ch7-静电场中的导体和电介质-习题及答案

合集下载

第十章静电场中的导体与电介质版答案

第十章静电场中的导体与电介质版答案

一•选择题:B ] 1、(基训2) 一“无限大”均匀带电平面 A ,其附近放一与它平行的 有一定厚度的“无限大”平面导体板B ,如图所示.已知 A 上的电荷面密度 为+ ,则在导体板 B 的两个表面1和2上的感生电荷面密度为:i i(A) i = -,2 = + (B) i =,2 =22i i(C)i = -, i =-•(D) i =-2 = 0.22【解析】 由静电平衡平面导体板 B 内部的场强为零, 同时根据原平面导体[B]2、(基训5)两个同心的薄金属球壳,半径为 R i , R 2 (R i <RO ,若分别带上电量 q i和q 2的电荷,则两者的电势分别为 V i 和V 2 (选择无限远处为电势零点)。

现用细导线将两球壳连接起来,则它们的电势为:(A)V i (B) V 2 (C)V i+U (D) (Vi+V 2)/2【解析】原来两球壳未连起来之前,内、外球的电势分别为q i q ?4 n 0R ) 4 n 0R 2第十章静电场中的导体和电介质V 2q i 4 n0 R 2 q 24 n0R 2 用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为 均匀带电球面,因此其电势为 q i q 2 V 1 - V 24 n 0R 2 R 2的:C : 3、(基训6)半径为R 的金属球与地连接。

在与球心 0相距d =2R 处有一电荷为q 的点电荷。

如图 i6所示,设地的电势为零,则球上的感生电荷 q 为: (B) 、、(C)诗【解析】利用金属球是等势体,球体上处电势为零。

球心电势也为零。

(A) 0 • (D) q • a dq q 00 4 o R 4 o 2R板B 电量为零可以列出i S+ 2S=0q dq q4 o2R o 4 o Rq _ R q 2R q 2 \[C: 4、(基训8)两只电容器,C1 = 8 F, C2 = 2 F,分别把它们充电到1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为:(C)600 V .(B) 200V.【解析】Q Q1 Q2U' C' C1UQ"~CIC2U 6 10 3C严600V1 10 5F(D) 1000V:A] 5、(自测6)一平行板电容器充满相对介电常数为r的各向同性均匀电介质,已知介质表面极化电荷面密度为。

ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案

ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。

静电场中的导体和电介质习题解答

静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一选择题 1.半径为R 的导体球原不带电, 则导体球的电势为 () q B.羊 4 n o a 今在距球心为 a 处放一点电荷q ( a >R 。

设无限远处的电势为零, qa D . 4 n o (a R )解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷 C.4 n o (a R) q 分布在导体球表面上,且 q ( q ) 0 ,它们在球心处的电势 1 V 乩q 4 n o R点电荷q 在球心处的电势为 47^ q dq V J 据电势叠加原理,球心处的电势 4 n o aV o V Vq 。

4 n o a 所以选(A ) 2.已知厚度为d 的无限大带电导体平板, 则板外两侧的电场强度的大小为 ( 2 A. E B. E 2 o o两表面上电荷均匀分布, 电荷面密度均为 ,如图所示,d C. E 二一 D. E=—— ⑰ 2匂解:在导体平板两表面外侧取两对称平面, 做侧面垂直平板 的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为2 S ,可得E —。

0选择题2图 所以选(C ) 3.如图,一个未带电的空腔导体球壳,内半径为 量为+q 的点电荷。

() R,在腔内离球心的距离为 用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 d 处(d<R ,固定一电o 处的电势为A. C.B. 4 n o d q 1 D. (—4 n 0 d 解:球壳内表面上的感应电荷为 q _q 4n o d 4n o R 选择题3图 1R ) -q,球壳外表面上的电 (+q . j 荷为零,所以有V o 所以选(D ) 4.半径分别为 在忽略导线的影响下,A . R/r B. R 2 / r 2 C. r 2 / R 解:两球相连,当静电平衡时,两球带电量分别为 分布,且两球电势相等,取无穷远为电势零点,则 QR 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电, 两球表面的电荷面密度之比 R / r 为() B. R 2 / r 2 C. r 2 / R 2 D. r / R Q q ,因两球相距很远,所以电荷在两球上均匀 所以选(D )R Q/4 R 2r q /4 r 2「的均匀电介质,若测得导体表面附近场强为 E,则导体球面的自由电荷面密度 为() 上D S S ,即 所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为 煤油,待稳定后,煤油中的极化强度的大小应是(£ A . —E g £ £(£ 1 )匸 B . E 0£不管是否注入电介(£ 1) C. E 。

静电场中的导体和介质习题

静电场中的导体和介质习题

.该定理表明,静电场是 有势(或保守力) 场.
9.一空气平行板电容器,两极板间距为d,充电后板间电压
为U.然后将电源断开,在两板间平行地插入一厚度为d/3的 金属板,则板间电压变成U' =_2_U__/3__.
10.带有电荷q、半径为rA的金属球A,与一原先
不带电、内外半径分别为rB和rC的金属球壳B同心
静电场中的导体与电介质
一 选择题
1.一带正电荷的物体M,靠近一原不带电的金属导体N,N
的左端感生出负电荷,右端感生出正电荷.若将N的左端
接地,如图所示,则 (A)N上有负电荷入地.
M
N
(B) N上有正电荷入地.
(C) N上的电荷不动.
(D) N上所有电荷都入地. [ B ]
2.如图所示,一带负电荷的金属球,外面同心地罩一
A 点与外筒 : 间的电势差
U 'R 2E dr U R 2d r U lnR 21.5 2 V
R
lnR 2(/R 1)R r lnR 2(/R 1) R
ቤተ መጻሕፍቲ ባይዱ
四 理论推导与证明题 16.一导体A,带电荷Q1,其外包一导体壳B,带电荷Q2,且 不与导体A接触.试证在静电平衡时,B的外表面带电荷为Q1 + Q2.
4Q 1 0R 14 Q 01 R 4Q 0 2R 24 Q 02 R
代入数 : Q 据 1/Q 2得 1/7
两导体表面上的场强最强,其最大场强之比为
E E1 2m ma a x x4Q 01R 12/4Q 02 R22Q Q 1 2R R 2 12 27 4
分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为εr的各 向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

(整理)静电场中的导体和电介质习题详解

(整理)静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。

答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。

3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。

4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

静电场中的导体及电介质一章习题解答

静电场中的导体及电介质一章习题解答

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如下图。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,那么AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) S Q 01ε (D) SQ Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,那么[ ] (A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,那么有231221==C C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别+Q 1 +Q 2A B习题8―1图为100V 、200V 、300V 。

那么此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质1. 一带电的平行板电容器中,均匀充满电介质,若在其中挖去一个球形空腔,如图所示,则A 、B 两点的场强( )A .B A E E > B. B A E E <C .B A E E = D. 0=>B A E E 答案:B解:σ==B A D D ,r A E εεσ0=εσ=B E 所以B A E E <2.点电荷+Q 位于金属球壳的中心,球壳的内、外半径分别为R 1,R 2,所带净电荷为0,设无穷远处电势为0,如果移去球壳,则下列说法正确的是: (1) 如果移去球壳,B 点电势增加 (2) 如果移去球壳,B 点电场强度增加 (3) 如果移去球壳,A 点电势增加 (4) 如果移去球壳,A 点电场强度增加 答案:(3)球壳内,外部场强都为204rQ E πε=移去球壳对A 、B 电场强度大小无影响。

有球壳时,A 点电势为⎰⎰∞+=21R R rEdr Edr U无球壳时⎰∞=rEdr U 显然,移去球壳A 点电势增大B3.在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面( )(1) 高斯定理成立,且可用它求出闭合面上各点的场强。

(2) 高斯定理成立,但不能用它求出闭合面上各点的场强。

(3) 由于电介质不对称分布,高斯定理不成立 (4) 即使电介质对称分布,高斯定理也不成立答案:B ,高斯定理成立,但由于,高斯面上分布不对称,所以,无法求出场强。

4.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离是d ,忽略边缘效应,当B 板不接地时,两板间电势差=AB U ;B 板接地时='AB U 。

解:当B 板不接地B 板感应电荷如上图均匀分布AB电势差d E U AB ⋅=,由电势叠加原理知0022εεσS Q E ==,所以d S QU AB ⋅=02ε当B 板接地,B 板感应电荷如图均匀分布AB 电势差d E U AB⋅=',由电势叠加原理知00εεσS QE ==,所以d S QU AB ⋅='0ε+ +B++Bd5.如图所示,将两个完全相同的平板电容器,串联起来,在电源保持连接时,将一块介质板放进其中一个电容器C 2的两极板之间,则电容器C 1电场强度E 1,和电容器C 2电场强度E 2,及电场能量W 1,W 2的变化情况: (1) E 1不变,E 2增大,W 1不变,W 2增大 (2) E 1不变,E 2减小,W 1不变,W 2减小, (3) E 1减小,E 2增大,W 1减小,W 2增大 (4) E 1增大,E 2减小,W 1增大,W 2减小 答案(4)解:充介质前的C 1,C 2等效电容dSC 200ε=,充介质后的C 1,C 2等效电容dSC r r 01εεε+=,所以电容增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr=21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为=O V Rq dq R3π4π4100εε+⎰03π4π400=+'=RqR q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

(1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ;(3)若导体球接地(设球壳离地面很远),求1V 和2V 。

解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。

半径为R 、带电量为q 的均匀带电球面产生的电势分布为⎪⎪⎩⎪⎪⎨⎧>≤=)( 4)(400R r rq R r R qV πεπε导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。

导体球是等势体,其上任一点电势为)(4132101R Qq R q R q V ++-=πε 球壳是等势体,其上任一点电势为+=rq V 024πεrq 04πε-304R Q q πε++304R Qq πε+=(2)球壳接地0π4302=+=R Qq V ε,表明球壳外表面电荷Q q +入地,球壳外表面不带电,导体球外表面、球壳表面电量不变,所以)11(42101R R q V -=πε (3)导体球接地01=V ,设导体球表面的感应电荷为q ',则球壳表面均匀带电q '-、外表面均匀带电Q q +',所以0)(4132101=+'+'-'=R Q q R q R q V πε 解得 21313221R R R R R R QR R q +--='3024R Qq V πε+'=)(4)(213132012R R R R R R Q R R +--=πε5. 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给球壳带电+q ,试求: (1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; (3)再使球壳接地,此时球壳上的电量以及外球壳上的电势。

解:(1)球壳外表面带电q +;外球壳表面带电为q -,外表面带电为q +,且均匀分布,外球壳上电势为⎰⎰∞∞==⋅=222020π4π4d R R R q dr r q r E V εε(2)外球壳接地时,外表面电荷q +入地,外表面不带电,表面电荷仍为q -。

所以球壳电势由球q +与外球壳表面q -产生,其电势为0π4π42020=-=R q R q V εε(3)如图所示,设此时球壳带电量为q ';则外壳表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。

求球外任一点的场强大小和电势(设无穷远处为电势零点)。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。

由介质中的高斯定理得=⋅⎰SS d Di q r D ∑=⋅24π当R r <时,334r q i πρ⋅=∑,所以3rD ρ=,1113ερεr DE ==当R r >时,334R q i πρ⋅=∑,所以233r R D ρ=,223223r R DE ερε== 球(R r ≤)电势为⎰∞⋅=rr d E V 1dr r R r ⎰=13ερdr r R R ⎰∞+2233ερ222213)(6ερερR r R +-= 球外(R r >)电势为⎰∞⋅=rr d E V 2dr r R r ⎰∞=2233ερr R 233ερ=7. 如图所示,一平行板电容器极板面积为S ,两极板相距为d ,其中放有一层厚度为t 的介质,相对介电常数为r ε,介质两边都是空气。

设极板上面电荷密度分别为+σ和σ-,求:(1)极板间各处的电位移和电场强度大小; (2)两极板间的电势差U ;(3)电容C 。

解:(1)取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,左底面圆在极板导体中,右底面圆在两极板之间)为高斯面,根据介质中的高斯定理,得S S D S d D S∆⋅=∆⋅=⋅⎰⎰σ∴ σ=D⎪⎪⎩⎪⎪⎨⎧==(介质内)(空气中)000rr D E εεσεσεε (2)⎰→⋅=BA l d E Ut t d r εεσεσ00+-=)( (3)USC σ=td Sr r r )1(0--=εεεε8. 如图所示,在平行板电容器的一半容积充入相对介电常数为r ε的电介质,设极板面积为S ,两极板上分别带电荷为Q +和Q -,略去边缘效应。

试求:(1)在有电介质部分和无电介质部分极板上自由电荷面密度的比值; (2)两极板间的电势差U ; (3)电容C 。

解:(1)充满电介质部分场强为2E ,真空部分场强为1E ,有电介质部分和无电介质部分极板上自由电荷面密度分别为2σ和1σ。

取闭合圆柱面(圆柱面与极板垂直,两底面圆与极板平行,上底面圆在极板导体中,下底面圆在两极板之间)为高斯面,由∑⎰=⋅0d q S D得11σ=D ,22σ=DdUD E ===01011εσε ① dUD E r r===εεσεε02022 ② 由①、②解得tr εσ+ σ-r εσσ=12(2)由电荷守恒定律知,Q S=+2)(21σσ ③ 由① 、② 、③ 解得SQdU r 0)1(2εε+=(3)dSU Q C r 2)1(0εε+==9. 半径为1R 的导体球,外套有一同心的导体球壳,壳的、外半径分别为2R 和3R ,当球带电荷Q 时,求:(1)整个电场储存的能量;(2)将导体壳接地时整个电场储存的能量; (3)此电容器的电容值。

解:如图所示,球表面均匀带电Q ,外球壳表面均匀带电Q -,外表面均匀带电Q (1)由高斯定理得当1R r <和32R r R <<时,0=E 当21R r R <<时,201π4rQ E ε=当3R r >时,202π4r Q E ε=所以,在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQW εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε 总能量为)111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时20π4rQ E ε=,其它区域0=E ,所以02=W)11(π821021R R Q W W -==ε(3)电容器电容为)11/(π422102R R Q W C -==ε 10. 一个圆柱形电容器,圆柱面半径为1R ,外圆柱面半径为2R ,长为L ()12R R L ->>,两圆筒间充有两层相对介电常量分别为1r ε和2r ε的各向同性均匀电介质,其分界面半径为R ,如图所示。

设、外圆柱面单位长度上带电荷(即电荷线密度)分别为λ和λ-,求:(1)电容器的电容; (2)电容器储存的能量。

解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r 。

由介质中的高斯定理得 i Sq rl D S D ∑=⋅=⋅⎰π2d当21R r R <<时,l q i λ=∑,rD π2λ=两圆筒间场强大小为⎪⎪⎩⎪⎪⎨⎧<<<<==)( 2)(22201100R r R rR r R r D E r r r επελεπελεε两圆筒间的电势差为⎰⋅=21d R R r E U⎰=R Rr r r 1d π210εελ⎰+2d π220R R r r rεελ110ln2R Rr επελ=R R r 220ln 2επελ+ 电容器的电容为ULC λ=()()R R R R Lr r r r /ln /ln 22112210εεεεπε+=(2)电容器储存的能量1 r 2CQ W 221=210211224ln lnr r r r R R R RL εεεεελπ⎪⎪⎭⎫ ⎝⎛+=11.如图所示,一充电量为Q ±的平行板空气电容器,极板面积为S ,间距为d ,在保持极板上电量Q ±不变的条件下,平行地插入一厚度为2/d ,面积S ,相对电容率为r ε的电介质平板,在插入电介质平板的过程中,外力需作多少功?解:插入电介质平板之前,dSC 00ε=,电容器储存的能量为Sd Q C Q W 02020221ε== 插入电介质平板之后,由本章习题7的解法可得到dSC r r )1(20+=εεε电容器储存的能量为SdQ C Q W r r εεε0224)1(21+== 由能量守恒定律知,在插入电介质平板的过程中,外力作的功为0W W A -=Sd Q r r επεε024)1(-=12. 一球形电容器,球壳半径为1R ,外球壳半径为2R ,两球壳间充有两层各向同性均匀电介质,其界面半径为R ,相对介电常数分别为1r ε和2r ε,如图所示。

相关文档
最新文档