视频目标跟踪报告

合集下载

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。

一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。

光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。

优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。

缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。

且计算复杂耗时,需要特殊的硬件支持。

二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。

1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。

视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。

优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。

缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。

而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。

2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。

三帧双差分较两帧差分提取的运动目标位置更为准确。

三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。

视频跟踪实验报告

视频跟踪实验报告

本次实验是一种基于MATLAB的简易的从视频播放的帧图像中找出目标图像,并进行视频跟踪的实现方法。

通过对图像进行阈值处理(图像分割),再对分割后的图像求取形心,以对目标图像进行定位,并最后找到各幅帧图像的目标位置的方法,从而实现对95帧视频图像的实时跟踪。

图片存于帧图片文件夹!程序算法为Untitled6.m文件!基于MATLAB的图像跟踪算法2.1 95帧视频图像的读取由于视频是由95帧图像通过连续播放从而达到视频的效果的,所以要达到视频放映的效果,应首先对95帧图像序列进行顺序读取。

95帧图像存储在MATLAB的默认路径中,文件名为00000xxx.bmp。

要达到读取它们的目的,需要使用循环算法。

算法由一个名为read_seqim(i)的函数实现,以下是函数的源程序:function I=read_seqim(i)if nargin==0i=1;min=00000001;endname=num2str(i);if i<=9min=strcat('0000000',name,'.bmp');elseif i<=99min=strcat('000000',name,'.bmp');elsemin=strcat('00000',name,'.bmp');endI=imread(min);其中i为读取图像的序号,通过以上的函数可以很方便的实现对95帧图像中任意一帧的读取,从而为后面的处理提供方便。

2.2 图像的阈值处理(图像分割)阈值(Threshold),也叫门限。

阈值化(Thresholding),即按给定阈值进行图像的二值化处理。

阈值分割法可分为以下几种:☐简单阈值分割法;☐多阈值分割法;☐最大类间方差法;☐最佳阈值法。

许多情况,图像是由具有不同灰度级的几类区域组成。

如文字与纸张、地物与云层(航空照片)等,阈值分割是利用同一区域的具有某种共同灰度特性进行分割。

目标检测、目标跟踪报告.ppt

目标检测、目标跟踪报告.ppt

13
HFUT-TI DSP United Lab
马尔可夫随机场分割

目前基于马尔可夫随机场随机场( 目前基于马尔可夫随机场随机场(MRF)运动 ) 目标分割的方法在图像分割领域影响越来越大, 目标分割的方法在图像分割领域影响越来越大,该 方法与传统方法和阈值法相比,由于基于MRF的 方法与传统方法和阈值法相比,由于基于 的 运动目标分割方法同时考虑了图像颜色信息和空间 关联信息,因此分割效果较好。 关联信息,因此分割效果较好。
车辆检测与跟踪概述 智能交通系统: 智能交通系统: ( Intelligent Transport Systems, ITS)
12
HFUT-TI DSP United Lab
• Ohlander等提出了一种多维直方图阈值化分割方 等提出了一种多维直方图阈值化分割方
法,该方法直方图阈值法不需要先验信息,计算量 该方法直方图阈值法不需要先验信息, 较小,但缺点是单独基于颜色分割得到的区域可能 较小 但缺点是单独基于颜色分割得到的区域可能 是不完整的,而且没有利用局部空间信息, 是不完整的,而且没有利用局部空间信息,分割不 准确。 准确。
原序列 帧差法 特征匹配的方法
第 5 帧
第 50 帧
第 80 帧
7
HFUT-TI DSP United Lab
基于图像金字塔分解的全局运动估计
• 采用了 层金字塔进行多分辨率计算 而且在每层迭 采用了3层金字塔进行多分辨率计算 层金字塔进行多分辨率计算,而且在每层迭
代计算中,将基于块的外点去除算法与特征点提取 代计算中 将基于块的外点去除算法与特征点提取 算法相结合,这样既加快了算法的速度 这样既加快了算法的速度,又提高了计 算法相结合 这样既加快了算法的速度 又提高了计 算结果的准确性。 算结果的准确性。

视频运动目标跟踪算法研究的开题报告

视频运动目标跟踪算法研究的开题报告

视频运动目标跟踪算法研究的开题报告一、选题背景随着智能视频监控技术的不断发展,视频目标跟踪技术在实际应用中发挥着越来越重要的作用。

视频目标跟踪技术是指在视频图像序列中,对一个预先选定的目标进行跟踪,并给出其位置、大小、速度等参数,在实际应用场景中有着广泛的应用,如交通监视、安防监控、智能电子商务等领域。

目标跟踪算法是视频目标跟踪技术的核心,其基本思路是对视频图像序列中的目标进行分析和处理,提取出目标的特征信息,从而实现目标在视频中的跟踪。

传统的目标跟踪算法主要基于图像处理技术和机器学习方法,如背景减除、均值漂移等方法。

但是,这些方法在处理复杂场景、目标行为多变的情况下效果不尽如人意,给实际应用带来了很大的挑战。

因此,本文采用新兴的深度学习方法,结合卷积神经网络(CNN)和循环神经网络(RNN)的优势,实现视频目标跟踪算法,提高目标跟踪的准确性和鲁棒性,为实际应用场景提供更为精确、实用的解决方案。

二、研究内容本文主要研究采用深度学习技术实现视频运动目标跟踪的算法,具体内容如下:1. 对深度学习技术进行简单介绍,包括CNN和RNN的基本原理和应用场景;2. 研究CNN和RNN在视频目标跟踪中的应用方法,分析其优缺点;3. 提出一种基于CNN和RNN的视频目标跟踪算法,分析其实现过程和具体方法;4. 利用公开数据集进行实验验证,比较新算法与传统算法的效果,并分析其优缺点。

三、研究意义目标跟踪算法是视频监控和安防领域等应用的核心技术,在实际应用中有很大的前景和市场空间。

本文采用深度学习技术,结合CNN和RNN的优势,提出一种新的视频目标跟踪算法,具有更高的准确性和鲁棒性,能够更好地满足实际应用需求。

此外,本文的研究也对视频目标跟踪算法的进一步研究提供了思路和参考。

四、研究方法本研究采用实验研究法和文献调研法相结合,包括以下步骤:1. 收集与视频目标跟踪算法相关的文献和资料,了解目前研究现状和前沿;2. 对CNN和RNN的基本知识进行学习和了解,掌握其原理和应用;3. 对视频目标跟踪算法进行分析和研究,设计改进算法的具体思路和方法;4. 利用公开视频数据集进行实验验证,并对结果进行分析和比较。

视频目标追踪算法及应用场景解析

视频目标追踪算法及应用场景解析

视频目标追踪算法及应用场景解析在当今数字时代,无人机、监控系统、自动驾驶等技术的迅猛发展,使得视频目标追踪成为一个备受关注的话题。

视频目标追踪算法具有广泛的应用场景,可以用于运动分析、智能监控、人机交互等方面。

本文将对视频目标追踪算法及其应用场景进行深入解析。

视频目标追踪是指从连续的视频序列中,准确地跟踪特定目标并提取其运动信息的一项技术。

其主要目标是在视频中对感兴趣的目标进行连续、准确、鲁棒的跟踪。

视频目标追踪具有许多不同的算法,下面将介绍其中几种主要的算法。

首先是基于颜色特征的视频目标追踪算法。

这种算法通过分析目标的颜色信息,将目标与周围背景进行区分,从而实现目标的追踪。

该算法比较简单,但对于光照变化、目标形状变化等情况不太鲁棒。

其次是基于特征点的视频目标追踪算法。

这种算法通过提取目标图像中的特征点,并跟踪这些特征点的位置变化来实现目标追踪。

该算法对于目标形状变化、旋转、尺度变化等情况有较好的适应性,但对于光照变化和目标遮挡等情况仍然比较敏感。

另一种常见的算法是基于深度学习的视频目标追踪算法。

深度学习通过构建深度神经网络模型,能够自动学习图像和视频中的特征表示。

通过将大量标注的视频数据输入深度神经网络,网络可以学习目标的外观、形状、运动等特征,从而实现目标的准确追踪。

相比传统算法,基于深度学习的视频目标追踪算法具有更高的准确性和鲁棒性。

视频目标追踪算法具有广泛的应用场景。

其中之一是运动分析。

通过对目标的运动轨迹进行分析,可以了解目标的活动范围、速度、加速度等信息。

这对于交通监控、行为认知与预测等领域具有重要意义。

视频目标追踪还可应用于智能监控系统中。

借助视频目标追踪技术,可以实时监测特定区域的目标,如行人、车辆等。

该技术可以用于安防监控、物流管理、智能交通等领域,提高监控系统的效能和准确性。

此外,视频目标追踪还在虚拟现实(VR)和增强现实(AR)领域有广泛应用。

通过追踪用户的手势、表情、头部运动等目标,可实现更自然、沉浸式的人机交互体验。

视频目标跟踪算法研究

视频目标跟踪算法研究

视频目标跟踪算法研究视频目标跟踪算法研究一、引言随着计算机视觉技术的快速发展,视频目标跟踪算法为机器学习和人工智能领域提供了重要的基础。

视频目标跟踪算法可用于实时监控、自动驾驶、智能安防等诸多应用领域,大大提升了智能系统的性能和功能。

本文旨在探讨视频目标跟踪算法的研究现状、方法和挑战。

二、视频目标跟踪算法概述视频目标跟踪是指在给定视频序列中,根据第一帧或者人为指定的初始目标位置,通过计算机视觉和机器学习技术,实现对目标在整个视频序列中的位置和状态的准确定位和追踪。

视频目标跟踪算法主要分为基于特征的方法和基于深度学习的方法两大类。

1. 基于特征的方法基于特征的方法利用目标在图像中的某些显著特征,如颜色、形状、纹理等进行目标跟踪。

这类方法的优点是计算简单,速度快,但对于目标外观的变化和光照条件的变化较为敏感。

常见的基于特征的方法有均值漂移算法、卡尔曼滤波算法等。

2. 基于深度学习的方法基于深度学习的方法利用深度神经网络对目标进行特征提取和表示,并通过监督或无监督学习的方式实现目标跟踪。

这类方法在处理目标外观变化和光照条件变化方面更具鲁棒性,但也需要大量的训练数据和计算资源支持。

常见的基于深度学习的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。

三、视频目标跟踪算法研究现状目前,视频目标跟踪算法研究主要集中在以下几个方面:1. 多目标跟踪多目标跟踪是指同时追踪视频中多个目标。

由于多目标之间存在相互遮挡、相似外观等问题,多目标跟踪是一个比较复杂的问题。

研究者们通过引入关联滤波器、目标分割等技术,提出了一系列针对多目标跟踪的算法,取得了一定的进展。

2. 长时目标跟踪长时目标跟踪是指目标在视频中间断出现和消失的情况下的跟踪。

由于目标的外观和姿态在间断期间可能发生很大变化,长时目标跟踪是一个更加困难的问题。

目前,研究者们通过引入复杂的神经网络结构和目标模型更新机制,成功研发了一些针对长时目标跟踪的算法。

目标检测目标跟踪报告

目标检测目标跟踪报告

• 利用有效片的概念,我们为每个目标建立两种模板 ,临时模板和参考模板。
• 临时模板—实时更新的模板,在无遮挡情况下跟
踪,可以解决目标外观缓慢变化的问题。
• 参考模板—能够很好的表示目标的模板,用于遮
挡情况下的跟踪。
分片跟踪
•多组实验结果:
1.可以有效的解决目标遮挡 2.在目标表现模型缓慢变化的情况下,实时更新模板 3.在背景较为简单的情况下实现目标尺度的更新
(a)实验序列1
(b)固定阈值二值化
(c)高斯模型分割
(d)自适应值 MRF分割
MRF运动目标分割结果二
(a)实验序列2
(b)固定阈值二值化
(c)高斯模型分割
(d)自适应值 MRF分割
报告内容
•1 •全局运动估计 •2 •马尔可夫随机场分割 •3 •运动目标分片跟踪 •4 •车辆检测与跟踪 •5 •图像超分辨率重
车辆检测与跟踪概述
智能交通系统: ( Intelligent Transport Systems, ITS)
车辆检测与跟踪概述
影响车辆检测和跟踪的主要因素: (1)车辆自身阴影; (2)车辆间相互遮挡或车辆被背景中物体遮
挡; (3)同车型车辆之间具有较大的相似性; (4)光线突变; (5)夜晚和雨、雪等恶烈天气等。 主要针对(1)、(2)两种情况开展研究
静态场景 目标检测相对简单,研究渐趋成熟 动态场景 相对复杂,成为当前研究领域的热点
静态场景帧差的一个例子
视频序列运动检测
• 对于动态场景,由于目标与摄像头之间存在复杂的
相对运动,运动检测富有挑战性。传统的帧差方法 已经不再适用,如何能对全局的运动进行估计和补 偿,成为问题的关键。
第一帧

视频监控中的目标检测与跟踪技术研究

视频监控中的目标检测与跟踪技术研究

视频监控中的目标检测与跟踪技术研究随着科技的不断发展,视频监控技术在安防领域广泛应用。

而视频监控系统的关键问题之一就是目标检测与跟踪技术,它对于实时获取视频信息、准确判别目标、跟踪目标运动等具有重要意义。

本文将探讨视频监控中目标检测与跟踪技术的研究进展、挑战和未来发展方向。

目标检测是视频监控系统中的核心环节,起到了识别并定位感兴趣目标的作用。

它的主要任务是从连续的图像序列中自动识别出目标。

目前,常见的目标检测算法包括基于传统图像处理方法和基于深度学习的方法。

传统的目标检测算法主要基于图像特征的提取和匹配,如Haar特征、HOG(Histogram of Oriented Gradients)特征、SURF(Speeded Up Robust Features)特征等。

这些算法在一定程度上可以满足对静态图像中目标的检测需求,但在复杂场景下的实时目标检测上表现较差。

而深度学习方法则通过神经网络的训练和学习,可以实现高效、准确的目标检测。

其中,卷积神经网络(CNN)是应用最为广泛的深度学习模型之一,如Faster R-CNN、YOLO (You Only Look Once)等。

这些方法通过将图像分割为不同的网格,并且对每个网格进行目标类别的预测和位置的回归,实现了端到端的目标检测和定位。

近年来,深度学习方法在目标检测领域取得了显著的突破,提高了检测的准确度和速度。

目标检测的难点之一是如何处理目标形状、尺寸、方向、遮挡等多样性。

针对这些问题,研究者们提出了一系列的改进算法,例如多尺度目标检测和旋转不变目标检测。

此外,针对目标类别数量较多的场景,研究者们还提出了基于区域生成网络(RPN)和注意力机制的方法,用于提高目标检测的准确度和效率。

目标检测的另一个关键问题是目标跟踪。

目标跟踪是指在连续的视频帧中追踪目标的位置和运动轨迹。

它有助于实现视频目标的实时监控和行为分析。

常见的目标跟踪算法包括基于颜色直方图、基于相关滤波器、基于深度学习的方法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业硕士研究生实践训练环节视频运动目标检测与跟踪学院:信息科学与工程学院专业:姓名:学号:授课老师:日期:2017目录1 课程设计的目的和意义 (1)1.1 课程设计的目的 (1)1.2 课程设计的意义 (1)2 系统简介及说明 (2)3 设计内容和理论依据 (2)3.1 基于Mean Shift的跟踪算法 (3)3.1.1 RGB颜色直方图 (3)3.1.2 基于颜色和纹理特征的Mean Shift跟踪算法 (3)3.2 基于颜色特征的粒子滤波跟踪算法 (4)3.2.1 贝叶斯重要性采样 (4)3.2.2 序列重要性采样 (5)3.2.3 粒子退化现象和重采样 (6)3.2.4 基本粒子滤波算法 (6)4 流程图 (7)4.1 Mean Shift跟踪算法流程图 (7)4.2 粒子滤波跟踪算法流程图 (7)5 实验结果及分析讨论 (8)5.1 基于Mean Shift的跟踪算法仿真结果 (8)5.2 基于颜色特征的粒子滤波算法仿真结果 (9)6 思考题 (10)7 课程设计总结 (10)8 参考文献 (10)1 课程设计的目的和意义1.1 课程设计的目的随着计算机技术的飞速发展、信息智能化时代的到来,安防、交通、军事等领域对于智能视频监控系统的需求量逐渐增大。

视频运动目标跟踪是计算机视觉领域的一个研究热点,它融合了人工智能、图像处理、模式识别以及计算机领域的其他先进知识和技术。

在军事视觉制导、安全监测、交通管理、医疗诊断以及气象分析等许多方面都有广泛应用。

同时,随着视频摄像机的普及化,视频跟踪有着广泛的应用前景,对城市安全起到了防范作用,并且和我们的生活息息相关。

从目前国内外研究的成果来看,对于运动目标的跟踪算法和技术主要是针对于特定环境提出的特定方案,大多数的跟踪系统不能适应于场景比较复杂且运动目标多变的场景。

并且在视频图像中目标的遮挡、光照对颜色的影响、柔性刚体的轮廓变化等将严重影响目标的检测与跟踪。

因此如何实现一个具有鲁棒性、实时性的视觉跟踪系统仍然是视觉跟踪技术的主要研究方向。

Mean Shift算法的主要优点体现在:计算简单、便于实现;对目标跟踪中出现的变形和旋转、部分遮挡等外界影响,具有较强的鲁棒性。

缺点在于:算法不能适应光线变化等外界环境的影响;当目标尺度发生变化时,算法性能受到较大的影响。

粒子滤波适用于非线性、非高斯系统,在诸如机动目标跟踪、状态监视、故障检测及计算机视觉等领域有其独到优势,并得到了广泛研究。

但粒子滤波算法本身还不够成熟,存在粒子匮乏、收敛性等问题。

因为跟踪机动目标需要对目标的运动特性有一定了解,因此,目标跟踪的难点之一在于目标模型的建立及其与跟踪方法的匹配上,这是提高跟踪性能的关键。

1.2 课程设计的意义图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。

又称影像处理。

图像处理一般指数字图像处理。

数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。

图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。

常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。

图像处理一般指数字图像处理。

虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。

随着计算机的发展,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。

数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程。

其目的是进一步巩固数字图像的基本概念、理论、分析方法和实现方法。

通过本次课程设计增强应用matlab编写熟悉图像处理的应用程序及分析问题解决实际问题的能力,同时对综合运用专业基础知识及软件设计能力也会有较大提高。

2 系统简介及说明视频跟踪的目的就是从复杂的背景中检测出跟踪目标,通过对图像序列进行处理和分析研究,从而实现对目标的准确跟踪。

目标跟踪的原理就是在每一帧的图像序列中找出目标的确切位置。

一般的跟踪方法是首先提取被跟踪目标的图像,建立一个模板,然后在下一帧图像中进行全图匹配,搜索目标图像,直到找到匹配的位置。

尽管不同的应用场合和需求对应了不同的跟踪系统,但是它们的基本原理、关键技术和核心算法大同小异。

实现目标跟踪的关键在于如何有效的分割目标、合理的提取目标特征和准确、稳定地识别目标,同时还要考虑目标跟踪算法实现的时间,保证跟踪的实时性和鲁棒性。

一般的,视频目标跟踪系统通常包括以下几个部分:视频图像采集,运动目标检测,目标跟踪以及行为理解与分析。

如图3.1所示。

图2-1 视频目标跟踪系统通过视频采集设备进行图像采集,并通过A/D转换将视频信号转换成数字图像序列。

运动目标检测是把跟踪场景中发生变化的区域检测出来,并将运动目标从背景图像中提取出来,正确的检测对目标跟踪的后期处理非常重要。

目标跟踪是指在一段序列图像中找出感兴趣的运动目标在连续帧图像中的位置序列,它是目标行为理解与分析的前提;目标行为理解与分析是指对目标模式进行分析识别,并且可以用自然语言等对其进行描述,它属于高级处理部分。

3 设计内容和理论依据运动目标跟踪领域的两个热点算法是Mean Shift算法和粒子滤波算法,本次设计是对这两种算法进行探讨。

针对基于单一颜色模型的Mean Shift跟踪算法易受复杂环境以及相似背景干扰的影响,采用一种基于颜色和纹理特征的Mean Shift跟踪算法,提高跟踪效率。

将改进的Mean Shift算法与粒子滤波算法进行比较。

3.1 基于Mean Shift 的跟踪算法 3.1.1 RGB 颜色直方图RGB 颜色直方图:在运动目标跟踪领域里,颜色直方图是一种典型的描述目标特征的手段,它应用计算和统计学规律,能够反映视频序列帧中颜色的组合结构和比例分布情况,任何一副图像都有与之唯一对应的颜色直方图。

RGB 彩色模型三维坐标系的每个坐标轴分别由R 、G 、B 三基色组成,其中坐标轴最小值为0,最大值为255。

任何一种颜色都能够在这个三维坐标系中找到自己的位置,坐标的原点(0,0,0)表示黑色,而坐标(255,255,255)表示白色。

计算图像颜色直方图的目的是为了获取颜色概率分布图像,因此需要颜色量化过程即将颜色空间划分为若干个小的颜色区间,每个区间称为直方图的一个直方格bin ,然后计算图片颜色落在每个颜色区间内的像素数量就可以得到颜色直方图。

计算直方图的方法可以简单的描述为:给定一个图像的m 区间的直方图,定义图像的像素位置为{}1,...,n i i x =和直方图{}1,...,ˆu m q =,同时给定一个表示像素*i x 的直方图索引为()*i c x 的函数{}2:1,...,c R m →,因此直方图可以用下式计算:()*1ˆnu i i q c x u δ=⎡⎤=-⎣⎦∑ (3-1) 其中将直方图区间的值量化到二维概率分布图像的离散像素范围内可以用下式计算:()1,...,255ˆˆmin ,255ˆmax u u u m p q q =⎧⎫⎛⎫⎪⎪= ⎪⎨⎬ ⎪⎪⎪⎝⎭⎩⎭ (3-2)即直方图区间的值从()0,max q ⎡⎤⎣⎦量化到新的范围[0,255]内。

3.1.2 基于颜色和纹理特征的Mean Shift 跟踪算法颜色是一种有效的视觉特征,它对目标的旋转、物体的遮挡及非刚体变换都比较鲁棒,但是它容易受到光照变化及相似背景颜色的干扰。

因此基于单一特征的跟踪算法很难适应环境的变化,而多特征联合起来可以有效的互补克服单一线索的缺陷。

本文采用基于颜色和纹理特征的Mean Shift 跟踪算法,在对运动目标进行颜色特征匹配之后,进一步进行LBP 纹理统计特征匹配,有效的提高了匹配效率,避免基于单一颜色特征的Mean Shift 跟踪算法易受到光照变化及相似背景颜色干扰的缺点。

用于跟踪的Mean Shift 算法是一种半自动跟踪算法.在跟踪序列的初始帧,通过人工或其他识别算法确定目标窗并构建目标模型;然后,在序列第N 帧对应位置计算候选目标模型;比较两个模型的相似度,以相似度最大化为原则移动跟踪窗,从而定位目标的真实位置。

(3-3)目标定位问题转化为最大化相似度函数)(Y ρ的问题,以前一帧的搜索窗中心0Y 为起始点,将)(Y ρ在0Y 附近Taylor 展开,取前两项。

即:因此要使得)(Y ρ向最大值迭代,只要Y 的搜索方向与梯度方向一致即可,通过求导可得到0Y 的梯度方向。

从而可以推导出Mean Shift 向量:(3-4)其中,1Y 是目标的新中心坐标;)()('x k x g -=,是函数)(x k 的影子核。

通过反复迭代,当Mean -Shift 向量g h H m ⋅,)(0Y g 的模值小于给定常量ε时,则认为完成了目标定位。

3.2 基于颜色特征的粒子滤波跟踪算法粒子滤波是蒙特卡罗方法和贝叶斯估计理论结合的产物,它通过非参数化的蒙特卡罗模拟方法从时域实现递推贝叶斯估计。

粒子滤波算法其思想是利用一系列随机抽取的样本以及样本的权重来计算状态的后验概率密度。

从而实现目标的跟踪。

粒子滤波算法通过状态-空间模型中不断演化的具有权值的粒子来估计目标状态,不用满足系统为线性、噪声高斯分布,适用于任何能用状态空间模型表示的非线性系统,但是基本的粒子滤波算法会出现粒子退化现象,使跟踪的精确性大大降低。

3.2.1 贝叶斯重要性采样在粒子滤波算法中,重要性采样是一个重要环节。

它解决的问题是在随机变量难以采样的情况下,求取随机变量x 的数学期望值。

由前面讨论可知,后验概率密度可由一组采样加权的粒子来近似,但是在实际情况中,后验概率密度是未知的,所以不能直接对后验概率密度采样获得粒子。

要解决这个问题的常见做法是对一个容易获得的建议分布)(:1:0t t z x q 进行采样,于是期望的计算可以转化为:(3-5)其中)(:0t t x w 为重要性权值,计算公式如下:02120101000)(Y H Y X g w H Y X g w X Y Y Y m h i n i ihi n i i i H g h -⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=∑∑==⋅tt t t t t t tt t t t t t t t t tt t t t t t t t dx z x q z p x w x g dx z x q z x q z p x p x z p x g dx z x q z x q z x p x g x g E :0:1:0:1:0:0:0:1:0:1:0:1:0:0:1:0:0:1:0:1:0:1:0:0:0)()()()( )()()()()()( )()()()()]([⎰⎰⎰===∑∑==+=mu u u m u u u Y p q q Y p Y 1010)(21)(21)(ρ(3-6)将)(:0t t x w 代入式(3-5)中可得:(3-7)其中,)(:1:0t t z x q E 表示根据建议分布获得的期望,因此期望()0:t E g x ⎡⎤⎣⎦可以近似表示为:()()()0:0:0:1ˆNi i t t t t i E g x g x w x ==⎡⎤⎣⎦∑ (3-8)式中,0:it x 表示从()0:1:t t q x z 中获得的独立随机样本,()0:i t t w x 表示标准化权值,即()()()0:0:0:1it t it t Nitti w x w x w x ==∑ (3-9)3.2.2 序列重要性采样为了序贯估计后验分布,建议分布的表达式重新写为:()()()0:1:0:11:10:1,1:1t t t t t t t q x z q x z q x x z ----=(3-10)假设状态变量与观测变量相互独立,且遵循一阶马尔科夫过程,则:()()()0:011tt j j j p x p x p x x -==∏(3-11)()()1:0:1tt t j j j p z x p z x ==∏(3-12)重要性权值的递推公式可以表示为:()()()()()10:10:0:11:,t t t t t t t t t t t p z x p x x w x w x q x x z ---=(3-13)上式表明,只要选择合适的建议分布获取采样粒子,就可以递推计算粒子重要性权值。

相关文档
最新文档