等统计量的统计意义。
华东师大第四版八年级下册数学教案

华东师大第四版八年级下册数学教案华东师大第四版八年级下册数学教案精选篇1数据的波动教学目标:1、经历数据离散程度的探索过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。
这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2设有一组数据:x1, x2, x3,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。
关于名师新人教版八年级数学下册教案5篇

关于名师新人教版八年级数学下册教案5篇关于名师新人教版八年级数学下册教案5篇数学的本质在于它的自由。
数学是打开科学大门的钥匙。
数学是各式各样的证明技巧。
挑选好一个确定得研究对象,锲而不舍。
你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。
这里给大家分享一些关于名师新人教版八年级数学下册教案,供大家参考学习。
名师新人教版八年级数学下册教案(精选篇1)一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转2.旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成①确定组合图案中的“基本图案”②发现该图案各组成部分之间的内在联系③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的⑹轴对称变换与平移变换的组合。
人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
八年级数学下册《完美矩形》教案、教学设计

2.介绍完美矩形的判定条件:矩形的对角线相等且垂直平分。
3.教师通过几何画板演示完美矩形的性质,如对角线互相垂直、平分等,让学生直观感受完美矩形的特点。
4.分析完美矩形在实际应用中的优势,如设计美观、节省材料等。
5.教师讲解完美矩形性质的应用,如计算周长、面积等,让学生理解完美矩形在实际问题中的解决方法。
c.应用题:运用矩形性质解决实际问题,如计算给定完美矩形的周长和面积。
2.设计作业:请学生自行设计一个完美矩形,要求如下:
a.图形美观,比例协调。
b.在设计过程中,运用所学的完美矩形判定条件。
c.计算所设计完美矩形的周长和面积,并说明计算过程。
3.探究作业:分组进行探究,讨论以下问题:
a.完美矩形在生活中的应用实例。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组讨论以下问题:
a.完美矩形的判定条件是什么?
b.如何计算完美矩形的周长和面积?
c.你能举出生活中遇到的完美矩形的例子吗?
2.学生在小组内进行讨论,互相交流想法,共同解决问题。
3.各小组派代表分享讨论成果,教师对学生的回答进行点评,纠正错误,补充遗漏。
4.教师引导学生在讨论中学会倾听、尊重他人意见,培养团队协作能力。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,让学生独立完成,巩固所学知识。
2.练习题包括:
a.判断哪些图形是完美矩形,并说明理由。
b.给定一个完美矩形,计算其周长和面积。
c.设计一个完美矩形,并说明其特点。
3.学生在规定时间内完成练习题,教师巡回指导,解答学生疑问。
6.情感态度与价值观的培养
人教版八年级数学下册教案

人教版八年级数学下册教案人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
初二数学教案案例(精选7篇)

初二数学教案案例(精选7篇)初二数学教案案例(精选篇1)一、课堂导入回顾平行四边的性质定理及定义1.什么叫平行四边形?平行四边形有什么性质?2.将以上的性质定理,分别用命题形式叙述出来。
(如果……那么……)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?二、新课讲解平行四边形的判定:(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
(平行四边形判定定理):(一)两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?已知:四边形ABCD中,AB=CD,BC=DA。
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。
连结BD。
易证三角形全等。
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。
)初二数学教案案例(精选篇2)学习重点:函数的概念及确定自变量的取值范围。
八年级数学下册《分式的乘除法》教案、教学设计

一、教学目标
(一)知识与技能
1.理解并掌握分式乘除法的运算规则,包括同分母分式相乘除、异分母分式相乘除以及分式乘方、分式乘除混合运算。
2.能够运用分式乘除法解决实际问题,提高运算速度和准确性,培养良好的数学运算习惯。
3.能够运用分式乘除法简化表达式,解决方程、不等式等相关问题,为后续学习打下基础。
3.教师趁机提出:“如果小明的妈妈想要计算每瓶酱油和每瓶醋的平均价格,应该怎么计算呢?”引导学生思考,从而引出分式乘除法的概念。
(二)讲授新知,500字
1.教师讲解分式乘除法的运算规则,以同分母分式相乘除和异分母分式相乘除为例,解释运算过程中需要注意的问题,如通分、约分等。
2.通过示例,演示分式乘除法的具体步骤,让学生跟随教师一起完成计算,加深对规则的理解。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.以实际问题导入,激发学生的学习兴趣,引导学生通过观察、思考、探究来发现分式乘除法的运算规律。
2.通过小组合作、交流讨论等形式,让学生在实践中掌握分式乘除法的运算方法,培养合作意识和团队精神。
3.利用变式训练,巩固学生对分式乘除法的理解,提高学生的运算能力和解决问题的能力。
4.通过课后练习和拓展任务,让学生在自主探究中加深对分式乘除法的认识,培养自主学习能力。
(三)情感态度与价值观
在本章节的学习过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣和热情,使他们树立正确的数学观念,认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的精神,使他们具备面对困难和挑战时的信心和勇气。
(2)鼓励学生将分式乘除法与其他数学知识相结合,提高解决问题的综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学初二下数学教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v+20100=v-2060. 3. 以上的式子v+20100,v-2060,a s,sv ,有什么共同点它们与分数有什么相同点和不同点五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○分母不能为零;○分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=11-m m 32+-m m 112+-m m六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 . 2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, ba s +2. X = 3. x=-1课后反思:4522--x x xx 235-+23+x xx 57+xx3217-xx x --221x802332xx x --212312-+x x16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 432015249832.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:a b 56--= a b 56, y x 3-=y x 3-,n m --2=nm2,n m 67--=nm 67 , y x 43---=y x 43。
六、随堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228mn n m (3)532164xyzyz x - (4)x y y x --3)(23.通分:43201524983(1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a-(4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135xa -- (4) mb a 2)(-- 七、课后练习1.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1(3)nm nm ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和xx x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx- (4)-2(x-y)23.通分:(1)321ab = cb a ac 32105, c b a 2252= c b a b 32104 (2)xy a 2= y x ax 263, 23x b= y x by 262(3)223ab c = 223812c ab c 28bc a -= 228c ab ab(4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y4.(1) 233ab y x (2) 2317b a - (3) 2135xa (4) mb a 2)(--课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nm ab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1.P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++- 七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()yx a xy 28512-÷(4)ba ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x xy x --⋅-八、答案:六、(1)ab (2)nm 52- (3)14y -(4)-20x 2 (5))2)(1()2)(1(+--+a a a a (6)23+-y y七、(1)x1- (2)227c b-(3)ax 103-(4)bb a 32+ (5)x x -1 (6)2)(5)(6y x y x x -+课后反思:16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷ 五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xbb a xy y x ab 349823232⋅⋅ (判断运算的符号)=32916axb (约分到最简分式)(2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x xx x --+⋅+⋅+--3)2)(3(31444622(先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xy y xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432- (2)485c - (3)3)(4y x - (4)-y七. (1)336y xz (2) 22-b a (3)122y - (4)x1-课后反思:16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算. 三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判 断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a ba=( )(3)4)(b a =⋅b a ⋅b a b a ba⋅=( )[提问]由以上计算的结果你能推出n ba)((n 为正整数)的结果吗?五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除. 六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398x y (4)2)3(bx x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x zy x -÷- 5))()()(422xy x y y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a b a c b a c ÷÷ (4) )()()(2232b a ab a ab b a -⋅--⋅-八、答案:六、1. (1)不成立,23)2(a b =264a b (2)不成立,2)23(a b -=2249ab(3)不成立,3)32(x y -=33278x y -(4)不成立,2)3(bx x -=22229b bx x x +-2. (1)24925y x (2)936827c b a - (3)24398yx a - (4)43z y - (5)21x(6)2234x y a七、(1) 968a b -- (2) 224+n b a (3)22a c (4)bba +课后反思:16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1, R 2, …, R n 的关系为n R R R R 111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R ,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出2243291,31,21xyy x y x 的最简公分母是什么你能说出最简公分母的确定方法吗 五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+ [分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x y x y x y x y x y x --+-+--+=22)32()2()3(y x y x y x y x --++-+ =2222yx yx -- =))(()(2y x y x y x +--=yx +2 (2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x 六、随堂练习计算(1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323a b ba b a b a b a a b ----+--- (3) 122+++-+-b a ab a b a b (4) 22643461461x y xy x y x -----八、答案:四.(1)ba b a 2525+ (2)m n n m -+33 (3)31-a (4)1 五.(1)b a 22 (2) 223b a ba -- (3)1 (4)y x 231-课后反思:16.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、重点、难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x xx x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x xx x x x x=)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x=)4()2(4222--⋅-+--x x x x x x x =4412+--x x(2)2224442yx x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y x y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1) x x x x x 22)242(2+÷-+- (2))11()(ba ab b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习 1.计算 (1) )1)(1(yx xy x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+ (3) zxyz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.八、答案:六、(1)2x (2)ba ab- (3)3 七、1.(1)22y x xy - (2)21-a (3)z1 2.422--a a ,-31课后反思:16.2.3整数指数幂一、教学目标:1.知道负整数指数幂n a -=n a1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质. 3.会用科学计数法表示小于1的数. 二、重点、难点1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质. 2. P24观察是为了引出同底数的幂的乘法:n m n m a a a +=⋅,这条性质适用于m,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mn n m a a =)((m,n 是正整数);(3)积的乘方:n n n b a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗?4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a ,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a (a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=na 1(a ≠0). 五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81 2.(1)46y x (2)4x y (3) 7109yx 七、1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后反思:16.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3. P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5. 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程v v -=+206020100. 像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程 (1)623-=x x (2)1613122-=-++x x x (3)114112=---+x x x (4)22122=-+-x x x x 七、课后练习1.解方程 (1)01152=+-+x x (2) x x x 38741836---=- (3)01432222=---++x x x x x (4) 4322511-=+-+x x 2.X 为何值时,代数式xx x x 231392---++的值等于2?八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=54 七、1. (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=23课后反思:16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思。