五年级奥数第四讲最大公因数和最小公倍数

合集下载

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

五年级数学最大公因数与最小公倍数

五年级数学最大公因数与最小公倍数

的最大公因数是( ),最小公倍 数是( )。 2、a与b是互质数,a,b的最大公因 数是( ),最小公倍数是( )。
新知学习
例1
:用60元钱可以买一级茶叶144 克,或买二级茶叶180克,或买三级 茶叶240克。现将这三种茶叶分别按 整克数装袋,要求每袋的价格都相 等,那么每袋的价格最低是多少元 钱?
家庭作业

2.大雪后的一天,亮亮和爸爸从同一点 出发沿同一方向分别步测一个圆形花圃 的周长。亮亮每步长54厘米,爸爸每步 长72厘米,由于两个人的脚印有重合, 所以雪地上只留下60个脚印。问:这个 花圃的周长是多少米?
家庭作业
3.某公共汽车站有三条线路的公共汽
车。第一条线路每隔5分钟发车一次, 第二、三条线路每隔6分钟和8分钟 发车一次。9点时三条线路同时发车, 下一次同时发车是什么时间?
五年级数学
最大公因数和最小公倍数
现在我们孝顺父母的最好方 法就是好好学习。
课前铺垫
几个数公有的倍数叫做这几个数的公倍数, 其中最小的一个公倍数,叫做这几个数的 最小公倍数。自然数a、b的最小公倍数可 以记作[a、b],当(a、b)=1时,[a、 b]=a×b。两个数的最大公约数和最小公 倍数有着下列关系: 最大公约数×最小公倍数=两数的成积 即(a、b)×[a、b]=a×b
用短除法求最大公因数
2
2 3
所以(144,180,240)
=2×2×3=12,即每60元的茶叶 分装成12袋,每袋的价格最低是 60÷12=5(元)。
练习
1.幼儿园的大班有36个小朋友,
中班有48个小朋友,小班有54个 小朋友。按班分组,三个班的各 组人数一样多,问每组最多有 ( )个小朋友。
练习

五年级奥数第四讲最大公因数和最小公倍数

五年级奥数第四讲最大公因数和最小公倍数

北外启航五年级春季班数学第四讲最大公因数和最小公倍数教学目标:1.熟练掌握求最大公因数及最小公倍数的方法。

2.能运用最大公因数和最小公倍数的知识正确解答有关的问题。

知识点拨:1.公因数和最大公因数几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。

我们可以把自然数a、b的最大公因数记作(a、b)。

求几个数的的最大公因数可以用列举法、分解质因数法和短除法等方法。

2.公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

我们可以把自然数a、b的最小公倍数记作〔a、b〕。

3.互质数如果两个数的最大公因数是1,那么这两个数叫做互质数。

当(a、b)=1时,〔a、b〕=a×b。

两个数的最大公因数和最小公倍数有着下列关系:最大公因数×最小公倍数=两数的积即(a、b)×〔a、b〕= a×b经典例题:例1.求下面各组数的最大公因数和最小公倍数。

15和12 90和45 42和70 39和65例2.一块长方体木料,长72厘米,宽60厘米,高36厘米,请你把它锯成同样大小的正方体木块,且木块的体积要最大,木料又不能剩。

算一算可以锯成几块?例3. 用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?例4. 两个数的最大公因数是15,最小公倍数是90,求这两个数的和是多少?例5. 三位朋友每人隔不同的天数到图书馆去看书,甲3天去一次,乙4天去一次,丙5天去一次。

一个星期一,他们三人在图书馆相遇,至少再过多少天他们又在图书馆相遇?例6.有一个自然数,被10除余7,被7除余4,被4除余1.这个自然数最小是多少?巩固练习:1.两个数的最大公因数是9,最小公倍数是90,求这两个数分别是多少?2. 1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。

学而思奥数2011年五年级春季班第四讲因数与倍数(二)

学而思奥数2011年五年级春季班第四讲因数与倍数(二)


(搭配方法相当于将 1,2,4 全排列)
答案:6 个。
(3)1001 的倍数中,有多少个数恰好有 1001 个约数?
提示:与练习 2 相同
答案:6 个
(4)210 的倍数中,有多少个数恰好有 210 个约数?
提示:与练习 2,3 相似,此题是能分解成 2,3,5,7 四个数,所以会将次数分配到这
4 个质因数的次数上,共有 24 中搭配方法。
提示:同例 3。先求出 a 和 b。 答案:65 或 13.
例4、 分析此题相当于已知 A+B 和(A,B)求其他的量。同样根据短除模型得到:A=36×a,B=36×b
则 A+B=36×a+36×b=36×(a+b)=432,即 a+b=432÷36=12,且 a 与 b 必须互质,则得到

,那么根据 A=36×a,B=36×b 可求出 A、B 两数。 答案:36 和 396,或 180 和 252。
4A B ab


A=4×a; B=4×b 可得出这两个数为 4 和 60;或 12 和 20
巩固练习:(1)已知(A,B)=8,[A,B]=64,求 A+B=?
提示:同例 3。先求出 a=1 和 b=8。 答案:72.
(2)两个自然数的最大公约数是 7,最小公倍数是 210,且两个自然数的和是 77,求这两个数?
提示:A×B=(A,B)×[A,B]
答案:24
(2)(a,24)=4; [a,24]=168,求 a 的值?
提示: 4 a 24 则 4×x×6=168 答案:a=28x 6
例3、 分析:此题相当于已知(A,B),[A,B],那我们该怎么求出其他的量呢?首先根据

五年级奥数上册第四讲.最大公约数和最小公倍数

五年级奥数上册第四讲.最大公约数和最小公倍数

分类讨论
• • • • • • 如果d=1时: 由d(a1-b1)=4得a1-b1=4; 由d×da1b1=252可得a1b1=252 252=1×252=4×63=7×36=9×28 但此时都不满足a1-b1=4 所以d≠1
• • • • • • • • • • •
如果d=2时: 由d(a1-b1)=4得 a1-b1=2; 由d×da1b1=252可得 a1b1=63 63=1×63=7×9 此时63-1=62≠2不满足a1-b1=2 , 9-7=2满足a1-b1=2 所以d=2并且a1=9、b1=7 所以a=18、b=14 答:这两个数为18和14。
(二)已知最大公约数和最小公倍数求两个数
• 例2、已知两数的最大公约数是21,最小公倍数 是126。求着两个数的和是多少? • 分析:思路1,由最大公约数与最小公倍数的积等 于两个数的积可得到两个数的积为 • 21×126=2646, • 再利用分解质因数后重新组合即可 • 2646=2×3×3×3×7×7 • =(3×7×2)×(3×7×3)=42×63 • 或 =(3×7)×(3×7×2×3)=21×126
如果d =1则a1+b1=54 a1×b1-1=114 即a1×b1=115 115=1×115=5×23 但是1+115=116≠54 5+23=28≠54 d≠1 下面分别讨论d=2、3、6的情况得到: d=6是成立,此时a1=4,b1=5 a=6×4=24 b=6×5=30
• 例6、已知两个自然数的差为4,它们的最 大公约数与最小公倍数的积为252,求这两 个自然数 • 分析:差为4即a-b=4即d(a1-b1)=4 • 最大公约数与最小公倍数的积为252即 • d×da1b1=d×da1b1=252=2×2×3×3×7 • 所以d是6的约数,即d是4与6的公约数, d=1或2

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室______ 姓名_________ 学号________【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a, b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作]a, b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a, b)x[ a, b] =a x b;(2)若a>b,则a- b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168 X 4 - 24 = 28.例2•将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

( 90, 42) =6.至少能剪90X 42-( 6 X 6) =105 (块).例3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473 ;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43 X 11 , 407 = 37 X 11,所以甲数是47,甲乙两数的乘积应为:47X 11=517 或1X477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2, 3, 4, 5, 6, 7的最小公倍数加上 1. [2, 3, 4, 5, 6, 7] =420, 最小数是:420+1=421。

五年级数学最大公因数和最小公倍数知识点(32份)

五年级数学最大公因数和最小公倍数知识点(32份)

第三单元最大公因数和最小公倍数知识点:一、公倍数:2×4=8,8既是2的倍数,也是4的倍数,那么就称8是2和4的公倍数。

2和4的公倍数不止一个,还有4、12、16、20……,其中最小的那个叫做2和4的最小公倍数。

(两个数的公倍数的个数是无限的)二、公因数:2既是8的因数,也是12的因数,那么就称2是8和12的公因数。

8和12的公因数不止一个,还有1、4,其中最大的那个就叫做8和12的最大公因数。

(两个数的公因数的个数是有限的)例如:求24和36的公因数和最大公因数24的因数:1、2、3、4、6、12、2436的因数: 1、2、3、4、6、9、12、18、3624和36的公因数:1、2、3、4、6、1224和36的最大公因数:12【练习】1.写出下面每组数的最大公因数。

3和5 () 4和8 () 1和13 ()13和26 () 4和9 () 17和51 ()21和36 () 22和55 ()2.写出下面每组数的最小公倍数。

3和5 () 4和8 () 1和13 ()13和26 () 22和55 () 21和36 ()4和9 () 17和51 () 30和45 ()三、最小公倍数与最大公因数的求法:1.用大数除以小数,若能整除,最小公倍数就是大的那个,最大公因数就是小的那个。

2.若不能整除,再看两数是否互质,若互质,最小公倍数是两数相乘,最大公因数是1。

3.若不互质,运用短除法计算。

2 ∣24 36 将两个数同时除以相同的质因数,所得结果2 |12 18 对齐写在相应的数字下面,直到不能分解为止3 |6 9 最大公因数:2×2×3=122 3 最小公倍数:2×2×3×2×3=72四、性质一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最小的因数是1,最大的因数是它本身。

一个数因数的个数是有限的。

2的倍数的特征是:位上的数是2、4、6、8或0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北外启航五年级春季班数学
第四讲最大公因数和最小公倍数
教学目标:
1.熟练掌握求最大公因数及最小公倍数的方法。

2.能运用最大公因数和最小公倍数的知识正确解答有关的问题。

知识点拨:
1.公因数和最大公因数
几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。

我们可以把自然数a、b的最大公因数记作(a、b)。

求几个数的的最大公因数可以用列举法、分解质因数法和短除法等方法。

2.公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

我们可以把自然数a、b的最小公倍数记作〔a、b〕。

3.互质数
如果两个数的最大公因数是1,那么这两个数叫做互质数。

当(a、b)=1时,〔a、b〕=a×b。

两个数的最大公因数和最小公倍数有着下列关系:
最大公因数×最小公倍数=两数的积即(a、b)×〔a、b〕= a×b
经典例题:
例1.求下面各组数的最大公因数和最小公倍数。

15和12 90和45 42和70 39和65
例2.一块长方体木料,长72厘米,宽60厘米,高36厘米,请你把它锯成同样大小的正方体木块,且木块的体积要最大,木料又不能剩。

算一算可以锯成几块?
例3. 用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?
例4. 两个数的最大公因数是15,最小公倍数是90,求这两个数的和是多少?
例5. 三位朋友每人隔不同的天数到图书馆去看书,甲3天去一次,乙4天去一次,丙5天去一次。

一个星期一,他们三人在图书馆相遇,至少再过多少天他们又在图书馆相遇?
例6.有一个自然数,被10除余7,被7除余4,被4除余1.这个自然数最小是多少?
巩固练习:
1.两个数的最大公因数是9,最小公倍数是90,求这两个数分别是多少?
2. 1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。

当这三种路线的车同时发车后,至少要经过多少分钟这三种路线的车再次同时发车?
3. 将长、宽、高分别为6㎝、4㎝、8㎝的长方体积木,叠成最小的正方体,最少要积木多少块?
4. 教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工。

问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?
5. 一张长方形的纸,长为96厘米,宽为60厘米,把它裁成同样大小且边长为整厘米数的正方形而无剩余,问至少可以裁多少张?
6. 有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?
7. 加工机器零件,要经过三道工序。

第一道工序每个工人每小时完成3个,第二道工序每个工人每小时完成12个,第三道工序每个工人每小时完成5个,要使生产顺利进行,又不浪费人力、时间,三道工序至少各分配几人?
8. 有一批书大约300到400本。

包成每包12本,剩下11本;每包18本,缺1本;每包15本,就有7包,每包各多2本,这批书有多少本?
9.从甲地到乙地原来每隔45米栽一根电线杆,连同两端共有53根电线杆,现在改为每隔60米栽一根电线杆。

除两端的两根不需移动,中间还有多少根不需移动?
10.大雪后的一天,亮亮和爸爸从同一点出发沿同一个方向分别用脚步测量一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。

问:这个花圃的周长是多少米?。

相关文档
最新文档