第11章静电场中导体和电介质

合集下载

2、静电场中的导体和电介质

2、静电场中的导体和电介质

思考题
1. 导体静电平衡时,有什么特点? 2. 现有甲、乙二人,站在与地绝缘的泡沫板上, 甲带有正电荷,乙不带电。你只有一根导线。 (1)如何让乙也带上正电荷? (2)如何让乙带上负电荷? 3. 电极化强度矢量满足何种边界条件?
学习动物精神

11、机智应变的猴子:工作的流程有时往往是一成不变的, 新人的优势在于不了解既有的做法,而能创造出新的创意 与点子。一味 地接受工作的交付, 只能学到工作方法 的皮毛,能思考应 变的人,才会学到 方法的精髓。
垂直的端面上出现极化电荷。

对于非均匀电介质,除在电介质表面上出现极化
电荷外,在电介质内部也将产生体极化电荷。
2.5.2
电极化强度
当电介质处于极化状态时,在电介质内部任一宏观小 体积元V内分子的电矩矢量和不等于零,即Σp≠0(其中p 为分子电矩)。 为了定量地描述电介质的极化程度,引入电极化强度 矢量P,它等于介质单位体积内分子电矩的矢量和。
导体静电平衡的特点

(1)导体内部任意一点的电场强度等于零。


(2)导体表面上任一点的场强必定垂直于导体表面。
(3)导体为等势体,导体表面是等势面。 (4)电荷都分布在导体的表面上,导体内部任一小体积 元内的净电荷等于零。 (5)导体在电场中达到静电平衡时,其表面上电荷的分

布不一定是均匀的,一般地讲,表面曲率大的地方,电荷
力线只能终止(或起始)于导体表面,并与导体表面垂直,
不能穿过导体进入内部。也就是说,空腔导体内部的物体不 会受到外部电场的影响。 空腔导体使其内部不受外电场影响的性质叫静电屏蔽。 在静电防护领域,为了使对静电敏感的器件不受外界静
电场的影响,通常将敏感器件装在屏蔽袋中。

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。

(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。

导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。

定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。

拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。

测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。

库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。

所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。

所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。

以上是库仑平方反比定律验证的发展历史。

见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。

使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。

则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。

孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。

电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。

然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。

静电场中的导体与电介质

静电场中的导体与电介质
出现:极化电荷或束缚电荷,分子电矩 p=ql
在静电场中平衡时: 1.内部电场强度不为零;2.电介质表面出现极化电荷
真空中的导体和电介质
P
pi
ΔV
P0eE
01
02
实验证
电 考 真空和P 偶 虑 中电c的介o 导质sS 极 一 P,体ln矩 电 pi, 0介 S 极 2质 l, 化 P 斜 0 . 极度定面 化:义V 圆 和 强:p 2i 电 柱 S 0 ,c荷 L So 体 明 各 性 介l0 : 向 质的 s密 在 同 中电co s度
此式对其它情况仍然适 用
D
义:电位移矢量D可, 得:D Dd0ESP S
q0
此既电介质中的高斯定理:通过电场中任意闭合曲面的电位移通量, 等于该闭合曲面所包围的自由电荷的代数和。
仿照电场线,用电位移线来描述电位移在空间的分布。但两者有 区别: 电场线起始于正电荷,终止于负电荷(包括极化电荷) 电位移线只起始于自由正电荷,终止于自由负电荷
在国际单位制中,D 的单位是: 库/米2(C/m2)
对各向同性电介质,因
所以 P0 eE
D 0EP 0 ( 1 ) E
式中 ε = ε0εr 叫电介质的介电常数, εr 称电介质的相对介电常数。
引入D,避免了求极化电荷的复杂问题,可使有电介质存在时解题简化。 只要有电介质,均应先求D 再求E 等。
E E0 E E0 与E 方 向 相 反 :
E
P
E0 // n
E
0 0
0
P cos
P
n
P
e 0E
E
E0
- E
10.4
E0 -
电介
质中0 静电E场0的-基本e
E

静电场中的导体和电解质

静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0

i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

[理学]静电场中的导体

[理学]静电场中的导体

QB
4 0r 2
rA r rB
由于球壳接地有 U A 0 ,根据电势的定义,
则O点的电势为:
UO
UO UA
a E dr
0
rB 0
E1
dr
rA E rB 2
dr
a rA E3 dr
rA E rB 2
dr
rA QB dr
rB 4 r 2
QB
4 0
1 rB
1 rA
•高压设备都用金属导体壳接地做保护
•在电子仪器、或传输微弱信号的导线中都常用 金属壳或金属网作静电屏蔽。
•高压带电操作
U C
外界不影响内部
静电的应用
一、静电的特点
•带电体所带的静电电荷的电量都很小; •静电场所具有的能量也不大; •电压可能很高。
二、静电的应用
•范德格拉夫起电机 •静电除尘 •静电分离 •静电织绒 •静电喷漆 •静电消除器 •静电生物技术
B、C、D处的场强和电势又如何?
解:
(1)据静电平衡条件和高斯定理有:
s1
内球:电荷 q 均匀分布在球面; 球壳:内表面均匀分布 q ;
外表面均匀分布 2q 。
s2
D
C
BA
R3
o R1 R2
(2)由高斯定理,可算得:
E1 0
r R1
E2
q
40r 2
R1 r R2
E3 0
U R1 1r
R2 r
E1
dr
R3
R2
E R1 2
E4 dr
RR243 E23 q0rd2r
r
R3
R3
E4
dr
U2
q

静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。

在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。

导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。

从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。

(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。

)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。

可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。

充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。

对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。

1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。

大学物理第11章第二次课11(3-4)

1 q0 E ; 2 4 r
→ε,
1 q0 U 4 r
[例] 点电荷在介质场中:
讨论: D 1、 无物理意义,只是为了简化公式而引入的辅助物理量。 D线从自由正电荷出发,终止于自由负电荷。

E线
D线
2、有介质的高斯定理与真空中的高斯定理都是普遍适用的。
3、闭合面上电位移矢量 D 的通量只与面内自由电荷q 0 有关。 但 D 并不是只由 q0 产生。因为 D的通量和 D是两个 不同的概念。
则此时: P2 n21 P2 n
(4)、极化强度与体电荷密度的关系:
在介质内如取一闭合曲面S,因极化而越过dS面向外移出 闭合面S的电荷为
d q出 P d S
S
于是,通过整个闭合曲面S向外移动的极化电荷总量为:
由电荷守恒定律 :
q出= P d s
三、 电介质的极化规律
1、电介质中的场强: ( E —总场; E0 —外场; E — 极化场)
E E0 E
2、P、 关系: E
实验证明: (
P 0 e E
e — 电介质的极化率)
e r 1
若介质中各点 e 相等,则称为均匀介质 。
P = 常矢,则称为均匀极化 。
导体: 0 P
2) 真空:P 0
2、极化强度与极化电荷的关系: 在外电场作用下,电介质被极化.产生束缚电荷, , .
描述电介质极化程度的物理量是极化强度 P . 所以,束缚电荷 , 与极化强度 P 之间必有一定关系.


pe 0
ⅱ] 在外电场中,分子中的正、负电荷受到 相反方向的电场力,因正、负电荷中心 发生微小相对位移,形成电偶极矩沿外 场方向排列起来。 ⅲ] 沿电场方向的两侧面也将分别呈正、 负束缚电荷,介 质的这种极化称为 位移极化 。 注意

2.3 静电场中的导体与电介质


被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。

第章静电场中的导体和电介质PPT课件


q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 0r 2
qQ
u
r
Edr
4 0r
35
练习 已知: 两金属薄板带电分别为q1、q2 求:1 、2 、3 、4
q1
q2
1 2 3 4
1
4
q1 q2 2S
2
3
q1 两板间插入一中性金属平板,求板面的电荷密度。
1
6
q1 q2 2S
1
2
3
4
5 6
2
3
4
5
q1 q2 2S
E 0
+ +
+
+ E E0E +
加上外电场后 6
导体的静电感应过程
E 0
+ +
+
+ E E0E +
加上外电场后 7
导体的静电感应过程
E E0E
加上外电场后
E 0
+ +
+
+ + +
8
导体的静电感应过程
E E0E
加上外电场后
E 0
+ + +
+
+ + +
9
导体的静电感应过程
E E0E
U
U
q
q
q
U1 C1 ,U2 C2 , ,Un Cn
U
U1
U2
Un
q
1 C1
1 C2
1 Cn
1 U 1 1 1
C q C1 C2
Cn
45
2.电容器的并联
a U
C1 C2 C3 C4
b
q1 C1U ,q2 C2U , ,qn CnU
q q1 q2 qn C1 C2 Cn U
加上外电场后
E 0
+ + + + +
+ + +
10
导体的静电感应过程
E E0E
加上外电场后
E 0
+ + + + + +
+ + + +
11
感应电荷
导体达到静电平衡
E
E E0E
E内 E0 E 0
+ + + + +
+ E0
+ + + +
感应电荷
12
金属球放入前电场为一均匀场
E
13
柱体和圆柱面共轴构成电容器两 极,其长为L,且L>>RA-RB,
r
设园柱面上单位长度的电量。
L
l
两圆柱面间场强为 E 2 0r
电势差
RA RB
uA
uB
B
Edr
A
RB
RA
2 0r
dr
2 0
ln
RB RA
由定义
C q 2 0 L
uA uB ln RB
RA
42
3.球形电容器 已知 RA RB
电介质中的高斯定理
E dS
1
(
E
S
dS
1 ( 0
0 S1
S
S2 )
0
++
P dS P dS PS2 S2
S S2 E • dS
P
q0 q)
+S1 + +
S2 E
+ 0
S
1
0
0 S1
1
0
P dS
S
+ + + + +
0
1
1
0 q0 0
40
1.平行板电容器
q q
已知两极板面积为S、间距为 d、极板间为真空。
设A、B分别带电+q、-q
A、B间场强分布 E
电势差
0
B
qd
uA
uB
E • dl
A
Ed
0S
由定义
C q 0S
uA uB d
E
AdB
讨论
C 与 d S 0有关
S C ;d C
41
2.圆柱形电容器
AB
两半径分别为RA、RB 的导体圆
孤立导体球的电容 C=40R
单位:法拉(F)、微法拉(F)、皮法拉(pF)
1法拉 1库仑 伏特
1F 106 F 1012 pF
39
二、电容器
导体组合,使之不受 周围导体的影响
——电容器
电容器的电容:当电容器的两极板分别带有等值异号 电荷q时,电量q与两极板间相应的电 势差uA-uB的比值。
C q uA uB
pe 0 正电荷中心
47
1.无极分子的位移极化
Pe ql
+
+- +-
-q q
He
E
+- +- +- +- ++- +- +- +- ++- +- +- +- ++- +- +- +- +-
+E +-
+- +- ++- +- +-
+- +- +-
++-
+- +- +- +-
均匀介质
非均匀介质
在导体内包围空腔作 高斯面S。则:
E • dS
S
1
0
qi
S内
=0
17
3、空心导体, 腔内有带电体
腔体内表面所带的电量和腔内带电体所带的电量等量 异号,腔体外表面所带的电量由电荷守恒定律决定。
未引入q1时
q2
放入q1后
q1 q1 q2
+ q1
18
二、导体表面外侧附近的场强 尖端放电
1.电场强度与电荷面密度的关系
C
q U
C1
C2
Cn
C C1 C2 Cn
46
11—3、静电场中的电介质
一、电介质的极化
电 无极分子:分子正负电荷中心重合;
介 质
有极分子:分子正负电荷中心不重合。
甲烷分子 CH4
水分子 H2O 负电荷
+H
正负电荷 中心重合
+H C +H
O
中心
pe
+H
分子电偶极矩 pe 0
+H
+
+H
2 0 2 0 2 0 b点 1 2 3 0
2 0 2 0 2 0
1 A 2 3 B
a
E3 E2 E1
A板 1S 2S Q
1 2 3
b
电荷分布
1 0
2
3
Q S
A
E1 E2 E3 B
31
电荷分布 1 0
2
3
Q S
1 A 2 3 B
场 两板之间 E Q

0S
E

布 两板之外 E 0
11-1 静电场中的导体和电介质
一、导体的静电平衡性质
无外电场时
1
导体的静电感应过程
E 0
加上外电场后 2
导体的静电感应过程
E 0
+
E E0E
加上外电场后 3
导体的静电感应过程
E 0
+
E E0E +
加上外电场后 4
导体的静电感应过程
E 0
+
+
E E0E +
加上外电场后 5
导体的静电感应过程
A 板左侧
EI
1 20
2 20
3 20
4 20
1 0
Q
20S
两板之间
EII
1 20
2 20
3 20
4 20
1 0
Q
20S
B 板右侧
EIII
1 20
2 20
3 20
4 20
1 0
Q
20S
30
(2)将B板接地,求电荷及场强分布
接地时 4 0 a点 1 2 3 0
极化强度 P与电场 E有如下关系:
P e0E
e ---电极化率(由介质本身 性质决定的常数,是反映
介质本身性质的物理量。
均匀介质极化时,其表面上某点的极化电荷面密度,
等于该处电极化强度在外法线上的分量。
P
n
Pn
52
四. 电位移 电介质中的高斯定理
真空中的高斯定理
S
E0
dS
1
0
q 0
1 R2 2 R1
导体表面曲率较大的地方, 电荷密度也较大。
20
导体表面上的电荷分布
导体表面上的电荷分布情况,不仅与导体表面 形状有关,还和它周围存在的其他带电体有关。
静电场中的孤立带电体: 导体上电荷面密度的大小与该处表面的曲率有关。
曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
2、如果第三板接地,又如何?
1 6 0
2
3
4
5
q1 S
37
3、剪掉第三板接地线,再令第一板接地,又如何?
1 6 0
2
3
4
5
相关文档
最新文档