五年级奥数:最大公约数和最小公倍数讲解2013

合集下载

奥数最大公因数、最小公倍数讲义及答案

奥数最大公因数、最小公倍数讲义及答案

数的整除(3)最大公因数、最小公倍数教室姓名学号【知识要点】1、几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

自然数a、b的最大公因数记作(a,b)。

2、几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个叫做这几个数的最小公倍数。

自然数a、b的最小公倍数记作[a,b]。

3、两个自然数的最大公因数和最小公倍数的性质:(1)(a,b)×[a,b]=a×b;(2)若a>b,则a-b与b的最大公因数就等于a与b的最大公因数。

(3)a+b与b的最大公因数,等于a与b的最大公因数。

【典型例题】例1.甲数是24,甲、乙两数的最小公倍数是168,最大公因数是4,求乙数。

解:由性质(1)得到乙数=168×4÷24=28.例2.将长为90厘米,宽为42厘米的长方形铁皮剪成边长是整厘米数,面积相等的正方形铁皮,恰无剩余,问至少剪成多少块?解:把长方形铁皮剪成边长是整厘米数,面积相等的正方形,则正方形的边长应是长方形的长和宽的公因数,又要求所剪正方形铁片块数最少,因此正方形边长是长方形长与宽的最大公因数。

(90,42)=6.至少能剪90×42÷(6×6)=105(块).例 3.马鹏和李虎计算甲、乙两个自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407,那么甲、乙两数的乘积应是多少?解:473与407的最大公因数是11,而11是质数,所以乙数是11,又473=43×11,407=37×11,所以甲数是47,甲乙两数的乘积应为:47×11=517或1×477=477.例4.有一种自然数,它加上1是2的倍数,加上2是3的倍数,加上3是4的倍数,加上4是5的倍数,加上5是6的倍数,加上6是7的倍数,则这种自然数中除1以外,最小数是多少?解:根据已知,若这个数分别加上1、2、3、4、5、6是2、3、4、5、6、7的倍数,求这个数最小是多少,即这个数是2,3,4,5,6,7的最小公倍数加上1.[2,3,4,5,6,7]=420,最小数是:420+1=421。

最大公约数与最小公倍数的计算

最大公约数与最小公倍数的计算

最大公约数与最小公倍数的计算最大公约数与最小公倍数是数学中常见的概念,用于计算两个或多个数之间的关系。

在本文中,我们将详细介绍最大公约数和最小公倍数的概念、计算方法以及它们在实际问题中的应用。

一、最大公约数的计算最大公约数(Greatest Common Divisor,简称GCD)指的是两个或多个数中能够同时整除的最大正整数。

计算最大公约数有多种方法,包括质因数分解法、辗转相除法等。

1. 质因数分解法质因数分解法是一种常用的计算最大公约数的方法。

具体步骤如下:(1)将两个数分别进行质因数分解;(2)找出两个数中共有的质因数,并将这些质因数相乘得到最大公约数。

举个例子,计算24和36的最大公约数:首先,将24和36分别进行质因数分解:24 = 2 * 2 * 2 * 336 = 2 * 2 * 3 * 3然后,找出两个数中共有的质因数,即2和3,并将它们相乘得到最大公约数:最大公约数 = 2 * 2 * 3 = 12因此,24和36的最大公约数是12。

2. 辗转相除法辗转相除法是另一种常用的计算最大公约数的方法。

具体步骤如下:(1)用较大的数除以较小的数,得到余数;(2)将较小的数除以余数,再得到余数;(3)重复以上步骤,直到余数为0。

此时,除数即为最大公约数。

举个例子,计算30和45的最大公约数:首先,用较大的数45除以较小的数30,得到余数15;然后,用30除以15,得到余数0。

因此,30和45的最大公约数是15。

二、最小公倍数的计算最小公倍数(Least Common Multiple,简称LCM)指的是两个或多个数中能够整除所有数的最小正整数。

计算最小公倍数同样有多种方法,包括质因数分解法、公式法等。

1. 质因数分解法质因数分解法同样适用于计算最小公倍数。

具体步骤如下:(1)将两个数分别进行质因数分解;(2)将两个数分解后的质因数相乘,得到最小公倍数。

继续以24和36为例,计算它们的最小公倍数:首先,将24和36进行质因数分解:24 = 2 * 2 * 2 * 336 = 2 * 2 * 3 * 3然后,将两个数分解后的质因数相乘,得到最小公倍数:最小公倍数 = 2 * 2 * 2 * 3 * 3 = 72因此,24和36的最小公倍数是72。

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。

例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

五年级最大公约数与最小公倍数应用

五年级最大公约数与最小公倍数应用

最大公约数与最小公倍数应用(一)一、知识要点:1、性质1:如果a、b两数的最大公约数为d,则a=md,b=nd,并且(m,n)=1。

例如:(24,54)=6,24=4×6,54=9×6,(4,9)=1。

2、性质2:两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积。

a与b的最小公倍数[a,b]是a与b的所有倍数的最大公约数,并且a×b=[a,b]×(a,b)。

例如:(18,12)= ,[18,12]= (18,12)×[18,12]=3、两个数的公约数一定是这两个数的最大公约数的约数。

3、辗转相除法二、热点考题:例1 两个自然数的最大公约数是6,最小公倍数是72。

已知其中一个自然数是18,求另一个自然数。

(运用性质2)练一练:甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数。

例2 两个自然数的最大公约数是7,最小公倍数是210。

这两个自然数的和是77,求这两个自然数。

分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。

这两个自然数的和是11,求这两个自然数。

”例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。

分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。

再由[a,b,c]=120知,a只能是60或120。

[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。

练一练:已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?例4已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。

例5 已知两个自然数的积为240,最小公倍数为60,求这两个数。

习题四1.已知某数与24的最大公约数为4,最小公倍数为168,求此数。

小学奥数-最大公约数与最小公倍数完整

小学奥数-最大公约数与最小公倍数完整
答:三道工序至少分别需要10个、 3个、6个工人。
例5、一次会餐有三种饮料,餐后统 计,三种饮料共用了65瓶;已知,平 均每2人饮用一瓶A饮料,每3人饮用 一瓶B饮料,每4人饮用一瓶C饮料。 问参加会餐的人数是多少人?
分析:由题意知参加会餐的人数应当 是2、3、4的公倍数。试一下看看
解:∵ [2,3,4] =12 ∴参加会餐的人数应当是12 的倍数, 又∵每12人用 12÷2+12÷3+12÷4 =6+4+3=13 (个饮料瓶) 65÷13=5 ∴ 参加会餐的人数是12×5=60 (人) 答:参加会餐的人数是60人。
2 18 39
3
2 30 3 15
5
公有的质因 数的积就是 最大公约数
18= 2 × 3 ×3 (18,30)=2×3=6 30= 2 × 3 ×5
(3)短除法
例如:求18和30的最大公约数。
2 18 30 18和30的最大公约数:
39
15
(18,30)=2 × 3 =6
35
5、怎样求最小公倍数
三、最大公约数与最小公倍数的关系
例9、两个数的最大公约数是4,最小公 倍数是252,其中一个是28,另一个数 是多少?
分析:最大公约数与最小公倍数的乘积 等于这两个数的乘积 即:(a,b)× [a,b] =a×b 利用这个关系可以迅速 地解答此类问题。如果不理解这 28
应用举例(3)不同长度的拆分
例3、有三段铁丝,长度分别是120厘 米、180厘米和300厘米,现在要将它 们截成长度相等的小段,每根都不能 有剩余,每小段最长多少厘米?一共 可以截成多少段?
分析:要截成相等的小段,每段长度 应当是120、180、300的公约数;最 长,长度应当是120、180、300的最 大公约数

五年级奥数基础教程-最大公约数与最小公倍数小学

五年级奥数基础教程-最大公约数与最小公倍数小学

最大公约数与最小公倍数(一)如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。

例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

五年级奥数最大公约数和最小公倍数的比较和应用

五年级奥数最大公约数和最小公倍数的比较和应用

最大公约数和最小公倍数的比较和应用最大公约数与最小公倍数的应用比较在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。

一道应用题,到底是用最大公约数解题还是用最小公倍数解题,学生最容易混乱。

不妨试用下面这种土方法判断下,问题就会迎刃而解了。

判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。

对比例子(一)1.把一张长60厘米,宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?分析:正方形是在长方形里面剪,所以长方形是总体,正方形是部分。

题目告诉你了长方形的长与宽,告诉了总体,求的是小正方形,求部分,所以用最大公约数解题。

具体分析:由于题中求剪后无剩余,所以小正方形的边长必须是60和40的公约数。

又因为求最少剪多少块,就要求小正方形的边长最大,所以小正方形的边长一定是60和40的最大公约数。

(60,40)=20 -------这就是小正方形的边长。

(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)2.用长5CM,宽3CM的长方形硬纸片摆成一个正方形(中间无空隙),至少要用几个长方形硬纸片?分析:多个长方形摆成正方形,所以正方形是总体,长方形是部分。

题目告诉你了长方形的长与宽,即告诉了部分,求正方形,即求总体,所以用最小公倍数解题。

具体分析:由于拼摆后正好一个正方形,所以正方形的边长必须是长方形的长与宽的公倍数,又因为要用最少的长方形来摆,所以正方形的边长一定是最小的公倍数。

〔5,3〕=15 CM------这就是正方形的边长(15÷5)×(15÷3)=15(个)长方形或用面积计算:(15×15)÷(5×3)=15(个)对比例子(二)1.一长方体木块,长56CM,宽40CM,高24CM,把它锯成尽可能大,且大小相同的正方体,且无剩余,能锯成多少块?分析:小正方体是从长方体中锯出来的,长方体就是总体,小正方体为部分。

最大公约数最小公倍数的概念

最大公约数最小公倍数的概念

最大公约数最小公倍数的概念在数学的世界里,有两个小家伙儿总是能让我们刮目相看,它们就是最大公约数和最小公倍数。

你知道吗?这两个词听起来可能有点儿吓人,但其实它们就像一对好朋友,常常一起出现在我们的生活中。

咱们今天就来聊聊它们,轻松愉快,让我们一起轻松搞定这两个家伙。

说到最大公约数,咱们可以把它想象成一位和善的老奶奶,总是愿意把她的好东西分享给大家。

比如说,咱们有两个数字,6和9。

它们的公约数就是可以同时被这两个数字整除的数。

要是你们都能整除,那它们就是朋友。

嗯,6的公约数有1、2、3、6,9的公约数有1、3、9。

对了,你猜它们的共同朋友是谁?没错,就是3!所以,3就是6和9的最大公约数。

这就像是两个人在一起玩耍,发现了共同的爱好,嘿,太棒了。

接着再说说最小公倍数,哦,这可是个精明的家伙!它就像是你身边那个总想让大家聚在一起的组织者。

最小公倍数是指能够被这两个数字同时整除的最小的数。

对于6和9来说,我们先列出它们的倍数。

6的倍数是6、12、18、24,而9的倍数是9、18、27。

你瞧,18是它们共同的倍数中最小的。

哇,这就像是大家一起出门聚会,最早到的那个小伙伴,大家都得等他,嘿!我们在生活中也经常遇到这两个概念。

比如说,咱们有两个班级,A班和B班,A班有24个人,B班有36个人。

如果要安排一个大联欢,想让每个班的人数都相等,最大公约数就是6。

因为6是可以整除这两个班人数的最大数。

而最小公倍数就是72,这样一来,咱们就可以安排12个A班的小朋友和6个B班的小朋友一起参与,这样才不会让他们挤在一起,场面可就乱了。

听着是不是有点儿无聊?但其实这两个家伙在生活中可重要了。

就拿做披萨来说,想让每个人都能吃到相同数量的披萨,你得用到最大公约数和最小公倍数。

就像你想做一个30块的披萨,大家想吃一样的份儿,最大公约数告诉你,分成6块是个不错的选择。

大家都有份,心情好,食欲也来啦!有时候你可能觉得数学就是那么枯燥无味,但其实它们就像一首有趣的歌,充满了旋律和节奏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档