数控机床驱动与控制标准系统

合集下载

数控系统的结构和工作原理

数控系统的结构和工作原理
FANUC 0iC FSSB伺服控制:NC上的口为 COP10A,接伺服放大器COP10B,如还有一个
伺服放大器,则再从COP10A 到 COP10B。 FANUC 0iC I/O:I/O Link NC上的口为JD1A, 接I/O单元上JD1B,如再有一个I/O单元,从上一
单元JD1A接至下一个单元JD1B。CB104— CB107为4根扁平电缆,每根50芯,通向机床面板和
机床
FSSB和I/O Link体现 FANUC 公司硬件结构思想, 主运动信息和辅助运动信息分离
四、SIEMENS(西门子)802D系统结构
一、数控系统主要部件
数控控制器 伺服(主轴)放大器、电机(反馈) I/O装置 机床
二、数控机床装配过程
1、机床厂选型购置 2、电器、机械连接 3、PLC编程(辅助功能) 4、参数确定(主运动) 5、联调
三、FANUC 0iC 系统的结构
ቤተ መጻሕፍቲ ባይዱ
FSSB 主运动信息
I/O Link 辅助运动信息

数控加工工艺系统的组成

数控加工工艺系统的组成

数控加工工艺系统的组成一、引言数控加工技术是现代制造业中不可或缺的重要组成部分,它能够实现高精度、高效率、高质量的加工过程。

数控加工工艺系统是数控加工技术的关键支撑,其包括了多个部分组成。

本文将详细介绍数控加工工艺系统的组成及其各个部分的功能。

二、数控机床数控机床是数控加工技术中最核心的设备之一,它能够实现对零件进行高精度、高效率的切削加工。

数控机床由机床本体、CNC系统和驱动系统三部分组成。

1. 机床本体机床本体是指固定在地面上的整体结构,包括了主轴箱、滑枕箱、床身等部分。

机床本体需要具备足够的刚性和稳定性,以保证在高速切削时不会发生振动和变形。

2. CNC系统CNC系统是指计算机数字控制系统,它通过对程序进行解释和执行来实现对数控机床运动轴的精确控制。

CNC系统需要具备良好的稳定性和可靠性,并且需要支持多种编程方式。

3. 驱动系统驱动系统是指将CNC系统发出的指令转化为电气信号,控制数控机床各个运动轴的运动。

驱动系统需要具备高精度、高速度和高可靠性,以保证数控机床的稳定运行。

三、刀具系统刀具系统是指数控机床上用于进行切削加工的刀具及其附件。

刀具系统包括了主轴、夹头、刀柄、切削刃等部分。

1. 主轴主轴是指数控机床上用于安装和转动刀具的部件,它需要具备足够的承载能力和旋转精度,以保证加工过程中不会发生偏差或抖动。

2. 夹头夹头是指用于固定和夹紧刀柄或工件的部件,它需要具备良好的夹紧力和稳定性,并且需要支持快速换刀功能。

3. 刀柄刀柄是指连接主轴和切削刃之间的部件,它需要具备足够的强度和稳定性,并且需要适配不同类型的主轴和夹头。

4. 切削刃切削刃是指用于进行实际切削的部件,它需要具备足够的硬度、耐磨性和切削性能,以保证加工过程中能够保持高效率和高质量。

四、工艺规划系统工艺规划系统是数控加工工艺系统中重要的辅助部分,它能够对加工过程进行优化和规划,提高加工效率和质量。

工艺规划系统包括了CAD/CAM软件、NC程序生成器等部分。

数控机床的十大数控系统

数控机床的十大数控系统

数控机床的十大数控系统
数控机床的操作和监控全部在这个数控单元中完成,它是数控机床的大脑。

今天小编就给大家介绍下数控机床的十大数控系统,大家一起来看看吧。

1、日本FANUC数控系统
日本发那科GS(FANUC)是当今世界上数控系统科研、设计、制造、销售实力最强大的企业,总人数4549人(2005年9月数字),科研设计人员1500人。

(1)高可靠性的PowerMate 0系列用于控制2轴的小型车床,取代步进电动机的伺服系统;可配画面清晰、操作方便、中文显示的
CRT/MDI,也可配性能/价格比高的DPL/MDI。

(2)普及型CNC 0-D系列0-TD用于车床,0-MD用于铣床及小型加工中心,0-GCD用于圆柱磨床,0-GSD用于平面磨床,0-PD用于冲床。

(3)全功能型的0-C系列0-TC用于通用车床、自动车床,0-MC 用于铣床、钻床、加工中心,0-GCC用于内、外圆磨床,0-GSC用于平面磨床,0-TTC用于双刀架4轴车床。

(4)高性能/价格比的0i系列整体软件功能包,高速、高精度加工,并具有网络功能。

0i-MB/MA用于加工中心和铣床,4轴4联动;0i-TB/TA用于车床,4轴2联动;0i-mateMA用于铣床,3轴3联动;0i-mateTA用于车床,2轴2联动。

(5)具有网络功能的超小型、超薄型CNC 16i/18i/21i系列控制单元与LCD集成于一体,具有网络功能,超高速串行数据通讯。

其中FSl6i-MB的插补、位置检测和伺服控制以纳米为单位。

16i最大可控8轴,6轴联动;18i最大可控6轴,4轴联动;21i最大可控4轴,4轴联。

数控技术

数控技术
Y 75 R25
O2 O3
O1
X
Z
10
rr rr rr rr r rr rr
5 5
rr ` rr r
数控机床的坐标系

直线进给和圆周进给 运动坐标系
规定直线进给运动用右手直角 笛卡尔坐标系XYZ表示,称基 本坐标系
+Y +Y +B +Z ¡ ¯ ¡ +X ¯ +X +C +A ¡ +Z +Y ¯ +X +Z +X +Y+Z
主轴控 制模块
(CPU)
(CPU)
I/O单元
(CPU)
伺服驱动单元 主轴单元
共享总线结构
RAM/EPROM EPROM
键盘 字符 发生器
一、等间距的直线逼近的节点计算

y f ( x)
x
计算简单,但由于取定步长应保证曲线曲率最大处的逼近 误差小于允许值,所以程序可能过多

二、等弦长直线逼近的节点计算
1)确定允许的弦长: 由于曲线各处的曲率不等,等弦长逼近后,最大误差必在 曲率半径最小处。 2 2
l 2 Rmin ( Rmin )

多机系统:CNC装置中有两个或两个以上的CPU,即
系统中的某些功能模块自身也带有CPU。 细分为:多主结构、分布式结构
单机或主从结构模块的功能介绍
标准PC计算机 计算机主板 系 显示卡 I/O设备 多功能卡 统 总 线 ( ) 位置控制板1

控制面板
PLC模块
机床I/O
主轴控制模板
速度控制单元1
程序编制中的数学处理

非圆曲线的节点计算

数控技术第4章计算机数控系统(1)

数控技术第4章计算机数控系统(1)


位臵控制模块
6、可编程控制器(PLC) 代替传统机床的继电器逻辑控制来实现各种开关 量的控制。 分为两类: 一类是“内装型”PLC,为实现机床的顺序控制 而专门设计制造的。 另一类是“独立型”PLC,它是在技术规范、功 能和参数上均可满足数控机床要求的独立部件。
三、多CPU结构 适合多轴控制、高进给速度、高精度的机床。 紧藕合:相同的操作系统 松藕合:多重操作系统
控制各类轴运动的功能,用能控制的轴数和能同时控制 的轴数来衡量。

准备功能:G指令功能,指定机床的运动方式。 插补功能:包括软件粗插补和硬件精插补。 进给功能:F指令功能。
切削进给速度(mm/min) 同步进给速度(mm/r) 快速进给速度 进给倍率




主轴功能: 指令主轴转速 S指令功能,指定主轴转速(r/min, mm/min)。 转速编码,恒切削速度切削,主轴定向准停 辅助功能: M指令功能,指定主轴的起停转向(M03、M04)、冷却 泵的通和断、刀库的起停等。 刀具功能:T指令,选择刀具。 字符和图形显示功能: 显示程序、参数、补偿量,坐标位臵、故障信息等。 自诊断功能: 故障的诊断,查明故障类型及部位。
4、进给速度处理 编程指令给出的刀具移动速度是在各坐标合成方 向上的速度,进给速度处 理要根据合成速度计算 出各坐标方向的分速度。 此外,还要对机床允许的最低速度和最高速度的 限制进行判别处理,以及用软件对进给速度进行 自动加减速处理。
5、插补计算 插补就是通过插补程序在一条已知曲线的起点和 终点之间进行“数据点的密化”工作。
三. CNC系统的工作过程

基本过程: CNC装臵的工作过程是在硬件的支持下,执行软 件的过程。 通过输入设备输入机床加工零件所需的各种数据 信息,经过译码和运算处理(包括刀补、进给速 度处理、插补),将每个坐标轴的移动分量送到 其相应的驱动电路,经过转换、放大,驱动伺服 电动机,带动坐标轴运动,同时进行实时位臵反 馈控制,使每个坐标轴都能精确移动到指令所要 求的位臵。

数控机床主轴驱动与控制

数控机床主轴驱动与控制
(5)伺服主轴驱动系统 伺服主轴驱动系统具有响应快、速度高、过载能力强的
特点,还可以实现定向和进给功能,当然价格也是最高的, 通常是同功率变频器主轴驱动系统的2--3倍以上。
伺服主轴驱动系统主要应用于加工中心上,用以满足系 统自动换刀、刚性攻丝、主轴C轴进给功能等对主轴位置 控制性能要求很高的加工。
6.2.3主轴分段无级调速
6.2主轴驱动与控制(Spindle Drive and Control)
图6.3所示为西 门子802C数控系 统的变频调速控 制连接图。主轴 电机的正反转通 过继电器KA2和 KA3控制,转速 大小通过X7口模 拟电压值大小控 制。
6.2主轴驱动与控制(Spindle Drive and Control)
6.1 概述
1.主轴驱动系统的功能
主轴驱动系统通过控制主轴电机的旋转方向和转速, 从而调节主轴上安装的刀具或工件的切削力矩和切削速度, 配合进给运动,加工出理想的零件。因此,主轴驱动的主 要功能是为各类工件的加工提供所需的切削功率。
此外,当数控机床具有螺纹加工、恒线速加工以及准 停要求(比如加工中心换刀)时,对主轴也提出了相应的 位置控制要求,所以此类数控机床还具有主轴与进给联动 功能和准停控制功能。
6.1 概述
(3)DANFOSS(丹佛斯)公司系列变频器 该公司目前应用于数控机床上的变频器系列常用的有:
VLT2800,可并列式安装方式,具有宽范围配接电机功率: 0.37KW-7.5KW 200V/400;VLT5000,可在整个转速范围内进行 精确的滑差补偿,并在3ms内完成。在使用串行通讯时,VLT 5000对每条指令的响应时间为0.1ms,可使用任何标准电机与VLT 5000匹配。
对于中档数控机床而言主要采用这种方案。其主轴传动仅采用两 挡变速甚至仅一挡即可实现100—200 r/min左右时车、铣的重力切 削。一些有定向功能的还可以应用于要求精镗加工的数控镗铣床。 但若应用在加工中心上,还不很理想,必须采用其他辅助机构完成 定向换刀的功能,而且也不能达到刚性攻丝的要求。

数控技术标准

数控技术标准

数控技术标准
数控技术标准涉及多个方面,包括机床结构、加工工具、控制系统和
安全防护等。

以下是一些常见的数控技术标准:
1. 机床结构:数控机床的结构应满足刚性好、稳定性高、能够保证加
工精度的要求。

同时,机床应具有可靠性强、使用寿命长、加工范围广、操作方便、易于维护和保养的特点。

2. 加工工具:数控机床的加工工具应满足刀具刚性好、能够承受高速
旋转和大力矩的要求。

切削刃质量高,能够保证高精度加工。

刀柄精
度高,能够保证刀具的精确定位。

3. 控制系统:数控机床的控制系统应满足控制精度高、响应速度快、
具备自我检测和诊断功能的要求。

同时,控制系统还应具备通信功能,能够与其他设备实现数据交换和联网操作。

4. 安全防护:数控机床的安全防护应满足设备符合国家安全标准和规
定的要求。

设备应具备自动报警和停机保护功能,能够及时发现和解
决安全问题。

数控机床技术

数控机床技术
8
概述
机床侧操作 MDI/CRT
机床电气控制柜
12 3
4 机床侧
机床操作 面板
机床侧行程开关、 接近开关、按钮、 液 位 、压 力 等 开 关
机 床 侧 液 压 、气 动
10
系 统 、冷 却 泵 、润
9
滑泵电动机等
8
7
6
5
图 1-2 数控机床电气控制柜的示意图
1-熔断器及断路器 2-开关电源 3-主轴及进给驱动装置 4-CNC 装置 5-接地排
坐标轴进给
电源
速度 主轴驱动
机床
坐标轴进 给电动机
位置测量 传感器激励 位置指示 电源
电源
主轴驱动 电动机
操作面板
Ⅳ 开 /关 指 令 信号
总电源
保护接地线
机床控制设备 控制装置
电源控制 (变压器、 保护装置 等)
限位开关
机电器件 (电磁铁 离合器等)
辅助功能(齿 轮箱、回转刀架、 换刀装置等)
辅助电动机
5
概述
(二)数控装置
数控装置是数控系统的核心。现代的数控装置普遍采用 通用计算机作为数控装置的主要硬件,包括微型机系统的基 本组成部分,CPU、存储器、局部总线以及输入输出接口等; 软件部分就是我们所说的数控系统软件。数控装置的基本功 能是,读入零件加工程序,根据加工程序所指定零件形状, 计算出刀具中心的移动轨迹,并按照程序指定的进给速度, 求出每个微小的时间段(插补周期)内刀具应该移动的距离, 在每个时间段结束前,把下一个时间段内刀具应该移动的距 离送给伺服单元。
6
概述
(三)伺服系统 伺服系统是数控机床的执行结构,是数控系统和机床本
体之间的电气联系环节。主要由伺服电动机、驱动控制系统 和位置检测与反馈装置等组成。伺服电动机是系统的执行元 件,驱动控制系统则是伺服电动机的动力源。数控系统发出 的指令信号与位置反馈信号比较后作为位移指令,再经过驱 动控制系统的功率放大后,驱动电动机运转,通过机械传动 装置拖动工作台或刀架运动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章数控机床的驱动与控制系统第一节位移、速度、位置传感器数控机床若按伺服系统有无检测装置进行分类,可分为开环系统和闭环(或半环)系统。

也就是说检测装置是闭环(半闭环)系统的重要部件之一,它的作用是测量工作实际位移并反馈送至数控装置,使工作台按规定的路径精确移动。

因此对于闭环系统来说,检测装置决定了它的定位精度和加工精度。

数控机床对检测装置的主要要求为:(1)工作可靠,抗干扰性强;(2)使用维护方便,适应机床的工作环境;(3)满足精度和速度的要求;(4)成本低。

通常,数控装置要求位置检测的分辨率为0.001~0.0lmm;测量精度为±0.002~±0.02mm/m,能满足数控机床以1~l0m/min的最大速度移动.位置检测装置的分类列表于4-1中。

本章仅就其中常用的检测装置(旋转变压器感应同步器光栅、磁栅、编码盘)的结构和原理予以讲述。

旋转变压器是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。

工作原理当转子绕组的磁轴与定子绕组的磁轴自垂直位置转动一角度θ时,绕组中产生的感应电势应为E1=nV1sinθ =nV m sinωt sinθ式中n——变压比;V1——定子的输入电压;V m——定子最大瞬时电压。

当转子转到两磁轴平行时(即θ=90o),转子绕组中感应电势最大,即E1=nV m sinωt旋转变压器的应用V3=nV m sinωt sinθ1 + nV m cosωt cosθ1=nV m cos(ωt –θ1)✧感应同步器感应同步器是一种电磁式位置检测元件,按其结构特点一般可分为直线式和旋转式两种。

直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。

前者用于直线位移的测量,后者用于角度位移的测量。

它们的工作原理都与旋转变压器相似。

感应同步器具有检测精度高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于高精度的数控机床。

本节主要以直线式感应同步器为例,对其结构特点和工作原理进行讲述。

1. 感应同步器的结构及分类❑ 结构❑ 分类2. 感应同步器的工作原理.感应同步器是利用励磁绕组与感应绕组间发生相对位移时,由于电磁耦合的变化,感应绕组中的感应电压随位移的变化而变化,借以进行位移量的检测。

感应同步器滑尺上的绕组是励磁绕组,定尺上的绕组是感应绕组。

✧ 光栅在高精度的数控机床上,目前大量使用光栅作为检测元件。

光栅与旋转变压器、感应同步器不同,它是一种将机械位移或模拟量转变为数字脉冲的测量装置。

常见的光栅从形状上可分为圆光栅和直线光栅两大类。

圆光栅用于测量转角位移;直线光栅用于检测直线位移。

光栅的检测精度较高,一般可达几微米。

本节主要以直线光栅为例讲述其构成和工作原理。

光栅检测装置的构成光栅检测装置是利用光的透射、衍射现象制成的光电检测元件。

它主要由光源、长光栅、短光栅和光电元件等组成 工作原理常见光栅的工作原理都是基于物理上的莫尔条纹形成原理。

莫尔条纹的形成原因对粗光栅来说,主要是挡光积分效应;对细光栅来说,则是光线通过线纹衍射后,发生干涉的结果✧ 脉冲编码器脉冲编码器又称码盘,是一种回转式数字测量元件,通常装在被检测轴上,随被测轴一起转动,可将被测轴的角位移转换为增量脉冲形式或绝对式的代码形式。

根据内部结构和检测方式码盘可分为接触式、光电式和电磁式3种。

其中,光电码盘在数控机床上应用较多,而由霍尔效应构成的电磁码盘则可用作速度检测元件。

另外,它还可分为绝对式和增量式两种。

1. 增量脉冲编码器结构及工作原理2. 绝对式编码器❑ 结构和工作原理码盘基片上有多圈码道,且每码道的刻线数相等;B Z 图4-6 光栅的构成对应每圈都有光电传感器;输出信号的路数与码盘圈数成正比; 检测信号按某种规律编码输出,故可测得被测轴的周向绝对位置。

❑ 绝对编码盘的编码方式及特点二进制编码:✓ 特点:编码循序与位置循序相一致,但可能产生非单值性误差。

✓ 误差分析:3. 光电编码器的特点❑ 非接触测量,无接触磨损,码盘寿命长,精度保证性好; ❑ 允许测量转速高,精度较高;。

❑ 光电转换,抗干扰能力强;❑ 体积小,便于安装,适合于机床运行环境; ❑ 结构复杂,价格高,光源寿命短;❑ 码盘基片为玻璃,抗冲击和抗震动能力差。

第二节 进给伺服驱动系统一. 概述1. 进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制和驱动装置。

2. 驱动电机是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用的电机有:❑ 步进电机 ❑ 直流伺服电机 ❑ 交流伺服电机 ❑ 直线电机。

3 2 1 03.速度单元是上述驱动电机及其控制和驱动装置,通常驱动电机与速度控制单元是相互配套供应的,其性能参数都是进行了相互匹配,这样才能获得高性能的系统指标。

4.速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节运算(目的是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其变换成电机的驱动电量,使驱动电机按要求运行。

简言之:调节、变换、功放。

5.进给驱动系统的特点(与主运动(主轴)系统比较):❑功率相对较小;❑控制精度要求高;❑控制性能要求高,尤其是动态性能。

二.步进电机及其驱动装置步进电机流行于70年代,该系统结构简单、控制容易、维修方面,且控制为全数字化。

随着计算机技术的发展,除功率驱动电路之外,其它部分均可由软件实现,从而进一步简化结构。

因此,这类系统目前仍有相当的市场。

目前步进电机仅用于小容量、低速、精度要不高的场合,如经济型数控;打印机、绘图机等计算机的外部设备。

三.直流伺服电机及驱动直流电机的工作原理是建立在电磁力定律基础上的,电磁力的大小正比于电机中的气隙磁场,直流电机的励磁绕组所建立的磁场是电机的主磁场,按对励磁绕组的励磁方式不同,直流电机可分为:他激式、并激式、串激式、复激式、永磁式。

20世纪80~90年代中期,永磁式直流伺服电机在NC机床中广泛采用。

直流伺服电机的特点过载倍数大,时间长;具有大的转矩/惯量比,电机的加速大,响应快。

低速转矩大,惯量大,可与丝杆直接相联,省去了齿轮等传动机构。

可提高了机床的加工精度。

调速范围大,与高性能的速度控制单元组成速度控制系统时,调速范围超过1∶2000。

带有高精度的检测元件(包括速度和转子位置检测元件);电机允许温度可达150°~180℃,由于转子温度高,它可通过轴传到机械上去,这会影响机床的精度由于转子惯性较大,因此电源装置的容量以及机械传动件等的刚度都需相应增加。

电刷、维护不便四.交流伺服电机及驱动由于直流伺服电机具有优良的调速性能,80年代初至90年代中,在要求调速性能较高的场合,直流伺服电机调速系统的应用一直占据主导地位。

但其却存在一些固有的缺点,即:❑电刷和换向器易磨损,维护麻烦❑结构复杂,制造困难,成本高而交流伺服电机则没有上述缺点。

特别是在同样体积下,交流伺服电机的输出功率比直流电机提高10%~70%,且可达到的转速比直流电机高。

因此,人们一直在寻求交流电机调速方案来取代直流电机调速的方案。

1.分类2. 交流伺服电机的速度控制单元❑ 交流伺服电机转速 n 调速的理论基础结论:交流伺服电机变频调速的关键是要获得可调频调压的交流电源 ❑ 调频调压电源的分类电压型变频器方案示意图❑ 电压型变频器工作原理磁滞式 永磁式 反应式电机的极对数转速的滑差率电源频率:::)1(60p s f s pfn -=θφφωφωcos 44.444.42I C M k f E U k f E m ==≈=⎪⎩⎪⎨⎧-⎩⎨⎧--交变频器(直接式)交电流型交变频器(间接式)直交变频器电压型可控硅整流器逆变器整流器逆变器❑ 控制波形的实现方式(电机调速的控制方式):U V WA BC单相编码器 输出信号输出输入脉冲接口RS232串型接口模拟接口结论:变频器实现变频调压的关键是逆变器控制端获得要求的控制波形(如SPWM 波)。

相位控制; 矢量变换控制; PWM 控制; 磁场控制;第三节 典型进给伺服系统(位置控制)一 . 开环进给伺服系统(Open-Loop System)不带位置测量反馈装置的系统; 驱动电机只能用步进电机;主要用于经济型数控或普通机床的数控化改造一. 开环进给伺服系统1. 步进电机开环系统设计步进电机开环系统设计要解决的主要问题:①动力计算 、②传动计算、 ③驱动电路设计或选择目的:传动计算选择合适的参数以满足脉冲当量δ和进给速度F 的要求。

图中:f —脉冲频率(HZ) α— 步距角(度) Z1、Z2 — 传动齿轮齿数 t — 螺距(mm ) 传动比选择:为了凑脉冲当量δmm ,也为了增大传递的扭矩,在步进电机与丝杆之间,要增加一对齿轮传动副,那么,传动比i=Z1/Z2与α、 δ 、t 之间有如下关系:例: δ = 0.01 t = 6 mm α= 0.75°δαtZ Z i 36021==ti :360:=δα252025208.001.0675.03603602121==⎩⎨⎧==⨯⨯===Z Z t Z Z i α❑ 进给速度F :一般步进电机: 若 δ=0.01 mm 则: 若 δ=0.001mm 则:因此,当 一定时, 与δ成正比,故我们在谈到步进电机开环系统的最高速度时,都应指明是在多大的脉冲当量δ下的否则是没有意义的。

2. 提高步进电机开环伺服系统传动精度的措施 ❑ 概述影响步进电机开环系统传动精度的因素:✓ 步进电机的步距角精度; ✓ 机械传动部件的精度;✓ 丝杆等机械传动部件、支承的传动间隙; ✓ 传动件和支承件的变形。

提高步进电机开环系统传动精度的措施✓ 适当提高系统组成环节的精度; ✓ 采取各种精度补偿措施。

❑ 传动间隙补偿❑ 在整个行程范围内测量传动机构传动间隙,取其平均值存放在数控系统中的间隙补偿单元,当进给系统反向运动时,数控系统自动将补偿值加到进给指令中,从而达到补偿目的。

❑ 螺矩误差补偿❑ 滚珠丝杆在数控机床应用广泛,虽然滚珠丝杆精度较高,但是总不可做的绝对精确,总是将其精度控制在一定的范围内的,也就是它的螺距总是存在着一定的误差的,利用计算机的运算处理能力,可以补偿滚珠丝杠的螺矩累积误差,以提高进给位移精度。

❑ 方法:首先测量出进给丝框螺距误差曲线(规律),然后可采用下列两种方法实现误差补偿:硬件补偿、软件补偿。

二. 闭环、半闭环进给伺服系统❑ 闭环进给伺服系统的实现方案分类和特征按系统的控制信号类型分: 模拟型系统、数字型系统 模拟型系统:特征:这类系统全部采用模拟元件构成;其输入(控制)信号、输出的位置、速度信号也是模拟量;速度和位置检测元也是模拟式的。

相关文档
最新文档