六年级奥数-第六讲.分数百分数指导应用题.教师版
六年级数学上册 第06单元 百分数 36.百分数与分数互相转化同步辅导及作业 (苏教版)

【精品】六年级上数学教辅(同步辅导及作业)苏教版36. 百分数与分数互相转化辅导模块一、分数化成百分数百分数就是一种特殊的分数。
分数化成百分数,所以只要把分数化成分母为100的分数,再转化成百分数。
如果不能直接化成分母为100的分数,可以先化成小数,除不尽的保留小数点后三位,再化成百分数。
【例题1】把下列分数化作百分数1 8()23()7 25()125()解:18=125100.=12.5% 23=0.6667=66.67% 725=28100=28%12 5=240100=240%二、百分数化成分数百分数转化成分数,即百分数写成分母为100的分数,再进行约分。
【例题2】把百分数化作分数2.5% ()40% ()12.5%()375% ()解:2.5% =25 100.=14040%=40 100=2512.5%=125 100.=18375%=375 100=154小结:小数、分数与百分数之间是可以互相转化的。
【例题3】把下列各数按从大到小的顺序排列。
25% 2.5% 12% 0.44 2.5 ____________________________________________解析:25%=0.25 2.5%=0.025 12%=0.12所以从大到小2.5 0.44 25% 12% 2.5%【例题4】有一个数是由2个一和8个百分之一组成的,把这个数写成小数是( ),写成分数是( ),写成百分数是( )。
解析:2个一是28个百分之一是0.08合在一起是2.08所以(2.08)(5225)(208%)三、百分数转化的方法总结:(1)小数转化为百分数,即小数点向右移动两位,加上百分号。
(2)分数转化为百分数,即分数写成分母为100的分数,再写成百分数。
(3)整数转化成百分数,整数乘以100,再加上百分号。
(4)百分数转化为小数,即去掉百分号,小数点向左移动两位。
(5)百分数转化成分数,即百分数写成分母为100的分数,再进行约分。
(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。
1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。
哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。
哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。
哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。
哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。
哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。
哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。
他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。
六年级奥数十二.分数百分数应用题.教师版

小六奥数专题十二:分数百分数应用题一、知识点概述1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”4.分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.二、解题技巧:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.三、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
六年级奥数专题讲解:分数与百分数的应用

六年级奥数专题讲解:分数与百分数的应用
六年级奥数专题讲解:分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的`大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。
最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。
常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。
有以下三种情况:A、分量发生变化,总量不变。
B、总量发生变化,但其中有的分量不变。
C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
六年级数学百分数,分数,小数,面积奥数题

六年级数学百分数,分数,小数,面积奥数题摘要:一、六年级数学百分数的概念和应用1.百分数的定义2.百分数与分数、小数的关系3.百分数的应用题二、六年级数学分数的概念和运算1.分数的定义2.分数的分类3.分数的运算方法4.分数在实际问题中的应用三、六年级数学小数的概念和运算1.小数的定义2.小数的分类3.小数的运算方法4.小数在实际问题中的应用四、六年级数学面积的概念和计算1.面积的定义2.面积的计算公式3.面积在实际问题中的应用五、六年级数学奥数题解析1.百分数、分数、小数、面积的综合应用2.奥数题解题技巧和方法正文:一、六年级数学百分数的概念和应用百分数是表示一个数是另一个数的百分之几的数,它是一个比值,可以用于表示比例、增长、降低等概念。
在实际生活中,百分数经常用于统计、分析数据,帮助我们更好地理解和掌握事物的发展变化。
例如,某班级男生占60%,女生占40%,这里的60%和40%就是百分数。
二、六年级数学分数的概念和运算分数是表示一个整体被分成若干份中的一份或几份的数。
分数分为整数分数和真分数,整数分数等于1,真分数小于1。
分数的运算包括加、减、乘、除等运算,这些运算需要遵循一定的运算规则。
在实际问题中,分数可以用于表示部分与整体的关系,帮助我们更好地理解和解决实际问题。
例如,一个蛋糕分给两个人,每个人得到蛋糕的1/2。
三、六年级数学小数的概念和运算小数是整数和分数之间的数,它可以表示为有限小数或无限循环小数。
小数分为纯小数和混小数,纯小数整数部分为零,混小数整数部分不为零。
小数的运算方法与分数相似,也需要遵循一定的运算规则。
在实际问题中,小数可以用于表示精确的数值,帮助我们更好地理解和解决实际问题。
例如,购买一件商品,价格是3.5元。
四、六年级数学面积的概念和计算面积是表示平面图形的大小,通常用平方单位来表示。
计算面积需要使用相应的面积公式,例如矩形的面积公式是长乘以宽,三角形的面积公式是底乘以高除以2。
小学六年级的奥数十二.分数百分数应用题.教师版本

小六奥数专题十二:分数百分数应用题一、知识点概括1. 剖析题目确立单位“ 1”2. 正确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,一致单位“ 1”4. 分数应用题是研究数目之间份数关系的典型应用题,一方面它是在整数应用题上的持续和深入,另一方面,它有其自己的特色和解题规律.在解这种问题时,剖析中数目之间的关系,正确找出“量”与“率”之间的对应是解题的重点.二、解题技巧: 分数应用题常常要波及到两个或两个以上的量,我们常常把此中的一个量看作是标准量.也 称为:单位“ 1”,进行对照剖析。
在几个量中,重点也是要找准单位“ 1”和对应的百分率,以及对应量三者 的关系比如:( 1)a 是 b 的几分之几,就把数 b 看作单位“ 1”.( 2)甲比乙多 1,乙比甲少几分之几?8方法一:可设乙为单位“ 1”,则甲为 1 19 ,所以乙比甲少 19 1 .8 88 8 9方法二:可设乙为 8 份,则甲为9份,所以乙比甲少1 .1 99三、如何找准分数应用题中单位“ 1”(一)、 部分数和总数在同一整体中,部分数和总数作比较关系时,部分数往常作为比较量,而总数则作为标准量,那么总数就是单位“ 1”。
比如 :我国人口约占世界人口的几分之几?——世界人口是总数, 我国人口是部分数, 世界人口就是单位 “ 1”。
解答题重点: 只需找准总数和部分数,确立单位“1”就很简单了。
(二)、 两种数目比较分数应用题中,两种数目对比的重点句特别多。
有的是“比”字句,有的则没有“比”字,而是带 有指向性特色的“占”、“是”、“相当于”。
在含有“比”字的重点句中,比后边的那个数目往常就 作为标准量,也就是单位“ 1”。
比如 :六( 2)班男生比女生多——就是以女生人数为标准(单位“ 1”),解题重点: 在此外一种没有比字的两种量对比的时候,我们往常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
六年级奥数-第六讲.分数百分数应用题.教师版--最全面总结

第六讲:分数百分数应用题例题精讲1.甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?巩固:一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?巩固:五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?2.甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?3.五年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?巩固:把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?4.光明小学有学生900人,其中女生的47与男生的23参加了课外活动小组,剩下的340人没有参加.这所小学有男、女生各多少人?巩固:二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占全班人数的34,二班少先队员占全班人数的56,求两个班各有多少人?5.盒子里有红,黄两种玻璃球,红球为黄球个数的25,如果每次取出4个红球,7个黄球,若干次后,盒子里还剩2个红球,50个黄球,那么盒子里原有________个玻璃球.巩固:甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?6.工厂生产一批产品,原计划15天完成。
实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的511多10件,结果提前4天完成了生产任务。
六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题在小学六年级的学习中,分数与百分数问题是奥数中的重要内容,也是小升初考试中经常出现的考点。
掌握这部分知识,不仅能够提高我们的数学思维能力,还能为今后的学习打下坚实的基础。
首先,我们来了解一下分数的基本概念。
分数表示把一个整体平均分成若干份,其中的一份或几份就是这个分数。
比如,把一个蛋糕平均分成 8 份,其中的 3 份就可以用分数 3/8 来表示。
百分数则是表示一个数是另一个数的百分之几的数。
例如,25%表示 25 是 100 的 25%。
在解决分数与百分数问题时,我们常常需要用到以下几种方法:一、单位“1”的运用在很多分数与百分数问题中,我们需要明确单位“1”。
单位“1”通常是我们进行比较和计算的标准。
例如:有一堆苹果,第一天吃了总数的1/5,第二天吃了剩下的1/4,还剩下 18 个苹果。
这堆苹果原来有多少个?在这个问题中,我们首先要明确总数是单位“1”。
第一天吃了总数的 1/5,那么剩下的就是总数的 1 1/5 = 4/5。
第二天吃了剩下的 1/4,也就是总数的 4/5 × 1/4 = 1/5。
所以剩下的苹果占总数的 1 1/5 1/5 =3/5,已知剩下 18 个苹果,总数就是 18 ÷ 3/5 = 30 个。
二、转化法有时候,题目中的分数或百分数所对应的单位“1”不同,这时候我们需要将它们转化为相同的单位“1”。
比如:甲班人数的 1/3 等于乙班人数的 1/4,甲班人数是乙班人数的几分之几?我们可以把乙班人数看作单位“1”,那么甲班人数的 1/3 等于乙班人数的 1/4,甲班人数就是乙班人数的 1/4 ÷ 1/3 = 3/4。
三、方程法对于一些比较复杂的分数与百分数问题,我们可以通过设未知数,列方程来解决。
例如:果园里有苹果树和梨树共 360 棵,苹果树的棵数是梨树的4/5,苹果树和梨树各有多少棵?设梨树的棵数为 x 棵,则苹果树的棵数为 4/5 x 棵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲:分数百分数应用题教学目标1.分析题目确定单位“1”2.准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1” BJ03-Y0355知识点拨:一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。
例如:水结成冰后体积增加了,冰融化成水后,体积减少了。
完善后:水结成冰后体积增加了→“水结成冰后体积比原来增加了”→原来的水是单位“1”冰融化成水后,体积减少了→“冰融化成水后,体积比原来减少了”→原来的冰是单位“1”解题关键:要结合语文知识将题目简化的文字丰富后在分析例题精讲【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【解析】方法一:把甲所带的钱视为单位“1”,由题意,乙花去16元后所剩的钱与甲所带钱的59一样多,那么8616-元钱正好是甲所带钱的519+,那么甲原来带了5(8616)(1)459-÷+=(元),乙原来带了864541-=(元).方法二:乙甲86元16元4份设甲所带的钱数为9份,则甲和乙都还剩5份,所以每份是(8616(95)5-÷+=(元),则甲原来带了5945⨯=(元),乙原来带了551641⨯+=(元).【巩固】一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
五年级男、女同学各有多少人?【解析】根据题意画出线段图,找出量率对应:题中所给的已知数量虽然没有直接的对应关系,但从中可以看出,如果女工去掉5人就和男工人数的(1-111)相对应,因此总人数也应去掉5人,相应的与男工人数的(1-111+1)相对应。
因此男工有:(152-5)÷(1-111+1)=77(名)女工有:152-77=75(名)答:男共有77名,女工有75名。
【巩固】五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?【解析】男生人数为3(23814)(1)1284-÷+=(人),女生有:3128141104⨯+=(人).【例 2】甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?【解析】这个题目的难点就在于甲乙的数目同时发生了变化,变化之后的关系是两倍还多150本,也就是说:甲的23比乙的14的两倍还多150本,如果能够正确地理解和转化这个条件,这道题也就迎刃而解了,从上图中不难看出,“甲的23比乙的14的两倍还多150本”其实也就是“甲的23比乙的12多150本”,如果同时扩大两倍,他们之间的关系就变成了“甲的43比乙多300本”,结合“甲乙的和为1100本”这个条件,这个问题就变成了一个简单的和倍问题了。
12133-=,1175%4-=,1502300⨯=(本),11242⨯=, 21(1100300)(22)60032+÷⨯+⨯=(本)…………甲的书本数目1100600500-=(本)………………………………乙的书本数目方法二:设甲原有x 本书,()111502175%11003x x ⎡⎤⎛⎫--÷÷-+= ⎪⎢⎥⎝⎭⎣⎦,解得600x =,则乙为500本。
【例 3】 五年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?【解析】 方法一:此题我们用假设法来解答.假设这一学期五年级男、女生人数都增加125,那么增加的人数应为13001225⨯=(人),这与实际增加的13人相差13121-=(人).相差1人的原因是把女生增加的共1100本同时扩大两倍120看成125计算了,即少算了原女生人数的1112025100-=,也就是说这1人正好相当于上学期女生人数的1%,可求出上学期女生的人数:111(13300)()100252025-⨯÷-=(人),男生人数为:300100200-=(人),这学年女生的人数:1100(1)10520⨯+=(人),这学年男生的人数:1200(1)20825⨯+=(人).方法二:本题可以看成男生1份+女生1份=13(人),那么男生20份+女生20份=13×20=260(人),对比分析可以看出:300—260=40(人)对应男生的25—20=5(份),所以男生有40÷5×(25+1)=208(人),女生有300+13—208=105(人)。
【巩固】 把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?【解析】 方法一:设合金含金x 克,则银有(770)x -克.依题意,列方程得:11(770)501910x x +-=,解得570x =,所以这块合金中金有570克,银有200克. 方法二:本题可以看成金1份+银1份=50(克),那么金10份+银10份=50×10=500(克),对比分析可以看出:770—500=270(克)对应金的19—10=9(份),所以金有270÷9×19=570(人),银有770—570=200(人)。
【例 4】 光明小学有学生900人,其中女生的47与男生的23参加了课外活动小组,剩下的340人没有参加.这所小学有男、女生各多少人?【解析】 (用假设法)假设男生、女生都有23的人参加了课外活动小组,那么共有29006003⨯=(人),比现在多出了()60090034040--=(人),这多出的40人即为女生的2437⎛⎫- ⎪⎝⎭,所以女生人数为244042037⎛⎫÷-= ⎪⎝⎭(人),男生人数为900420480-=(人).【巩固】 二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占全班人数的34,二班少先队员占全班人数的56,求两个班各有多少人?【解析】 本题与鸡兔同笼问题相似,根据鸡兔同笼问题的假设法,可求得一班人数为553(9071)()48664⨯-÷-=(人),那么二班人数为904842-=(人).【例 5】 盒子里有红,黄两种玻璃球,红球为黄球个数的25,如果每次取出4个红球,7个黄球,若干次后,盒子里还剩2个红球,50个黄球,那么盒子里原有________个玻璃球.【解析】 由于红球与黄球个数比为2:5,所以若每次取4个红球,10个黄球,则最后剩下的红球与黄球的个数比仍为2:5,即最后剩下2个红球,5个黄球,而实际上是每次取4个红球,7个黄球,最后剩2个红球,50个黄球,每次少取了3个黄球,最后多剩下45个黄球,所以一共取了45315÷=次,所以球的总数为(47)15250217+⨯++=个.【巩固】 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?【解析】 分别用甲参、甲未、乙参、乙未表示甲、乙班参加和未参加的人数,则:甲参+甲未=乙参+乙未,1111834349==+=+=末参末末末末末末末末甲将甲乙、乙甲代入上式,得乙甲甲乙,解得乙【例 6】(2009年第七届“希望杯”五年级一试)工厂生产一批产品,原计划15天完成。
实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的511多10件,结果提前4天完成了生产任务。
则这批产品有件。
【解析】设原计划每天生产11份,则实际每天生产5份加10件,而根据题意这批产品共有1115165⨯=份,所以实际每天生产165(154)15÷-=份,所以15份与5份加10件的和相同,所以每份就是1件,所以这批产品共有165件.或用方程来解.【例 7】有若干堆围棋子,每堆棋子数一样多,且每堆中白子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?【解析】设每堆棋子为100个有x堆棋子,那么每堆中白子为28个,黑子为72个,那走一半棋子且为黑子时,还剩白子为28x个,黑子为(72x—50)个,所以列方程为:2832%10050xx=-,解得=4x,所以有4堆。
【例 8】我从飞机的舷窗向外看去,看见了部分海岛、部分白云以及不大的一块海域,假定白云占窗口画面的一半,它遮住了岛的14,因此岛在窗口画面上只占14,问被白云遮住的那部分海洋占画面的多少?【解析】5/12.【例 9】养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【解析】方法一:把鸭看成单位“1”,那么鸡就是114,鸭比鸡少:111(11)1445-÷=(此时的单位“1”是鸡的只数).方法二:设鸭有4份,则鸡有5份,所以鸭比鸡少1 155÷=.【巩固】某校男生比女生多37,女生比男生少几分之几?【解析】方法一:男生比女生多37,则男生有310177+=,女生比男生少31037710÷=.方法二:设女生有7份,则男生有10份,所以女生比男生少3 31010÷=.【例 10】学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【解析】把总人数视为“1”,紧抓住男生人数不变进行解答.男生人数是436(1)209⨯-=人,后来阅览室的总人数是920(1)3819÷-=(名),后来有38362-=(名)女生进来.【巩固】(2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.【巩固】 有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克.【例 11】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变? 【解析】 (1)设二月份产量是1,所以元月份产量为: ()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了 (2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。