关于静息电位和动作电位的形成课件

合集下载

静息电位和动作电位的形成优秀课件

静息电位和动作电位的形成优秀课件
静息电位和动作电位的形成优秀课件
一、静息电位的形成机制
钠钾泵:
又称钠钾ATP酶,进行 K+、Na+之间的交换。每 消耗1分子ATP,逆浓度 梯度从细胞泵出3个Na+, 同时泵入2个K+。
Na+-K+泵 2K+ 高K+
3Na+
高Na+
漏K+通道 漏Na+通道
漏通道:
一直处于开放状态,允许离 子以较慢的速度顺浓度梯度 跨膜扩散。
K+
静息电位的形成
表示膜内电位相对 于膜外电位
电位 /mv
3Na+
Na+-K+泵
漏K+通道
2K+
Na+
高K+
漏Na+
-70
通道
高Na+
时间/ms
二、动作电位的形成机制
3Na+
漏K+通
道2K+
Na+-K+泵
电压门控 式K+通道
高K+
电压门控式K+通道、 电压门控式Na+通道:
在细胞膜处于静息状态时都 是关闭的。只有当外界刺激 达到一定值时,电压门控式 Na+通道、K+通道才会先后被 激活打开。
高Na+
时间/ms
动作电位的形成
K+
K+
电位 /mv
+35
-70
3Na+
高K 漏漏KK++通通
NNaa++--KK++泵泵 道道22KK++

静息电位和动作电位产生的离子基础 ppt课件

静息电位和动作电位产生的离子基础 ppt课件

++
++
+++++
++
++
++
++



K+
汉 水 丑 生 侯 伟 作 品
+++++++++++++++++++++++
汉 水 丑 生 侯 伟 作 品
神经细胞静息时,膜内外存在70mV的电位差,膜外电位比 膜内高70mV,称为静息电位,记做外正内负。
静息电位产生的原因是:膜上非门控的K+渗漏通道一直开 放,K+外流(协助扩散)一部分,导致膜外电位高于膜内。
静息电位和动作电位产生的离子基础
静息电位和动作电位
产生的离子基础 汉 水 丑 生 侯 伟 作 品
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
资料2:箭毒在临床上可用作肌肉松弛剂。已知箭毒能与乙 酰胆碱竞争突触后膜上的受体,请分析箭毒可使肌肉松弛的机 理。
1.图1所示,刺激b点,电流表的指针是否发生偏转?刺激e点, 电流表的指针发生了2次方向相反的偏转,说明什么问题?
汉 水 丑 生 侯 伟 作 品
水 丑 生 侯 伟 作 品
神经递质与受体结合后很快会被相关酶分解或者被运走 或被前膜重吸收,一次兴奋性神经递质的释放只会引发后膜 产生一次神经冲动。

3第二章静息电位第三章动作电位-PPT课件

3第二章静息电位第三章动作电位-PPT课件
(一)锋电位的离子机制 1 锋电位产生的条件: 神经元的RP是锋电位产生的基础 细胞外的Na+浓度远远大于细胞内Na+浓度[Na+] o> [Na+]I 刺激引起Na+通道开放 2 锋电位幅度和Na+平衡电位(ENa) 锋电位顶点的膜电位水平是由ENa决定的 锋电位的上升支是由Na+内流所致 锋电位的下降支,是由上升支去极化导致大量电压门控K+ 通道开放,在电压差和浓度差的共同驱动下,大量K+外流 产生负极化
第三节 静息电位 Resting potentials(RP)
静息电位(resting potential,RP):指未受刺激时神经元末内外 两侧的电位差。
Microelectrode 0.5um diameter
Measuring the resting membrane potential
第四节 静息电位的离子机制
Endocytosis and Exocytosis
Endocytosis
生物电记录的技术概述
第一阶段:离子机制学说 生物电现象:18世纪末,Galvani 的凉台实验 1902年Bernstain提出了生物电现象产生机制: 膜学说 (membrane theory)
第二阶段:离子机制的证明和离子通道学说 1939年,Hodgin and Huxley 用枪乌鰂的神经轴突记录到了跨膜电位 证实了静息电位产生机制的正确性的同时提出了动作电位的Na+ 学说 第三阶段:离子通道机制的证明 1976年,成功建立膜片钳和单通道记录技术
(二)后电位的离子机制 去极化后电位: 可能是由于 1. 复极相是大量K+外流,导致细胞外K+的蓄积, 故延缓了复极化的过程 2 .锋电位期间激活的Ca2+内流 超极化后电位: 1. K+继续外流 2 .生电性钠泵的作用

第3章5模块静息电位与动作电位

第3章5模块静息电位与动作电位

第3章5模块静息电位与动作电位掌握:概念:静息电位、动作电位、极化、去极化、复极化。

了解:静息电位和动作电位的形成机制。

活的细胞无论处于静息状态还是活动状态都存在电现象,这种电现象称为生物电。

生物电是一种普遍存在又十分重要的生命现象,也是生理学的重要基础理论。

临床应用的心电图、脑电图、肌电图等检查,都是生物电理论在实际工作中的应用。

生物电现象的发生,都是以细胞水平的生物电现象为基础的。

而且,生物电是发生在细胞膜两侧的,故称为跨膜电位,简称膜电位,包括静息电位和动作电位。

一、静息电位1.静息电位的概念静息电位是指细胞处于静息状态时,存在于细胞膜两侧的电位差。

应用细胞内微电极记录法,当微电极未刺入细胞内时,细胞膜表面没有电位差,如图3-5(a)所示。

将微电极尖端刺破细胞膜的瞬间,在记录仪上显示出一个电位的突然跃变,即示波器扫描线产生位移,由0mV变为约-70mV,这就说明细胞膜内外有电位差存在。

研究表明,大多数细胞的静息电位都表现为膜内电位低于膜外,如以膜外电位为正,膜内电位即为负值,故呈内负外正状态。

细胞静息电位测定示意图(a)细胞外记录;(b)细胞内微电极记录不同细胞的静息电位的数值有所不同。

通常将细胞静息状态下膜内为负、膜外为正的状态称为极化状态。

静息电位减小的过程或状态称为去极化;反之,如果静息电位值增大,如从-70mV到-80mV,表明膜内外电位差增大,极化状态加强,称为超极化。

极化状态示意图去极化2.静息电位的产生机制哺乳类动物神经细胞内的K+浓度高于细胞外,而细胞外Na+浓度高于细胞内。

细胞内外Na+和K+的浓度差是由钠—钾泵的活动来维持的。

细胞内的负离子主要是大分子的有机负离子(A-),多是蛋白质离子,而细胞外有机负离子极少。

如果细胞膜允许这些离子自由通过的话,将顺浓度差产生K+、A-的外向流及Na+的内向流。

但是,细胞处于静息状态时,细胞膜对K+的通透性较大,对Na+的通透性很小,仅为K+通透性的1/100~1/50,而对A-几乎没有通透性。

静息电位和动作电位的形成

静息电位和动作电位的形成
高Na+
时间/ms
动作电位的形成
K+
K+
电位 /mv
+35
-70
3Na+
高K 漏漏KK++通通
NNaa++--KK++泵泵 道道22KK++
电压K+门通控道 式K+通道
NNaa++
+
-
漏Na+通道
电压门控 式Na+通道
高Na+
时间/ms
K+
静息电位的恢复
电位 /mv
+35
-70
3Na+
漏K+通
道 2K+
K+
静息电位的形成
表示膜内电位相对 于膜外电位
电位 /mv
3Na+
Na+-K+泵
漏K+通道
2K+
Na+
高K+
漏Na+
-70
通道
高Na+
时间/ms
二、动作电位的形成机制
3Na+
漏K+通
道2K+
Na+-K+泵
电压门控 式K+通道
高K+
电压门控式K+通道、 电压门控式Na+通道:
在细胞膜处于静息状态时都 是关闭的,只有当外界刺激 达到一定值时,电压门控式 Na+通道、K+通道才会先后被 激活打开,
时间/ms
参考文献
1 学军.关于静息电位和动作电位的探究式教学过程 J . 生物学通报,2014,49 7 :44-49.

静息电位和动作电位产生的离子基础大学内容课件

静息电位和动作电位产生的离子基础大学内容课件
神经元的兴奋性受到多种因素的影响,包括细胞内外钠离子和钾离子的浓度差、 钠离子和钾离子通道的特性、细胞膜的通透性等。这些因素可以影响神经元的静 息电位和动作电位的幅度和持续时间,从而影响神经元的兴奋性。
谢谢您的聆听
THANKS
静息电位和动作电位产生的离 子基础大学内容课件
CONTENTS
• 静息电位基础 • 动作电位基础 • 离子基础 • 静息电位和动作电位产生的离
子机制 • 神经元兴奋性的离子基础 • 总结和讨论
01
静息电位基础
静息电位的定义
01
静息电位是指细胞在安静状态下, 细胞膜两侧存在的外正内负的膜 电位。
02
它表现为细胞膜内外的电位差, 是细胞进行跨膜信号传递和电活 动的基础。
静息电位的产生机制
静息电位的产生主要与钾离子外流有关。
在安静状态下,细胞内的钾离子浓度约为细胞外的30倍左右,因此钾离子会顺着浓 度差从细胞内向细胞外流动,形成外正内负的膜电位。
同时,钠离子也会在钠泵的作用下被泵出细胞,这也有助于维持细胞内外钾离子的 浓度差。
离子机制对神经元兴奋性的影响和调控
离子浓度对神经元兴奋性的影响
不同离子的浓度会影响神经元的兴奋性,例如高钾离子浓度会降低神经元的兴奋性,而高钠离子浓度则会增加神经元 的兴奋性。
离子通道调控对神经元兴奋性的影响
神经元中不同离子通道的开闭可以调节神经元的兴奋性。例如,增加钠离子通道的开放时间可以增加神经元的兴奋性。
不同离子的跨膜流动受到 多种因素的影响,如浓度 差、膜通道的通透性、跨 膜电场等。
05
神经元兴奋性的离子基础
神经元兴奋性的定义和特点
神经元兴奋性的定义
神经元兴奋性是指神经元在接受到刺 激后产生反应的能力。

静息电位和动作电位形成原因和相关练习培训课件

静息电位和动作电位形成原因和相关练习培训课件
调节的有关知识。神经细胞 在静息状态下,有外正内负的静息电位(外钠内钾)。当 受到刺激后,细胞膜上少量钠通道激活开放,钠离子顺着 浓度差少量内流,膜内外电位差逐渐减小,发生局部电位。 当膜内电位变化到达阈电位时,钠离子通道大量开放,膜 电位发生去极化,激发动作电位。随着钠离子的进入,外 正内负逐渐变成外负内正。从变成正电位开始,钠离子通 道逐渐关闭,钠离子内流停止,同时钾离子通道激活开放, 钾离子从细胞内流到细胞外,膜内少了钾离子,变得不那 么负了,膜电位逐渐减小,恢复到静息电位(即外正内负) 的水平。
3/11/2021
静息电位和动作电位形成原因和相关练 习
4
• 例4:如图是一个反射弧的部分结构图,甲、乙表示连接 在神经纤维上的电流表。当在A点以一定的电流刺激,甲、 乙电流表的指针发生的变化正确的是( D )
• A.甲、乙都发生两次方向相反的偏转
• B.甲发生两次方向相反的偏转,乙不偏转
• C.甲不偏转,乙发生两次方向相反的偏转
3/11/2021
静息电位和动作电位形成原因和相关练 习
7
1.1 形成过程
ab段:阈刺激或阈上刺激使Na+少量内流,细胞部分去极化至阈电位水平 bc段:Na+内流达到阈电位水平后,与细胞去极化形成正反馈,Na+爆发 性内流,达到Na+平衡电位(膜内为正膜外为负),形成动作电位上升支。 c点:膜去极化达一定电位水平 (峰值),Na+内流停止、K+开始迅速外流。 cd段:K+迅速外流,形成动作电位下降支。此时不需耗能。 de段:K+外流使膜外大量堆积K+,产生负后电位,阻止K+继续外流; ef段:在Na+-K+泵的作用下,泵出3个Na+和泵入2个K+产生正后电位,恢 复兴奋前的离子分布的浓度(静息电位)。这一过程逆浓度梯度进行,需要 ATP供能

静息电位与动作电位

静息电位与动作电位
由K+扩散到膜外造成的外正内负的电位差,将成为阻止 K+ 外移的力量,而随着 K+外移的增加,阻止 K+ 外移的电位 差也增大。
当促使K+ 外移的浓度差和阻止K+外移的电位差这两种力 量达到平衡时,经膜的 K+ 净通量为零,即K+外流和内流的 量相等。此电位差称K+的平衡电位,也就是静息电位。
细胞静息电位的形成是由细胞膜对特异离子的 相对通透性不同和离子的跨膜浓度梯度决定的
去极化达阈电位水平, 爆发动作电位,未兴 奋段转为兴奋状态
有髓鞘纤维的轴突外面有髓鞘,只有在郎飞结处的轴突膜 与细胞外液相接触,局部电流才能在郎飞结处出膜;郎飞结处 的轴突膜含有丰富的Na+通道。因此,动作电位在郎飞结处发生, 发生后其局部电流从下一个郎飞结处出膜,使下一个结处的膜 兴奋;新产生的动作电位又使再下一个结处的膜兴奋,形成了 兴奋的跳跃式传导。
局部电位:可兴奋细胞在受阈下刺激时细胞膜对Na+的通透性
轻度增加,使膜内负电位减小,发生去极化但达不到阈电位, 所以不产生动作电位。这种去极产生的电位称为局部电位。
局部电位的特点: ①局部兴奋没有“全或无”的特征,它可随刺激强度增强而增大; ②局部兴奋可以向周围扩布,这种扩布是电紧张性扩布,只能使邻 近的膜也发生轻度去极化,其去极化程度随扩布距离的增加而逐渐 减小以至消失,因此这种扩布是衰减性的。 ③局部兴奋可以总和,局部兴奋时不存在不应期,所以两个阈下刺 激引起的局部兴奋可以总和(叠加)起来。
正外负的状态。 复极化(repolarization) :细胞先发生去极化,接着发生反
极化,然后膜两侧的电位很快又 恢复到静息时的内负外正状态和 水平,这个过程称复极化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K+
静息电位的形成
表示膜内电位相对 于膜外电位
电位 /mv
3Na+
Na+-K+泵
漏K+通道
2K+
Na+
高K+
漏Na+
-70
通道
高Na+
时间/ms
二、动作电位的形成机制
3Na+
漏K+通
道2K+
Na+-K+泵
电压门控 式K+通道
高K+
电压门控式K+通道、 电压门控式Na+通道:
在细胞膜处于静息状态时都 是关闭的。只有当外界刺激 达到一定值时,电压门控式 Na+通道、K+通道才会先后被 激活打开。
漏Na+通道 电压门控 式Na+通道
高Na+
K+
动作电位的形成
3Na+
漏K+通
道 2K+
电压门控 式K+通道
Na+-K+泵
Na+
漏Na+通道 电压门控 式Na+通道
K+
动作电位的形成
电位 /mv
+35
-70
3Na+
漏K+通
道 2K+
电压门控 式K+通道
Na+-K+泵
Na+
Na+
电浓 位度 差差
漏Na+通道 电压门控 式Na+通道
高Na+
时间/ms
动作电位的形成
K+
K+
电位 /mv
+35
-பைடு நூலகம்0
3Na+
高K 漏漏KK++通通
NNaa++--KK++泵泵 道道22KK++
电压K+门通控道 式K+通道
NNaa++
+
-
漏Na+通道
电压门控 式Na+通道
高Na+
时间/ms
K+
静息电位的恢复
电位 /mv
+35
-70
3Na+
漏K+通
道 2K+
电压门控 式K+通道
Na+-K+泵
Na+ 高K+
时间/ms
漏Na+通道 电压门控 式Na+通道
高Na+
三、静息电位与动作电位各时段膜电位变化 与K+、Na+通道跨膜运输方向及运输方式
电位/mv
动作电位,Na+顺浓度 梯度内流
K+顺浓度梯度外流
+35
静息电位,K+ 顺浓度梯度外 流
-70
Na+-K+泵主动运输加快
关于静息电位和动 作电位的形成
一、静息电位的形成机制
钠钾泵:
又称钠钾ATP酶,进行 K+、Na+之间的交换。每 消耗1分子ATP,逆浓度 梯度从细胞泵出3个Na+, 同时泵入2个K+。
Na+-K+泵 2K+ 高K+
3Na+
高Na+
漏K+通道 漏Na+通道
漏通道:
一直处于开放状态,允许离 子以较慢的速度顺浓度梯度 跨膜扩散。
时间/ms
2021/3/13
相关文档
最新文档