高三数学数列放缩法

合集下载

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

数列综合应用放缩法

数列综合应用放缩法

数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB 2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<; 2<⋅⋅⋅< ②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ;Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论;⑵证明:1122111512n n a b a b a b +++<+++.数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<;2<⋅⋅⋅<②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ; Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++.。

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。

例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。

2[log ]n 表示不超过n 2log 的最大整数。

设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。

(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。

高中数列放缩法技巧

高中数列放缩法技巧

高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。

通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。

在高中数学中,数列是一个非常重要的概念。

通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。

数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。

下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。

2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。

3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。

除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。

数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。

总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。

掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。

高考数学 数列压轴题放缩法技巧

高考数学 数列压轴题放缩法技巧

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n(8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ΛΛ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111 例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++n T T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++=ΛΛ 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ. 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ΛΛ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ2ααα 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:32]1)1(ln[->++n n ,叠加之后就可以得到答案:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n nΛ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+nnn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

高中数学课程数列中的放缩法

高中数学课程数列中的放缩法

高中数学课程数列中的放缩法
数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。

相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。

一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。

2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用
1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。

高三数学必做题--数列放缩法(典型试题)

高三数学必做题--数列放缩法(典型试题)

1 1 2 . a1a2 a2 a3 3
1 n (1)n1 ,其中 n 2 . bn n an
②是否存在实数 ,使得数列 {bn } 为等比数列?若存在,求出 的值;若不存在,请说明理由.
9、已知数列 an 的前 n 项和为 Sn ,且 S n (1)求数列 an 的通项公式; (2)若 bn
1 n an 1 , n N ,其中 a1 1 . 2
1 3
an1
2
,数列 bn 的前 n 项和为 Tn ,求证: Tn
1 4
富不贵只能是土豪,你可以一夜暴富, 但是贵气却 需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。” 如今我们不缺
土豪,但是我们缺少贵族。
3、已知 a n 是等差数列, a 2 3 , a 3 5 . ⑴求数列 a n 的通项公式; ⑵对一切正整数 n ,设 bn
(1) n n ,求数列 b n 的前 n 项和 S n . a n a n 1
4、设数列 a n 的前 n 项和为 S n ,且满足 a1 2 , an1 2S n 2 n 1,2,3 (1)求 a2 ; (2)数列 a n 的通项公式; (3)设 bn
2、已知数列 an 的前 n 项和 S n
n 1 an ,且 a
21Leabharlann 1.(1)求数列 an 的通项公式; (2)令 bn ln an ,是否存在 k (k 2, k N ) ,使得 bk 、bk 1 、bk 2 成等比数列.若存在,求出所有符合条件的 k 值;若不存在,请说明理由.
7、已知数列 an 满足 a1 (1)求证:数列 {
1 * , an1an 2an1 1 0 , n N . 2

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.
一.先求和后放缩
例1.正数数列的前项的和,满足,试求:
(1)数列的通项公式;
(2)设,数列的前项的和为,求证:
解:(1)由已知得,时,,作差得:
,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以
(2),所以
注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这
里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.
二.先放缩再求和
1.放缩后成等差数列,再求和
例2.已知各项均为正数的数列的前项和为,且.
(1) 求证:;
(2)求证:
解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得

所以,,
所以
(2)因为,所以,所以

2.放缩后成等比数列,再求和
例3.(1)设a,n∈N*,a≥2,证明:;
(2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设
,数列{b n}前n项的和为B n,证明:B n<.
解:(1)当n为奇数时,a n≥a,于是,.
当n为偶数时,a-1≥1,且a n≥a2,于是
.(2)∵,,,∴公比.∴..
∴.3.放缩后为差比数列,再求和
例4.已知数列满足:,.求证:
证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.
令,所以,两式相减得:
,所以,所以,
故得.
4.放缩后为裂项相消,再求和
例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数.
记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j
(1)求a4、a5,并写出a n的表达式;
(2)令,证明,n=1,2,….
(2)因为,
所以.
又因为,
所以
=.
综上,.
注:常用放缩的结论:(1)
(2).
在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类
型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.。

相关文档
最新文档