高中物理动能与动能定理专项训练100(附答案)
高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
动能定理专项训练(含解析)

动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。
高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高中物理动能与动能定理题20套(带答案)含解析

,化简为 ,结合图象可得: ,
解得: ;
第二空:由 ,解得: ;
第三空:由于弹簧弹力远大于摩擦力和重力沿斜面的分量,所以摩擦力和重力沿斜面的分量
忽略不计,根据能量守恒可得: ;
第四空:考虑摩擦力和重力沿斜面的分量,根据动能定理可得: ,
②弹簧放在挡板P和滑块之间,当弹簧为原长时,遮光板中心对准斜面上的A点;
③光电门固定于斜面上的B点,并与数字计时器相连;
④压缩弹簧,然后用销钉把滑块固定,此时遮光板中心对准斜面上的O点;
⑤用刻度尺测量A、B两点间的距离L;
⑥拔去锁定滑块的销钉,记录滑块经过光电门时数字计时器显示的时间△t;
⑦移动光电门位置,多次重复步骤④⑤⑥。
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。
高中物理动能与动能定理题20套(带答案)含解析
一、高中物理精讲专题测试动能与动能定理
【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)因为滑上传送带的速度是8m/s大于传送带的速度6m/s,物体在到达A点前速度与传送带相等,最后以 的速度冲上斜面,根据动能定理得:
得:
【点睛】
该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.
6.如图所示,一长度LAB=4.98m,倾角θ=30°的光滑斜面AB和一固定粗糙水平台BC平滑连接,水平台长度LBC=0.4m,离地面高度H=1.4m,在C处有一挡板,小物块与挡板碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶端A处静止释放质量为m="2kg"的小物块(可视为质点),忽略空气阻力,小物块与BC间的动摩擦因素μ=0.1,g取10m/s2。问:
(2)当物体滑到传送带最左端速度为零时,AB间的距离L最小,根据动能定理列式求解;
(3)物体在到达A点前速度与传送带相等,最后以6m/s的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可中,只有重力做功,机械能守恒,则得:
解得:
(2)当物体滑动到传送带最左端速度为零时,AB间的距离L最小,由动能能力得:
5.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s的速度运动,运动方向如图所示.一个质量为2kg的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s2,求:
(3)设传送带速度为 时物块能恰到F点,在F点满足
从B到F过程中由动能定理可知:
解得:
设传送带速度为 时,物块撞挡板后返回能再次上滑恰到E点,
由:
解得:
若物块在传送带上一直加速运动,由
知其到B点的最大速度
综合上述分析可知,只要传送带速度 就满足条件.
【点睛】
本题主要考查了牛顿第二定律、动能定理、圆周运动向心力公式的直接应用,此题难度较大,牵涉的运动模型较多,物体情境复杂,关键是按照运动的过程逐步分析求解.
由②式
由③式
又因 可得
如果卡车滑到故障车前就停止,由 ④
故
这意味着卡车司机在距故障车至少 处紧急刹车,事故就能够免于发生.
8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为mA=0.01kg、mB=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.
(1)设A、B在转动过程中,轻杆对A、B做的功分别为WT和 ,
根据题意有:
设A、B到达圆环最高点的动能分别为EKA、EKB
对A根据动能定理:qER﹣mAgR+WT1=EKA
对B根据动能定理:
联立解得:EKA+EKB=﹣0.04J
由此可知:A在圆环最高点时,系统动能为负值,故A不能到达圆环最高点
(2)设B转过α角时,A、B的速度大小分别为vA、vB,
n=25次
考点:动能定理、平抛运动
【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到D时平抛运动的初速度;再一个容易出现错误的是在BC段运动的路程与经过B点次数的关系,需要认真确定。根据功能关系求出在BC段运动的路程。
7.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l后停下.事故发生后,经测量,卡车刹车时与故障车距离为L,撞车后共同滑行的距离 .假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M为故障车质量m的4倍.
(1)物体第一次到达A点时速度为多大?
(2)要使物体不从传送带上滑落,传送带AB间的距离至少多大?
(3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少?
【答案】(1)8m/s(2)6.4m(3)1.8m
【解析】
【分析】
(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;
①
子弹在物块A中穿行的过程中,由能量守恒
②
由①②解得 m
(3)子弹在物块A中穿行过程中,物块A在水平桌面上的位移为s1,由动能定理:
③
子弹在物块B中穿行过程中,物块B在水平桌面上的位移为s2,由动能定理
④
由②③④解得物块B到桌边的最小距离为: ,
解得:
考点:平抛运动;动量守恒定律;能量守恒定律.
2.如图所示,粗糙水平地面与半径为R=0.4m的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量为m=1kg的小物块在水平恒力F=15N的作用下,从A点由静止开始做匀加速直线运动,当小物块运动到B点时撤去F,小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为0.5,重力加速度g取10m/s2.求:
3.如图所示,半径为 的四分之三圆周轨道固定在竖直平面内, 为圆轨道的圆心, 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面 与圆心等高.质量为 的小球从离 点高度为 处( )的 点由静止开始下落,从 点进入圆轨道,重力加速度为 ).
(1)小球能否到达 点?试通过计算说明;
(2)求小球在最高点对轨道的压力范围;
(1)小物块运动到B点时对圆轨道B点的压力大小.
(2)小物块离开D点后落到地面上的点与D点之间的距离
【答案】(1)160N(2)0.8 m
【解析】
【详解】
(1)小物块在水平面上从A运动到B过程中,根据动能定理,有:
(F-μmg)xAB= mvB2-0
在B点,以物块为研究对象,根据牛顿第二定律得:
联立解得小物块运动到B点时轨道对物块的支持力为:N=160N
(1)通过计算判断,小球A能否到达圆环的最高点C?
(2)求小球A的最大速度值.
(3)求小球A从图示位置逆时针转动的过程中,其电势能变化的最大值.
【答案】(1)A不能到达圆环最高点(2) m/s (3)0.1344J
【解析】
【分析】
【详解】
试题分析:A、B在转动过程中,分别对A、B由动能定理列方程求解速度大小,由此判断A能不能到达圆环最高点;A、B做圆周运动的半径和角速度均相同,对A、B分别由动能定理列方程联立求解最大速度;A、B从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.
高中物理动能与动能定理专项训练100(附答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg.一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面.已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m.设子弹在物块A、B中穿行时受到的阻力大小相等,g取10m/s2.(平抛过程中物块看成质点)求:
由牛顿第三定律可得,小物块运动到B点时对圆轨道B点的压力大小为:N′=N=160N
(2)因为小物块恰能通过D点,所以在D点小物块所受的重力等于向心力,即:
可得:vD=2m/s
设小物块落地点距B点之间的距离为x,下落时间为t,根据平抛运动的规律有:
x=vDt,
2R= gt2
解得:x=0.8m
则小物块离开D点后落到地面上的点与D点之间的距离
(1)求右侧圆弧的轨道半径为R;
(2)求小物块最终停下时与C点的距离;
(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.
【答案】(1) ;(2) ;(3)
【解析】
【分析】
【详解】
(1)物块被弹簧弹出,由 ,可知:
因为 ,故物块滑上传送带后先减速物块与传送带相对滑动过程中,
(1)小物块第一次与挡板碰撞前的速度大小;
(2)小物块经过B点多少次停下来,在BC上运动的总路程为多少;
(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D点,已知半球体半径r=0.75m,OD与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板?(取 )
【答案】(1)7 m/s;(2)63次24.9m(3)25次
(1)物块A和物块B离开桌面时速度的大小分别是多少;
(2)子弹在物块B中打入的深度;
(3)若使子弹在物块B中穿行时物块B未离开桌面,则物块B到桌边的最小初始距离.
【答案】(1)5m/s;10m/s;(2) (3)
【解析】
【分析】
【详解】
试题分析:(1)子弹射穿物块A后,A以速度vA沿桌面水平向右匀速运动,离开桌面后做平抛运
(1)设卡车与故障车相撞前的速度为v1两车相撞后的速度变为v2,求
(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.
【答案】(1) (2)
【解析】
(1)由碰撞过程动量守恒 则 ①
(2)设卡车刹车前速度为v0,轮胎与雪地之间的动摩擦因数为μ
两车相撞前卡车动能变化 ②
碰撞后两车共同向前滑动,动能变化 ③
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。