溴化丁基橡胶配合及应用手册
溴化丁基橡胶发展方向

溴化丁基橡胶的应用领域一、与其他橡胶并用的应用溴化丁基橡胶能与多种橡胶以任意比例并用,如天然橡胶、丁腈橡胶、氯丁橡胶、三元乙丙橡胶等。
制得的并用硫化胶有较好的性能,在工业上具有广泛的应用。
1、与普通丁基橡胶的并用采用溴化丁基橡胶和普通丁基橡胶并用,除了保持两者都具备的物理性能(不透气性、耐老化、耐化学药品等)之外,最重要的是可以大大缩短并用胶料的硫化时间,改善了加工性能,降低了胶料黏度。
此外,在溴化丁基橡胶中加入普通丁基橡胶也是一条降低生产成本的重要途径。
普通丁基橡胶与溴化丁基橡胶并用可以改善胶料自黏性,工艺性能良好;并用胶中随着溴化丁基橡胶用量的增加,硫化速度明显加快,并用胶的紫外吸光度与易氧化物两项指标会逐渐得到改善;并用胶中溴化丁基含量的变化对并用胶的力学性能、老化性能没有太大的影响;普通丁基橡胶与溴化丁基橡胶并用胶的硫化体系采用硫磺硫化或吗啡啉硫化效果良好。
2、与天然橡胶并用溴化丁基橡胶能以任意比例与天然橡胶并用。
溴化丁基橡胶与天然橡胶并用硫化速度快,可提高天然橡胶的气密性,改善其耐热、耐天候老化和耐各种化学药品的性能。
相反,天然橡胶则能提高以溴化丁基橡胶为主的胶料的粘合性及拉伸强度等性能。
3、与三元乙丙橡胶并用溴化丁基橡胶与三元乙丙橡胶并用,可以改变硫化速度,改善以此为基础的胶料的粘合、气密性和阻尼特性,反过来,三元乙丙橡胶可以改善以溴化丁基橡胶为基础的胶料的低温脆性、耐臭氧和耐热性能。
4、与氯丁橡胶并用溴化丁基橡胶与氯丁橡胶并用的目的主要在于降低以溴化丁基橡胶为基础的胶料成本。
溴化丁基橡胶与氯丁橡胶并用胶料的耐热、耐臭氧性能良好,耐压缩永久变形、耐天候老化性与氯丁橡胶相同5、与丁腈橡胶并用在溴化丁基橡胶中并用丁腈橡胶,可以改善胶料的耐油、耐化学药品性能,提高产品的压缩永久变形性能,但力学性能较差。
与丁腈橡胶并用,溴化丁基橡胶还可以改善丁腈橡胶的低温屈挠性、耐臭氧、耐酯和耐酮的性能,但是耐油性能和拉伸强度有所下降。
低分子量溴化丁基橡胶

低分子量溴化丁基橡胶1. 概述低分子量溴化丁基橡胶是一种具有优异性能的合成橡胶材料。
它由丁苯橡胶经过溴化反应得到,具有良好的耐热性、耐油性和耐磨性。
本文将对低分子量溴化丁基橡胶的特性、制备方法以及应用领域进行详细介绍。
2. 特性低分子量溴化丁基橡胶具有以下特点:2.1 耐热性低分子量溴化丁基橡胶在高温环境下表现出良好的稳定性,能够承受高温下的应力和变形,不易熔化或变形。
2.2 耐油性该橡胶材料具有优异的耐油性能,能够在接触石油产品或其他有机溶剂时保持其原有的物理和机械特性。
2.3 耐磨性由于其分子结构中含有大量分支链,低分子量溴化丁基橡胶具有出色的耐磨性能,适用于高摩擦和高磨损环境。
3. 制备方法低分子量溴化丁基橡胶的制备方法如下:3.1 原料准备将丁苯橡胶作为原料,通过混炼、粉碎等工艺得到适合溴化反应的颗粒状物料。
3.2 溴化反应将原料加入反应釜中,并加入适量的溴化剂。
控制反应温度、时间和搅拌速度,使得丁苯橡胶与溴化剂充分反应,产生低分子量溴化丁基橡胶。
3.3 分离和干燥将反应产物进行分离,通常采用离心分离或过滤的方式。
然后对得到的低分子量溴化丁基橡胶进行干燥处理,去除水分和其他杂质。
4. 应用领域低分子量溴化丁基橡胶广泛应用于以下领域:4.1 汽车工业由于其耐热性、耐油性和耐磨性优异,低分子量溴化丁基橡胶被广泛应用于汽车行业。
它可以用于制造汽车密封件、悬挂系统、胶管和轮胎等关键部件。
4.2 电子工业低分子量溴化丁基橡胶在电子工业中也有重要的应用。
它可以用于制造电线电缆的绝缘层、接插件的密封圈以及电子元器件的防护罩等。
4.3 建筑工业该橡胶材料在建筑领域有着广泛的应用。
它可以用于制造防水材料、隔音材料和耐候性较高的建筑密封胶等。
5. 总结低分子量溴化丁基橡胶是一种性能优异的合成橡胶材料,具有耐热性、耐油性和耐磨性等特点。
通过适当的制备方法,可以得到高质量的低分子量溴化丁基橡胶。
它在汽车工业、电子工业和建筑工业等领域都有着广泛的应用前景。
溴化丁基橡胶应用及市场分析

合 成材 料老 化 与应用
5 7
溴化丁基橡胶应用及市场分析
溴 化 丁基 橡 胶 ( B I I R) 是丁 基橡 胶 ( I I R) 在 一
面的重 视 。
定的条件下经溴化得到 的溴代产物 。溴代 反应主
要发生在 I I R 中少 量 的 双 键 碳 或 紧 邻 双 键 的 甲基 碳上, 使得 B I I R 中溴 的含 量较 低, 在 0 . 8 % 一 2 . 5 % 之 间 。 由于 I I R主 链 没 有 改 变 , 被 溴 化 的 氢 原子数有限 , 因而 B I I R依 然 具 有 I I R 的高 阻 隔性 、
2 0 0 4年建设 一套 3万 t / a卤化丁基橡 胶生产装 置 。 我 国卤化 丁基橡 胶 的研 发 工 作 起步 较 晚 , 目前 北 京燕 山石 化公 司正 在开展 B I I R的 中试 研究 工 作 , 该 公 司合成 橡胶 二厂 现有 一套 4 . 5万 t / a I I R装 置 ,
饱 和橡胶 的相 容 性 、 共 硫 化 性 。I I R 溴 化 后 除 了 增
加交 联 活性点 外 , 同时 也增强 了双 键 的反应 性 , B I I R 与I I R的性 能 比较见 表 1 。
表1 B I I R与 I I R 的性 能b 较
橡胶 I I R B I I R
2 0 1 0年新 建成 一套 3万 t / a B I I R生 产 装 置 , 生 产 了 2 6 6 t 产品, 现在 正在 建设 9万 t / a I I R生 产装 置 以及 6万 t / a的 B I I R生产 装置 。 目前 , 世界上 B I I R的生产 基本 上 由美 国埃 克森
溴化丁基

应用
EXXON™溴化丁基橡胶主要用于无内胎轮胎的气密层。溴化丁基橡胶胶料不仅具有丁基橡胶空气 和湿气的低渗透性,而且还具有较高的共硫化匹配性和较好的与轮胎胎体胶料的粘合性能。 经适当配合后,含有 100 份溴化丁基橡胶的气密层胶料可减少空气向轮胎胎体内扩散,达到极高的 充气压力保持率 (IPR) ,从而可以延长胎面的使用寿命,提高轮胎的耐久性,并降低车辆的耗油 量。在一些对空气阻隔性能要求不是很高的应用领域,采用了溴化丁基橡胶与通用弹性体如天然橡 胶的并用胶 1,3。 溴化丁基橡胶具有广泛的共硫化能力,并能够生成热稳定的交联键,所以其也适用于输送带,特别 是高温输送带。输送带由多个结构层组成,要求层间具有较高的粘合强度。 溴化丁基橡胶可以使用可抽出残余物极少的硫化体系快速硫化,所以适用于医药领域。溴化丁基橡 胶的耐湿气特性则是其另一个优点。 表 1 EXXON™溴化丁基橡胶牌号 1 示例 (ASTM D3958) 2222 2235 2255 2211 单位 32±5 39±5 46±5 32±5 ML1+8(125℃) wt% 0.02 最小 0.02 最小 0.02 最小 0.02 最小 wt% 2.0±0.2 2.0±0.2 2.0±0.2 2.1±0.2 wt% 1.3±0.3 1.3±0.3 1.3±0.3 1.3±0.3 wt% 0.3 最大 0.3 最大 0.3 最大 0.3 最大 性能指标(流变仪 ODR 2000) dNm 34.0±7.0 37.0±7.0 41.0±7.0 36.0±7.0 dNm 12.0±4.5 14.0±4.5 16.0±4.5 12.0±4.5 min 4.0±2.5 4.0±2.5 4.0±2.5 4.0±2.5 min 8.0±3.0 7.5±3.0 7.5±3.0 6.0±3.0 min 10.5±4.0 10.0±4.0 10.0±4.0 8.5±4.0
溴化丁基橡胶加工工艺

溴化丁基橡胶的基本配合主要由硫化体系、补强体系、增塑体系和防老体系组成。
溴化丁基橡胶的加工工艺主要包括混炼、压延、压出和硫化等工序。
避免产生焦烧和气泡始终是加工过程中的重要内容。
一、混炼溴化丁基橡胶可以用密炼机或开炼机进行混炼。
(一)开炼机混炼采用开炼机混炼溴化丁基橡胶时,辊筒速比宜为1:1.25,前辊(慢辊)辊温宜为40℃左右,后辊辊温稍高,宜为55℃左右。
因为溴化丁基橡胶倾向于包低温辊。
一般混炼加料顺序如下。
①投入部分橡胶,令其包辊,并存有少量堆积胶。
最好使用种子胶,即用少量上批溴化丁基橡胶胶料,以利操作。
②加入防焦剂、酸吸收剂、硬脂酸及1/4补强剂,进行混炼。
③加入剩余溴化丁基橡胶,调整辊距,保留少量堆积胶。
④加入剩余补强剂和填充剂,补强剂须在增塑剂之前加入;增塑剂可与非补强填充剂等一起逐步加入;保持少量堆积胶。
⑤最后加入硫化体系配合,包括氧化锌和促进剂,辊温须控制,以防焦烧。
⑥薄通、下片、冷却。
(二)密炼机混炼一般采用二段混炼工艺,即第一段制备母炼胶,其中不含硫化组分,如氧化锌和促进剂等。
第二段在较低温度下加入硫化体系配合剂。
采用密炼机混炼溴化丁基橡胶时,投料量即填充系数一般高于通用橡胶约5%~10%,以利于配合剂的分散和排除卷入的空气。
溴化丁基橡胶在混炼前的贮存不应过冷,至少在室温下停放,最好能预热,即40℃下预热24h,否则,采用冷橡胶混炼,会导致配合剂分散不良和聚合物结团。
混炼操作要点有以下几项。
①为了提高配合剂混入与分散效果,在投入配合剂之前,先将溴化丁基橡胶在密炼机中塑炼约1.5min,以缩短混炼时间。
②防焦剂,如氧化镁宜在混炼第一阶段加入,有利于安全和混炼。
③补强剂应在混炼早期加入,以增加胶料剪切力,有利于分散。
④增塑剂应在后期加入,以保证胶料在混炼前期维持最大剪切力。
⑤混炼温度要低些。
温度过高,胶料易碎,高于140℃时,会使聚合物脱卤化氢,导致硫化胶性能下降。
第一阶段混炼最高排胶温度一般控制在130℃以下。
丁基橡胶的开发和应用

料。
的纳米 B I I R, 其应用 范 围就 可进一 步扩 大 。
化 性能 外 , 同时要 求 有 良好 的粘合 性 及 与 其他 胶 料 的共 硫化性 , 这 样 就使 卤化 丁基橡 胶 ( XI I R) 获 得 了迅 速 的发展 。虽然 I I R的高饱 和性具 有 许多 优点 , 但 也 限 制 了其 与 聚二 烯 烃 橡 胶 的 并 用 , 另
外, 分子 中缺 少极 性基 团 , 也使 其与金 属或橡 胶 的 粘合性 能 比较差 。随着合 成橡胶 工业 的发展 和应 用 的需 要 , I I R 已发展成拥有衍生橡 胶、 改 性 橡
个 高饱 和 的橡胶 品种 。少量异 戊二烯 的 引入是
为了获 得可 供硫 化 的双键 。由 于结 构上 的特 点 ,
I I R 以其极 低 的透 气 性 和 优 良的 耐 热 老 化 性 , 在
制 造高 速轮 胎 内胎 上 独 树 一 帜。近 年来 , 随着 无 内胎轮 胎 的出现 , 内衬 层取 代 内胎发 挥 保 压 和 阻
氯 化 丁基 橡 胶 ( C I I R) 的制 备 方 法 分 干 胶 混 炼 氯化 和溶 液氯化两 种工艺方 法 。前者是 在开 炼
机 上 吸附 了氯气 的活性 炭或 其他 氯 化剂 混 入 I I R
有: 硫化速度快、 与天 然 橡 胶 和 丁 苯 橡胶 相 容 性 好、 与天然 橡胶 和丁苯橡 胶 的粘合性 改善 、 可单独
胶、 热 塑性 弹性体 、 热塑 性硫化胶 等 品种的通 用橡
溴化丁基橡胶的研究.

(6将辊距放至最小处,薄通5次(其中三次打三角包。
(7出片3mm,冷却,待用。
辊温控制在50℃一60℃,混炼时间:大约15min
2.3.2硫化
平板硫化:按测试所得的t90来确定硫化时间,分别做成100mm×100mm×2mm的试片进行测试。
2.3.3操作工艺的注意情况
溴化丁基的混炼、压延和压出操作工艺与门尼粘度相同的普通丁基橡胶相似,但由于溴化丁基橡胶的硫化速度较快,容易焦烧,所以要注意下列情况。
(3与天然,丁苯等橡胶的粘接性改善。
(4可单独用氧化锌硫化,硫化方式多
种多样。
(5有较好的耐热性。
正因为溴化丁基有如此多的优点,所以它在各种领域正逐步地替代普通丁基橡胶。如子午线轮胎,斜交轮胎,胎侧,耐热内胎,容器衬里,药品瓶塞,机器垫等工业产品[1]。
溴化丁基橡胶的制备方法分混炼法和溶液法两种方法。按前一法可分别把N-溴代琥珀酰亚胺10%、二溴二甲基乙内酰脲7.5%或活性炭吸附溴(31.2%重量比30%加入到开炼机上的丁基橡胶中进行热混炼而制得;而后一法是将丁基橡胶溶解于氯化烃溶剂,再通入3%的溴而制取的。该溴化过程是连续的,其产品质量均匀且稳定[4]。
2.1
NST
NST
41~49
28~36
P、PB
P、PB
*只销售不制造**门尼粘度ML1+8(100℃ ***部分交联型
二.实验
为了全面了解溴化丁基橡胶的性能,掌握其应用技术,本文就此进行了配合技术的研究,确定了原材料的配合用量,重点研究了溴化丁基橡胶的多种硫化体系及各自特点;各种补强填料对溴化丁基橡胶性能的影响;通过对胶料的t90,t10,常温拉伸性能,耐热空气老化性能,以及压缩永久变形等性能的测试来反映溴化丁基橡胶的一些性能。此外,还对溴化丁基橡胶的再生利用的性能展开了研究分析。
溴化丁基橡胶的制备(2)(1)

摘要:溴化丁基橡胶(BIIR)是丁基橡胶(IIR)的溴化改性产品,其研究开发始于20世纪50年代,目的是提高IIR硫化性能并改善它与其他橡胶并用的相容性。
目前主要生产溴化丁基橡胶的公司包括美国固特异公司、加拿大宝兰山公司(后被德国拜耳公司收购)、比利时Antwerp 公司、美国埃克森公司、德国朗盛公司等国外大公司所垄断。
溴化丁基橡胶的制备方法主要有干混炼法和溶液法两种。
干混炼法是在开炼机上将溴化剂加入丁基橡胶中进行热炼,使溴化剂放出的溴与丁基橡胶发生反应,生成溴化丁基橡胶。
溶液法的制备过程是在丁基橡胶中加入溶剂溶解、加入溴化剂溴化、中和洗涤多余的溴化剂、去除多余的溶剂、回收产品。
相比于干混炼法制备的溴化丁基橡胶来说,溶液法的溴化过程是连续的,生产的产品性能更加稳定。
BIIR不仅保持了IIR 原有的透气性低、衰减性高、耐老化、耐候、耐臭氧及耐化学药品性能等特点,还增添了普通IIR 所不具备的特性:硫化剂用量少,硫化速度快;能用各种硫化剂硫化;能与天然橡胶(NR), 丁苯胶(SBR),丁腈橡胶(NBR)和氯丁胶(CR)等并用;BIIR 本身与其他橡胶有良好的硫化粘合性能,IIR 则较差;耐热性能比IIR 优异。
溴化丁基橡胶主要用于子午线轮胎和斜交轮胎的气密层(内衬层)、胎侧、耐热内胎、容器衬里、品瓶塞、机械垫等。
关键词:溴化丁基橡胶;合成;应用Abstract:Brominized butyl rubber (BIIR) is butyl rubber (IIR) of the modified products, brominated began its research and development in the 1950s, the purpose is to improve the performance and improve its IIR vulcanized rubber and compatibility with other。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 4 显示了丁基橡胶的结构9。商用丁基橡胶 (IIR) 是异丁烯和少量异戊 二烯(通常摩尔百分比为 2)的共聚物。此图显示了聚合物链的两个不饱和位 置之间的平均分子量。同时还说明了丁基橡胶的有限化学活性。与之相比的是, 天然橡胶或合成聚异戊二烯中的单体链节包含两个不饱和位置。将溴引入丁基 聚合物中时,反应在异戊二烯的碳碳双键位置发生,这可以得到较高的交联反 应活性和新的交联化学性质,同时保持高饱和度、化学惰性结构的特性10。
合反应,生成丁基橡胶 (IIR),然后通过溴化来得到溴化丁基橡胶9。
丁基橡胶 (IIR) 是使用高纯度异丁烯和异戊二烯合成的。聚合机制包含复 杂的阳离子反应。催化剂体系是含引发剂的路易斯酸共引发剂。常见的路易斯 酸共引发剂包括三氯化铝、烷基氯化铝、三氟化硼、四氯化锡和四氯化钛。使 用的引发剂通常是布朗斯特德酸,例如水、盐酸、有机酸或卤代烷。在引发步 骤中,异丁烯单体与路易斯酸催化剂进行反应时会生成带正电荷的碳阳离子 (也称碳正离子)。图 1 是引发步骤的简单示意图,供演示使用。
丁基橡胶的最终分子量主要通过控制引发速度和链转移反应速度来确定。 对进料系统进行提纯,可以最大限度地减少水分和含氧有机化合物,防止这些 物质终止链增长步骤。氯甲烷和未反应的单体将随着蒸汽和热水闪蒸出,经过 干燥和提纯,然后再重新回收到反应釜中。稳定剂(硬脂酸钙)和抗氧化剂 (BHT) 将被输送到热水/聚合物悬浮液中,用来稳定聚合物和防止结块。
表I EXXON™ 溴化丁基橡胶牌号示例1
(ASTM D3958)
ExxonTM 溴化丁基橡胶配合及应用手册 — B0212-884C50
第 5 页,共 64 页
溴化丁基橡胶聚合物
溴化丁基橡胶是在己烷溶液中,将溴与丁基橡胶发生化学反应生成的。BF Goodrich 公司的 Crawford 和 Morrissey 在间歇式反应工艺中使用溴化剂 (例如 n-溴代琥珀酰亚胺)进行研究之后,首先发表了使用少量溴可以对丁基 橡胶加以改性的报导4。
溴化丁基橡胶的硫化 ………………………………………………………… 12
溴化丁基橡胶与其它弹性体的共混…………………………………………… 17
配合指南 ……………………………………………………………………… 22
优化关键性能 ………………………………………………………………… 26
溴化丁基橡胶混炼胶加工 …………………………………………………… 30
应用指南 EXXON™ 溴化丁基橡胶的主要用途是无内胎轮胎气密层。溴化丁基橡胶混炼
胶同时具备丁基橡胶结构的气体和湿气低渗透性以及与轮胎胎体混炼胶之间优 异的共硫化相容性和粘合性。
通过适当地配合,在轮胎气密层混炼胶中加入 100 份溴化丁基橡胶,可以极 大提高轮胎充气压力保持率 (IPR),将进入胎体的空气扩散量降至最低,最大程 度地提高轮胎胎面寿命、轮胎耐久性和汽车燃油经济性。在对气密要求不高的应 用领域中,可使用溴化丁基橡胶与通用弹性体(例如天然橡胶)的共混物1,3。
有限化学活性 埃克森美孚化工于 1943 年实现了丁基橡胶的商业化生产,开创了高度饱
和、惰性更强的聚合物概念,这种聚合物具备有限的化学反应活性4。不过,这 种有限的反应活性足以在硫化后形成具备高强度和高弹性物理特性的交联网络。 丁基橡胶的典型粘均分子量为 350,000 — 450,000,而以摩尔百分比表示的不 饱和度(异戊二烯)为 0.8% 至 2.6%。
对于普通丁基橡胶的生产,接下来通过一系列的挤出、脱水和干燥步骤进 行过滤和干燥,从热水悬浮液中去除聚合物。使用流化床输送带或风干装置将 产品冷却到合适的包装温度。
卤化过程中,在强搅拌的反应釜内将溴加入丁基橡胶溶液。这些卤离子的 反应速度非常快。每反应 1 摩尔的溴分子可以释放出 1 摩尔的氢溴酸。因此, 必须使用碱性溶液将反应溶液中和,例如氢氧化钠。然后,使用蒸汽和热水来 闪蒸和分离溶剂。还要向其中加入硬脂酸钙,防止聚合物结块。生成的聚合物 水悬浮液经过过滤、干燥和冷却等步骤的处理,工艺过程与常规(未卤化)丁 基橡胶类似。最终干燥产品是小碎屑状,经过称重和压缩后打包成捆(包重为 34 公斤),然后使用 EVA 包装膜包装发运。
ExxonTM 溴化丁基橡胶配合及应用手册 — B0212-884C50
第 4 页,共 64 页
溴化丁基橡胶具有共硫化普适性,可以形成热稳定的交联结构,适合用于 传送带外层,尤其适合高温应用。传送带由多个层构成,这些层之间需要高强 度的粘合性。
溴化丁基橡胶能够通过硫化体系快速硫化,所产生的可萃取残留物很少, 因此成为医药领域中的常用弹性体。防潮特性是溴化丁基橡胶的另一大优点。
第 7 页,共 64 页
在使用最广泛的丁基橡胶制造工艺中,当路易斯酸引发反应后,反应釜中 将形成分散在氯甲烷中的丁基橡胶细小颗粒悬浮液。这个反应是强放热的,可 以通过控制聚合温度(通常为 -100oC 到 -90oC)得到高分子量产物。最常见的 聚合工艺使用氯甲烷作为反应溶剂,然后使用液态乙烯冷却带走反应热量并保 持所需的低温。
使用星形支化溴化丁基橡胶提高加工性能 ………………………………… 38
溴化丁基橡胶应用 …………………………………………………………… 40
总结……………………………………………………………………………… 57
附录 1. 聚合物……………………………………………………………… 59 2. 促进剂……………………………………………………………… 60 3. 其它混炼胶成分…………………………………………………… 61
在结构上,溴化丁基橡胶与氯化丁基橡胶类似,因而也具有相似的性质; 而且,由于卤素的反应活性,所以溴化丁基橡胶比丁基橡胶具有更广泛的硫化 特性。卤化丁基橡胶可与不饱和通用弹性体(例如天然橡胶 (NR)、聚丁二烯橡 胶 (BR) 和丁苯橡胶 (SBR))更好地共同硫化,同时保持了高度饱和主链结构 的其它特性。
与氯化丁基橡胶相比,溴化丁基橡胶的碳–溴键能低于氯化丁基橡胶的碳– 氯键能,因此表现出更高的交联活性,混炼胶的硫化速度更快,能够利用更广泛 的硫化体系。因此,与氯化丁基橡胶相比,溴化丁基橡胶与通用弹性体的共硫化 相容性更好。EXXON™ 星形支化溴化丁基橡胶是包含聚合支化剂的异丁烯和异戊 二烯溴化共聚物。它具有独特的分子量分布,包含一小部分高分子量的星形支化 分子,相比传统溴化丁基橡胶聚合物,可以改善混炼胶的加工性能。
聚合反应终止是通过一些方法与不断增长的碳正离子发生不可逆的破坏反 应,包括:抑制离子对,共聚单体脱氢、形成稳定的烯丙基碳正离子或者与亲 核体成分(例如酒精或胺)进行反应。通过这些方法可以确定终止点,控制丁 基橡胶分子量,并且生成惰性聚合物,以后再进行卤化。
图3 链终止步骤的简图
CH3 CH2 C
CH3
ExxonTM 溴化丁基橡胶配合及应用手册 — B0212-884C50
第 2 页,共 64 页
目录
前言 …………………………………………………………………………… 4
溴化丁基橡胶聚合物 ………………………………………………………… 6
溴化机理和工艺概述 ………………………………………………………… 10
1992 年,埃克森美孚推出了商业化的全新溴化丁基橡胶牌号系列 EXXON™ 星形支化溴化丁基橡胶,这一牌号系列具有优异的工厂加工性能。这些产品不 同于传统的溴化丁基橡胶,它们具有独特的分子量分布,包含一小部分高分子 量的星形支化分子9。
溴化丁基橡胶的商业化生产 溴化丁基橡胶的生产工艺分为两个步骤。首先是异丁烯和异戊二烯发生聚
参考资料 ……………………………………………………………………… 62
ExxonTM 溴化丁基橡胶配合及应用手册 — B0212-884C50
第 3 页,共 64 页
前言
溴化丁基橡胶 (BIIR) 是含有活性溴的异丁烯–异戊二烯共聚物弹性体。 由于溴化丁基橡胶主要为丁基橡胶的饱和聚异丁烯主链,因此具备丁基橡胶分 子的许多特性。其中包括物理强度、减震性、低玻璃化温度、低渗透性以及暴 露于环境下的抗老化和耐候性能。
ExxonTM 溴化丁基橡胶配合及应用手册
摘要
溴化丁基橡胶 (BIIR) 是含有活性溴的异丁烯–异戊二烯共聚物弹性体。 由于溴化丁基橡胶主要为丁基橡胶的饱和聚异丁烯主链,因此具备丁基聚合物 分子的许多特性。其中包括物理强度、减震性、低渗透性以及暴露于环境下的 抗老化和耐候性能。
随着卤化丁基橡胶气密层的推广和使用,现代子午线轮胎在许多方面有了 突破。在轮胎气密层混炼胶中使用这类聚合物可以改善气密性,提高气密层与 轮胎胎体之间的粘合和轮胎耐久性。
由于溴化丁基橡胶聚合物主链是高度饱和的,因此其硫化过程的化学反应 机理比通用弹性体(例如天然橡胶或聚丁二烯橡胶)更加复杂。卤化异戊二烯 链节的立体化学结构以及常用促进剂的碱性十分重要。因此,理解溴化丁基橡 胶弹性体和溴化丁基橡胶混炼胶的化学原理也变得十分重要。通过适当地配合, 除了轮胎气密层以外,溴化丁基橡胶在许多其它应用方面也表现出卓越的性能, 包括轮胎胎侧、汽车发动机座、特种传送带外层和医药等应用领域。
在埃克森美孚化工公司,研究人员将氯元素加入丁基橡胶的己烷溶液,实 现了丁基橡胶的氯化5。在 1960 年于伦敦发表的论文中介绍了氯化和溴化工艺6。 此外,还介绍了卤化的化学原理以及早期的交联机制研究成果和硫化生成物的 化学和物理特性7,8。
氯化丁基橡胶的商业化生产始于 1961 年。氯化丁基橡胶具备良好的特性 和成本优势,在主要工业应用(例如轮胎气密层)中倍受青睐。根据合同,BF Goodrich 开展了某些丁基橡胶溴化的研究,该公司继续在市场上销售商用牌号 的溴化丁基橡胶,为期约 5 年。1981 年,积累了 21 年的卤化弹性体生产经 验之后,埃克森美孚宣布进入溴化丁基橡胶生产领域。