桥梁荷载计算
桥梁设计中的风荷载计算

桥梁设计中的风荷载计算在桥梁设计中,风荷载是一个至关重要的考虑因素。
风的力量可能对桥梁结构产生显著影响,从轻微的振动到严重的破坏都有可能。
因此,准确计算风荷载对于确保桥梁的安全性、稳定性和耐久性具有不可忽视的意义。
风荷载的本质是空气流动对桥梁结构表面产生的压力和吸力。
这种力的大小和方向受到多种因素的综合影响。
首先,风速是一个关键因素。
风速越高,风荷载通常就越大。
但风速并非唯一决定因素,风的湍流特性也起着重要作用。
湍流会导致风的速度和方向在短时间内发生不规则变化,增加了风荷载的复杂性。
桥梁的几何形状和尺寸对风荷载的计算有着直接的影响。
例如,桥梁的跨度、横截面形状、高度等都会改变风在其表面的流动模式。
较宽的桥梁可能会受到更大的风阻力,而高耸的桥梁结构则更容易受到风的弯矩作用。
在计算风荷载时,需要考虑不同的风况。
常见的风况包括平均风况和阵风。
平均风况用于评估长期作用下的风荷载,而阵风则用于考虑短期的强烈风作用。
此外,风向也是一个重要的变量。
不同的风向会导致风在桥梁结构上的作用位置和方式发生变化。
风洞试验是确定桥梁风荷载的一种重要方法。
通过在风洞中模拟实际的风环境,并将桥梁模型放置其中,可以测量风对模型的作用力。
这种试验能够提供非常精确的数据,但成本较高,且试验过程较为复杂。
数值模拟方法在近年来也得到了广泛应用。
利用计算机软件,基于流体力学原理对风在桥梁周围的流动进行模拟,可以预测风荷载。
这种方法相对成本较低,且可以快速进行多种工况的分析,但需要对模型和边界条件进行合理设置,以保证计算结果的准确性。
在实际的风荷载计算中,通常采用规范中给出的公式和系数。
这些规范是基于大量的研究和实践经验总结出来的。
例如,我国的《公路桥梁抗风设计规范》就提供了详细的计算方法和参数取值。
对于简单形状的桥梁结构,计算风荷载可能相对较为直接。
但对于复杂的桥梁,如斜拉桥、悬索桥或具有特殊外形的桥梁,需要采用更精细的计算方法和模型。
平板桥荷载计算

平板桥荷载计算
平板桥荷载计算是结构工程中的一个重要步骤,它涉及确定桥梁结构能够承受的静态和动态荷载的大小和分布。
以下是一般情况下平板桥荷载计算的一些基本步骤:
1. 确定设计车辆荷载:根据实际情况确定设计车辆的类型和荷载,例如货车、客车等,以及其标准荷载参数,如轴载、轴距等。
通常会参考国家或地区的桥梁设计规范来确定设计车辆荷载。
2. 确定行车道宽度:根据设计车辆的宽度以及行车道的数量和宽度,确定桥梁上的行车道宽度。
3. 计算车道分布系数:根据设计车辆荷载的分布情况和行车道宽度,计算车道分布系数,用于确定荷载的作用位置。
4. 计算静态荷载:根据设计车辆荷载的分布情况和车道分布系数,计算静态荷载的大小和分布。
静态荷载包括车辆轴载、车道分布系数和行车道宽度等参数的综合影响。
5. 计算动态荷载:根据设计车辆的行驶速度、路面状况等因素,计算动态荷载的大小和分布。
动态荷载包括车辆的惯性荷载和动载荷载等。
6. 确定桥梁结构的承载能力:根据桥梁结构的材料、形式和设计参数,确定其承载能力,包括受力分析、抗弯、抗剪等方面的计算。
7. 比较荷载和承载能力:将计算得到的荷载与桥梁结构的承载能力进行比较,确保桥梁结构能够满足设计要求和安全标准。
在进行平板桥荷载计算时,需要考虑静态荷载和动态荷载的综合作用,以确保桥梁结构的安全性和稳定性。
同时,还需要参考相应的国家或地区的桥梁设计规范和标准,以确保计算结果符合法律法规的要求。
桥梁风荷载计算_公规院

— 阵风风速:平均时距为1~3s 时的风速。 — 基准高度 Z 处的风速(m/s)
2005-12-1
VZ
《公路桥涵设计通用规范》中桥梁风荷载的特点
通过阵风风速(平均时距为1~3s 时的风速)计算风荷载,没有考虑 结构的动力特性以及由于结构运动引起的气弹效应,对于刚度较大的小 跨径桥梁是合适的。对于大跨径桥梁,结构在风荷载作用下将发生强烈 振动,进行风荷载计算时应细致地考虑结构的动力特性、由于结构运动 引起的气弹效应和脉动风速的空间相关性。 阵风风速仅针对横桥向和顺桥向风荷载。没有考虑竖向风荷载和扭 转力矩作用,对于大跨径桥梁具有较大的局限性。 当风荷载参与汽车荷载组合时,选用的是设计基准风速,没有限定 桥面高度处的风速(25 m/s)。这种组合方式在工程实际中可能不会发生, 尤其是跨越长江、海湾或峡谷的大跨径桥梁。
2005-12-1
《公路桥涵设计通用规范》 4.3.7 风荷载
横桥向风荷载
Fwh = k0 k1k3Wd Awh
(4.3.7-1)
k0 — 设计风速重现期换算系数
k1 — 风载阻力系数
k3 — 地形、地理条件系数
Awh — 横向迎风面积
2005-12-1
Wd =
γVd2
2g
— 设计基准风压(kN/m2 ) — 基准高度
VZ 可取为25
m/s。
2005-12-1
《公路桥梁抗风设计规范》
4.2 静阵风风速
4.2.1 静阵风风速可按下式计算:
Vg = GV VZ
(4.2.1)
式中 Vg — 静阵风风速(m/s);
GV VZ
— 静阵风系数,可按表4.2.1取值; — 基准高度 Z 处的风速(m/s) 。
桥梁支架计算依据和荷载计算

桥梁支架计算依据和荷载计算1.国家和地方规范:桥梁支架的设计计算需要遵循国家和地方的桥梁设计规范,如《公路桥梁设计通用规范》等。
这些规范对各种参数和计算方法进行了详细的规定,包括承载力、刚度、稳定性等要求。
2.结构分析原理:桥梁支架也需要进行结构力学分析,包括受力分析和变形分析。
受力分析需要考虑桥梁的静力作用和动力作用,确定桥梁各个部位的内力和应力分布。
变形分析用于确定桥梁的变形情况,确保结构的稳定性和可靠性。
3.材料性能和规定:桥梁支架的计算还需要考虑材料的性能和规定,包括钢材、混凝土、预应力材料等。
各种材料的强度和变形性能需要符合相关的标准要求,并合理选用以满足桥梁支架的安全性和可靠性。
桥梁支架的荷载计算是在以上依据的基础上进行的,主要涉及两个方面:恒载和可变荷载。
1.恒载:恒载是指桥梁常设的自重和支持结构的自重。
恒载的计算需要考虑桥梁各个部位的自重,并按规范要求进行合理分配。
恒载通常以单位长度(或单位面积)表示,如每米桥梁梁体的自重。
2.可变荷载:可变荷载是指桥梁在使用过程中承受的交通载荷和其他可变荷载。
可变荷载的计算需要考虑交通载荷的作用和荷载分布情况,通常按照规范的要求进行设计。
可变荷载分为移动荷载和停车荷载,移动荷载是指车辆在桥梁上行驶时的荷载,停车荷载是指车辆停在桥梁上时的荷载。
对于桥梁支架的荷载计算,还需要考虑其他因素,如温度荷载、风荷载等。
温度荷载是指桥梁受温度变化引起的膨胀和收缩,会引起桥梁结构的变形和应力变化。
风荷载是指桥梁受风力作用引起的侧向力和弯矩,对桥梁支架的稳定性和整体结构产生影响。
综上所述,桥梁支架的计算依据主要包括国家和地方规范、结构分析原理和材料性能和规定,而荷载计算主要包括恒载和可变荷载。
在进行桥梁支架计算时,需要以规范为基础,综合考虑各种因素,确保支架的安全性和稳定性。
施工总荷载计算公式例子

施工总荷载计算公式例子1.引言在工程领域中,施工总荷载计算是非常关键的环节。
正确地计算施工总荷载可以确保工程的安全性和稳定性,同时也有助于合理安排工程进度和资源调配。
本文将通过一个实际的例子,介绍如何使用计算公式计算施工总荷载。
2.问题描述假设我们正在设计一座跨径为20米的小桥梁,我们需要计算桥梁的施工总荷载。
桥梁的结构主要由桥面板、支座、梁柱等组成。
为了计算方便,我们将桥梁分为若干个荷载区段,并按照每个区段的特点计算荷载。
3.荷载计算公式针对不同的荷载类型,我们可以使用不同的计算公式来计算施工总荷载。
下面是几种常见的荷载类型及其计算公式:3.1桥面活载荷载桥面活载荷载是指行驶在桥面上的车辆以及行人对桥梁产生的荷载。
桥面活载荷载的计算公式如下:活载荷载=车辆荷载+行人荷载其中,车辆荷载可以根据车辆类型和标准荷载表进行查阅,行人荷载可以按照人均荷载标准进行估算。
3.2桥墩活载荷载桥墩活载荷载是指车辆行驶在桥梁上时对桥墩产生的荷载。
桥墩活载荷载的计算公式如下:墩底活载荷载=车辆荷载*桥梁跨径/柱基面积3.3桥面重力荷载桥面重力荷载是指桥面自身的重量对桥梁产生的荷载。
桥面重力荷载的计算公式如下:重力荷载=桥面自重*桥面面积4.示例计算假设我们的小桥梁的车辆荷载为10千牛,行人荷载为5千牛,桥梁跨度为20米,柱基面积为5平方米,桥面自重为15千牛/平方米,桥面面积为50平方米。
接下来,我们分别计算各个荷载类型对桥梁的总荷载:4.1计算桥面活载荷载活载荷载=10千牛+5千牛=15千牛4.2计算桥墩活载荷载墩底活载荷载=10千牛*20米/5平方米=40千牛4.3计算桥面重力荷载重力荷载=15千牛/平方米*50平方米=750千牛5.总结根据上述计算,我们得出小桥梁的施工总荷载为15千牛+40千牛+750千牛=805千牛。
这个结果将作为设计和施工过程中合理安排荷载的依据,确保桥梁的安全运行。
6.参考文献-路桥工程设计规范-计算力学。
桥梁荷载横向分布系数计算方法

桥梁荷载横向分布系数计算方法桥梁是交通系统中重要的基础设施,承载着大量的车辆和行人荷载。
桥梁荷载横向分布系数的计算对于桥梁设计和施工具有重要意义。
本文将详细介绍桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行分析和说明。
桥梁荷载是指作用在桥梁上的各种力量,包括车辆荷载、人群荷载、风荷载等。
横向分布系数是用来描述桥梁荷载在桥面横向分布的系数,其大小与桥梁的形状、结构形式等因素有关。
桥梁荷载横向分布系数的计算是桥梁设计的重要环节,也是施工过程中的关键步骤。
计算桥梁荷载横向分布系数的方法可以分为理论计算和数值模拟两种。
理论计算方法包括集中力作用下的横向分布系数计算和均布力作用下的横向分布系数计算。
数值模拟方法则是利用计算机进行模拟分析,得到更精确的横向分布系数。
根据集中荷载作用下的弯矩和剪力,计算横向分布系数。
根据车道均布荷载的弯矩和剪力,计算横向分布系数。
数值模拟方法可以利用有限元软件进行模拟分析,得到更精确的横向分布系数。
具体步骤如下:通过对模型的应力、应变等进行分析,得出横向分布系数。
下面通过一个简单的算例来说明桥梁荷载横向分布系数的计算方法。
该桥梁为简支梁结构,跨度为20米,桥面宽度为10米。
车辆荷载为50吨的重车,速度为20公里/小时,作用在桥上长度为10米。
通过集中力作用下的横向分布系数计算方法,来计算该桥梁的横向分布系数。
计算桥梁单位长度的自重为5吨/米。
然后,确定车辆荷载的大小为50吨,位置为桥面中心线偏左1米处。
根据车辆荷载作用下的弯矩和剪力,可以得出横向分布系数为67。
根据横向分布系数的定义可知,该桥梁在车辆荷载作用下的横向分布系数为67。
桥梁荷载横向分布系数的计算是桥梁设计和施工中的重要环节,对于保证桥梁的安全性和正常使用具有重要意义。
本文详细介绍了桥梁荷载横向分布系数的计算方法,包括计算原理、步骤和注意事项,并通过具体算例进行了分析和说明。
随着计算机技术和数值模拟方法的发展,未来的研究方向将更加倾向于开发更加精确、便捷的计算方法和模型,以便更好地应用于实际工程中。
新桥规(公路I 、II级、人群荷载计算)

150
y
人群荷载: 2.875 KN/M2
3-①注:请在以上 橙色框填写桥涵 计算跨径。 单位(米)
3-②注:请判断是否 是行人密集地区。 具体写法为:
是——y 否——n
1-④注:请在以下 橙色框填写桥涵 计算跨径。 单位(米)
均布荷载:
7.875 KN/M
19.6 集中荷载:
178.8
KN
车道数
车辆荷载 2-①注:桥梁结构的 局部加载、涵洞、桥台和挡土 墙土压力计算等时采用
人群荷载
公路桥梁设置人行道情况
专用人行桥梁情况=3.5KN/M2
1-②注:请在下面橘黄色空格 中写入公路等级。具体写法如 下:
高速公路——g 一级公路——1 二级公路——2 三级公路——3 四级公路——4 二级公路重载多——2d 四级公路重载少——4s
1-③注:请判断是否 是计算剪力效应。 具体写法为:
是——y 否——n
1-④注:请在以下 橙色框填写桥涵 计算跨径。 单位(米)
车道荷载
桥梁荷 载等级
2பைடு நூலகம்
:
公路——II级
n
车辆荷载
不论荷载等级是公路I级还是公路II级,都等同与 [旧规范]汽—超20级车队中只考虑55吨加重车的 情况,计算方法同旧规范。
桥梁结构的整体计算时采用车道荷载和车辆荷载的作用不叠加专用人行桥梁情况35knm2人群荷载n2150y车辆荷载不论荷载等级是公路i级还是公路ii级都等同与旧规范汽超20级车队中只考虑55吨加重车的情况计算方法同旧规范
1-①注:桥梁结构的 整体计算时采用
车道荷载
汽车荷载
桥梁 荷载
车道荷载和 车辆荷载的 作用不叠加
正常使用:
桥梁常用计算公式

桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。
在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。
下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。
在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。
-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。
2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。
常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。
常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。
4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。
常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。
5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。
6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。
其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 Mz 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Kc 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
M7高架区间下部结构计算 荷载类型
冲击力 Nz 10958.71 11895.16 12020.12 12831.61 10958.71 11895.16 12020.12 12831.61 11895.16 12020.12 12831.61 10958.71 11895.16 12020.12 12831.61 10958.71 11895.16 12020.12 12831.61 10958.71 11895.16 12020.12 12831.61 10958.71 11895.16 10958.71
距车站距离 My -4886.78 -4965.28 -5343.19 -5043.79 -4886.78 -4965.28 -5343.19 -5043.79 -4671.17 -5614.68 -6898.95 -6221.34 -7945.73 -6677.74 -6378.34 -4886.78 -4965.28 -5343.19 -5043.79 -9686.78 -9765.28 -10143.19 -9843.79 0.00 -78.50 -6283.84
872.51 494.47 -1048.90 -706.55 1405.44 2331.85 -237.69 -1165.44 -1845.28 -2186.85 1400.00 -2800.00 5484.8 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
主力
主+附
主+特
计算墩号: pm70 Px Py 组合至墩底(承台底) 恒载 1+2+4*max(9,10) 345.60 0.00 单线双孔 22+4+7+11 345.60 148.43 恒+活 双线单孔 22+5+2*8+11 345.60 155.43 双线双孔 22+6+2*7+11 345.60 200.87 恒载 22+12 345.60 173.13 单线双孔 23+12 345.60 321.56 主力+横风 双线单孔 24+12 345.60 328.56 双线双孔 25+12 345.60 374.00 单线双孔 1+2+4+7+2*max(9,10)+11+15 324.80 148.43 主力+制动 双线单孔 1+2+5+2*8+2*max(9,10)+11+14 364.80 155.43 双线双孔 1+2+6+2*7+2*max(9,10)+11+15 476.80 200.87 恒载 1+2+9+2*max(9,10)+16 443.90 0.00 单线双孔 1+2+4+7+9+2*max(9,10)+16+11 560.30 148.43 主+断轨力 双线单孔 1+2+5+2*8+9+2*max(9,10)+16+11 443.90 155.43 双线双孔 1+2+6+2*7+9+2*max(9,10)+16+11 443.90 200.87 恒载 22+17 345.60 500.00 主力+ 单线双孔 23+17 345.60 648.43 横向撞击力 双线单孔 24+17 345.60 655.43 双线双孔 25+17 345.60 700.87 恒载 22+18 1345.60 0.00 主力+ 单线双孔 23+18 1345.60 148.43 纵向撞击力 双线单孔 24+18 1345.60 155.43 双线双孔 25+18 1345.60 200.87 主力+ 无车 1+2+19 0.00 452.06 横向地震 单线双孔 1+2+4+7+20 0.00 567.38 主力+纵向地震 1+2+21 470.18 0.00
项目名称: 序号 1 2 3 4 5 主力 6 7 8 9 10 11 12 13 附加力 14 15 16 17 18 特殊荷载 19 20 21
M7高架区间下部结构计算 荷载类型 上部结构 恒载 结构自重 桥墩 承台(含承台覆土) 单线双孔 列车活载 双线单孔 双线双孔 离心力(单线双孔) 离心力(单线单孔) 其它活载 轨道伸缩力(每轨) 轨道挠曲力(每轨) 横向摇摆力(单线) 横向 风力 纵向 单线单孔 纵向 制动力 单线双孔 纵向 无缝线路断轨力 纵向(每轨) 横向 汽车撞击力 纵向 横向无车 地震力 横向有车 纵向
计算墩号: Px
pm70 Py
冲击力 Nz 7000.00 1168.50 2790.22 936.45 1061.41 1872.90
1 Mx
距车站距离 My 0.00
32 Mz
2 Kc
2153.83
-78.50 -456.41 -157.00
52.43 29.72 86.40 58.20 96.00 173.13 31.28 96.00 152.00 184.70 500.00 1000.00 452.06 514.95 470.18
1 Mx 0.00 4728.65 2705.24 3552.20 2678.10 7406.75 5383.34 6230.30 4728.65 2705.24 3552.20 0.00 4728.65 2705.24 3552.20 2400.00 7128.65 5105.24 5952.20 0.00 4728.65 2705.24 3552.20 6388.98 10494.30 0.00