六自由度机械手三维运动仿真研究
三维空间中六自由度机械臂位姿确定方法

一、概述在工业自动化和机器人领域,机械臂是广泛应用的一种机械设备,它的位姿确定对于机器人的运动控制和任务执行具有至关重要的意义。
六自由度机械臂作为一种自由度相对较高的机械臂,其位姿确定方法是一个复杂而且具有挑战性的问题,但是确切的位姿确定是机器人能否完成各种复杂任务的基础。
在三维空间中六自由度机械臂位姿确定方法的研究具有重要的理论和实际意义。
二、六自由度机械臂的运动特性六自由度机械臂是指在三维空间中具有六个自由度的机械臂,分别是三个平移自由度和三个旋转自由度。
在运动学分析中,通常使用笛卡尔坐标系和关节坐标系来描述机械臂的位置和位姿。
其中,笛卡尔坐标系用来描述机械臂末端执行器的位置和姿态,而关节坐标系则用来描述机械臂各个关节的角度和位置。
机械臂的位姿确定就是要确定机械臂末端执行器在笛卡尔坐标系中的位置和姿态,通常用位置矢量和姿态矩阵来表示。
三、基于解析法的位姿确定方法基于解析法的位姿确定方法是一种最基本的方法,它是通过对机械臂的运动学方程进行求解来确定机械臂的位置和姿态。
在这种方法中,通常需要对机械臂的几何结构和运动学参数进行精确的建模和描述,然后利用正演运动学方程来求解机械臂的位置和姿态。
这种方法的优点是能够精确地求解出机械臂的位置和姿态,但是也存在着计算复杂度高和数学求解困难的缺点。
四、基于迭代法的位姿确定方法基于迭代法的位姿确定方法是一种比较常用的方法,它是通过对机械臂的正逆运动学方程进行迭代求解来确定机械臂的位置和姿态。
在这种方法中,通常首先根据机械臂的末端执行器的目标位置和姿态,利用逆运动学方程求解出机械臂的关节角度,然后再利用正运动学方程求解出机械臂的位置和姿态。
这种方法的优点是计算简单,并且能够通过迭代计算得到精确的结果,但是也存在着迭代次数多和收敛速度慢的缺点。
五、基于视觉传感器的位姿确定方法随着计算机视觉和图像处理技术的不断发展,基于视觉传感器的位姿确定方法也越来越受到关注。
这种方法是利用摄像头或者其他视觉传感器来获取机械臂末端执行器的图像信息,然后通过图像处理和计算机视觉技术来确定机械臂的位置和姿态。
六自由度机械臂的运动控制分析及仿真研究-温鹏飞

六自由度机械臂的运动控制分析 及仿真研究
作者姓名 温鹏飞 指导教师 张亮有
郑智宏 工程领域 机械工程 学习年限 2013 年 3 月-2018 年 5 月
二○一八 年 四 月
独立完成与诚信声明 本人郑重声明:所呈交的学位论文,是在导师指导 下独立完成的,学位论文的知识产权属于太原科技大学。 如果今后以其他单位名义发表与在读期间学位论文相关 的内容,将承担法律责任。除文中已经注明引用的文献 资料外,本学位论文不包括任何其他个人或集体已经发 表或撰写过的成果。
In the end, we use polynomial to plan the motion trail, then carry out the simulation research. The cubic polynomial involves less variables and simple calculation, so cannot be used to simulate the posture variable. It can be solved by five-degree polynomial. The motion trail of mechanical arm is planned by model simulating and neural network technology. Matlab is used to redesign the artificial neural network, plan the motion trail and carry out the simulation research on industrial robots.
Secondly, we create the simplified kinetics model of mechanical arm, analyze the results, and then reveal how the motion of mechanical arm relates to its joints. Joint activities include speed, angular accelerated speed, the relationship between joint movement and inertial force. The rotation of mechanical arm s affected by inertial force, and the magnitude of the force between the joints. We solve it by establishing matrix equation, which involves the solution of multivariable by the Newton Euler equation, and the relevant quantity. Finally, the movement control of the manipulator is verified.
六自由度机械臂控制系统设计与运动学仿真

六自由度机械臂控制系统设计与运动学仿真六自由度机械臂控制系统设计与运动学仿真摘要:近年来,随着工业自动化的快速发展,机械臂在生产制造领域的应用越来越广泛。
作为工业机器人的重要组成部分,机械臂的控制系统设计和运动学仿真成为了研究和应用的热点。
本文围绕六自由度机械臂的控制系统设计和运动学仿真展开研究,通过对机械臂的结构、动力学模型和运动学原理的分析,设计了一套完整的机械臂控制系统,并进行了运动学仿真验证实验。
研究结果表明,该控制系统能够实现六自由度机械臂的准确控制和精确运动。
关键词:六自由度机械臂,控制系统,运动学仿真,结构分析,动力学分析1. 引言机械臂是一种能够替代人工完成各种物体抓取、搬运和加工任务的重要设备。
随着工业自动化程度的提高和生产效率的要求,机械臂在生产制造行业中的应用越来越广泛。
机械臂的控制系统设计和运动学仿真成为了研究和应用的热点,尤其是六自由度机械臂。
六自由度机械臂具有较大的运动自由度,在复杂任务中具有更强的工作能力和适应性。
因此,研究六自由度机械臂的控制系统设计和运动学仿真对于改善机械臂的性能和应用具有重要意义。
2. 机械臂结构分析六自由度机械臂的结构由底座、第一至第六关节组成。
底座作为机械臂的固定支撑,通过第一关节与机械臂连接。
第一至第四关节形成了前臂部分,决定了机械臂的悬臂长度。
第五关节和第六关节分别为腕部和手部,负责完成机械臂的末端操作。
结构分析可以为后续的动力学和运动学建模提供基础。
3. 动力学模型机械臂的动力学模型是基于牛顿第二定律和欧拉定理建立的。
通过考虑机械臂各关节的质量、惯性和振动特性,可以对机械臂的力学性能进行描述。
动力学模型的建立是机械臂控制系统设计的重要基础。
4. 运动学原理机械臂的运动学原理研究机械臂的位置、速度和加速度之间的关系。
通过运动学原理可以确定机械臂的姿态和末端位置,实现机械臂的准确定位和精确控制。
运动学原理是机械臂控制系统设计和运动学仿真的重要内容。
基于SolidWorks六自由度焊接机械手三维运动模拟PPT答辩稿

致 谢
感谢指导老师在此设计过程中给予
了热情诚恳的帮助和各位老师的精 心指导,限于水平有限,有遗漏和 错误之处希望各位老师批评指证
1.6焊接机械手的工作原理
固定机座后通过机身上转台的旋转和大小 手臂的运动带动旋转手腕的转动和摆动手 腕的运动,在给手抓一个配合尺寸使之能 够自由的伸缩以便夹取工件。
1.7 焊接机械手的构成和设计
焊接机械手的零部件包括:机座、机座盖板、 机身、转台、大臂、小臂、旋转手腕、摆 动手腕、手抓、销钉、螺栓、螺母等 。
SolidWorks数字化模型 →模型导入→添加复 杂约束力→仿真分析→模型优化。
六自由度机械手的运动情况给出各个转动 副的旋转角度
2.1 模拟加载与仿真
启动SolidWorks软件,如下图选择“装配图” 选项,单击“确定”按钮,建立装配体操 作界面。
2.2机构的装配过程
选择左下方“浏览”按钮如图,打开零件存放的目录,选择第一 个零件系统将默认为固定的零件,以后添加的零件依次为基准。 先选择名称为转台的零件,单击“打开”。单击界面任何位置零 件固定在界面中。在工具栏中选择“插入零部件”,如前操作打 开文件夹,继续选择零件大臂。为了不至于零件过多装配过程复 杂,采取逐个添加约束的方法,进行逐个配合并完成定位。继续 添加零件和配合的操作直到完成装配体。装配过程中合理的选择 配合关系以方便以后的运动仿真操作。如下图
基于SolidWorks六自由度 焊接机械手三维运动模拟
学生姓名:马俊 专业:机械设计制造及其自动化 指导教师:刘天祥
本课题的主要研究内容
(1)查阅机器人技术相关文章和机构,了 解国内外焊接机器人的应用和发展。 (2)画出六自由度焊接机械手部装配图。 (3)应用solidworks对机械手部分进行三维 运动。 (4)用COSMOSMotion软件对其进行仿真。
《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着现代工业的快速发展,机械臂已成为自动化生产线上不可或缺的一部分。
六自由度机械臂因其高度的灵活性和适应性,在工业、医疗、军事等领域得到了广泛应用。
本文将详细介绍六自由度机械臂控制系统的设计与运动学仿真,旨在为相关领域的研究和应用提供参考。
二、六自由度机械臂结构及特点六自由度机械臂主要由关节、驱动器、控制系统等部分组成。
其结构包括六个可独立运动的关节,通过控制每个关节的旋转角度,实现空间中任意位置的到达。
六自由度机械臂具有较高的灵活性和工作空间,适用于复杂环境下的作业。
三、控制系统设计(一)硬件设计控制系统硬件主要包括微处理器、传感器、执行器等部分。
微处理器负责接收上位机指令,解析后发送给各个执行器;传感器用于检测机械臂的位置、速度、加速度等信息,反馈给微处理器;执行器则根据微处理器的指令,驱动机械臂进行运动。
(二)软件设计软件设计包括控制系统算法和程序设计。
控制系统算法包括运动规划、轨迹跟踪、姿态控制等,通过算法实现对机械臂的精确控制。
程序设计则包括上位机程序和下位机程序,上位机程序负责发送指令,下位机程序负责接收指令并执行。
四、运动学仿真运动学仿真是指通过数学模型对机械臂的运动过程进行模拟,以验证控制系统的正确性和可靠性。
运动学仿真主要包括正运动学和逆运动学两部分。
(一)正运动学正运动学是指通过关节角度计算机械臂末端的位置和姿态。
通过建立机械臂的数学模型,利用关节角度计算末端执行器的位置和姿态,为后续的轨迹规划和姿态控制提供依据。
(二)逆运动学逆运动学是指根据机械臂末端的位置和姿态,计算关节角度。
通过建立逆运动学方程,将末端执行器的目标位置和姿态转化为关节角度,实现对机械臂的精确控制。
五、实验与分析通过实验验证了六自由度机械臂控制系统的设计和运动学仿真的正确性。
实验结果表明,控制系统能够实现对机械臂的精确控制,运动学仿真结果与实际运动过程相符。
基于PROE六自由度机械手参数化建模及运动仿真概论

基于PROE六自由度机械手参数化建模及运动仿真概论基于PRO/E(Pro/ENGINEER)六自由度机械手参数化建模及运动仿真(Introduction to Parametric Modeling and Motion Simulation of a Six Degree-of-Freedom Robot Arm Based on PRO/E)是一种基于 Pro/E 软件的机械手参数化建模方法和运动仿真技术的概念介绍。
机械手是一种能够执行预定动作的自动机器人系统,在工业领域被广泛应用。
参数化建模和运动仿真是机械手设计与验证的重要工具,可以提高设计效率和减少实验成本。
首先,本文介绍了 Pro/E 软件的基本原理和特点。
Pro/E 是一种三维 CAD(计算机辅助设计)软件,具有强大的参数化建模和运动仿真能力。
它可以通过调整参数来改变模型的形状和尺寸,以便满足不同的设计要求。
Pro/E 还提供了强大的运动仿真功能,可以模拟机械手在不同工况下的运动特性。
接下来,本文详细介绍了机械手的六个自由度,即机械手可以在三维空间中进行平移和转动的六个方向。
机械手的自由度决定了它的灵活性和工作范围。
参数化建模是在 Pro/E 软件中定义机械手的结构和参数,以便能够根据实际需求对机械手进行定制化设计。
然后,本文提出了一种基于 Pro/E 软件的机械手参数化建模方法。
通过定义机械手的几何尺寸、关节角度和连杆长度等参数,可以实现对机械手结构和工作范围的快速调整。
参数化建模可以大大加快机械手的设计过程,减少人工调整的工作量。
最后,本文介绍了基于 Pro/E 软件的机械手运动仿真技术。
通过给定关节的运动规律和工作环境的约束条件,可以模拟机械手在不同运动状态下的姿态和运动轨迹。
运动仿真可以帮助设计师评估机械手的性能和可靠性,并进行优化设计。
总结起来,基于 Pro/E 的六自由度机械手参数化建模和运动仿真技术是一种高效、准确和可靠的机械手设计方法。
《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着科技的飞速发展,六自由度机械臂(6-DOF robotic arm)已成为现代工业、医疗、军事等多个领域的重要工具。
其控制系统设计及运动学仿真对于提高机械臂的作业效率、精度和稳定性具有重要意义。
本文将详细介绍六自由度机械臂控制系统的设计及运动学仿真的实现过程。
二、六自由度机械臂控制系统设计1. 硬件设计六自由度机械臂控制系统硬件主要包括机械臂本体、传感器、控制器及驱动器等部分。
机械臂本体采用模块化设计,由基座、大臂、小臂、手腕等部分组成。
传感器用于检测机械臂的位置、速度、加速度等信息,为控制系统的反馈提供依据。
控制器采用高性能微处理器,实现控制算法的实时计算。
驱动器则负责将控制器的指令转化为机械臂的动力。
2. 软件设计软件设计主要包括控制系统算法设计及程序设计。
控制系统算法包括位置控制、速度控制、力控制等,采用现代控制理论,如PID控制、模糊控制等。
程序设计则采用模块化设计思想,便于后期维护和升级。
3. 控制系统架构六自由度机械臂控制系统采用分级控制架构,包括上位机、控制器和驱动器三级。
上位机负责发送任务指令及监控系统状态,控制器负责计算控制指令并输出给驱动器,驱动器则负责将控制指令转化为机械臂的动力。
三、运动学仿真运动学仿真是指通过数学模型模拟机械臂的运动过程,为控制系统的设计和优化提供依据。
本文采用MATLAB/Simulink软件进行运动学仿真。
1. 建立数学模型根据机械臂的结构参数及运动规律,建立其数学模型。
包括连杆长度、关节角度、坐标变换等参数的数学描述。
2. 创建仿真模型在MATLAB/Simulink中创建六自由度机械臂的仿真模型,包括各关节的驱动器、传感器及控制器等部分。
根据数学模型设置仿真参数,如关节角度范围、运动速度等。
3. 仿真分析进行仿真分析,观察机械臂的运动过程及性能指标,如位置精度、速度稳定性等。
根据仿真结果对控制系统进行优化和调整,提高机械臂的作业效率和稳定性。
六自由度机械臂控制系统设计与运动学仿真

六自由度机械臂控制系统设计与运动学仿真六自由度机械臂控制系统设计与运动学仿真摘要:机械臂在现代工业自动化领域中扮演着重要的角色。
为了更好地应对复杂的工业任务,提高生产效率和精度,本文设计了一套六自由度机械臂控制系统,并利用运动学仿真进行了验证。
文章首先介绍了机械臂的概念及其应用领域,然后详细介绍了六自由度机械臂的结构、运动学原理以及控制系统设计方案。
最后,通过运动学仿真实验验证了设计方案的可行性和稳定性,为进一步进行实际应用提供了有力支持。
一、引言机械臂是一种能够模拟人类手臂运动的机械装置,广泛应用于工业制造、物流配送、医疗辅助等领域。
随着自动化技术的发展,机械臂正在不断发展和完善。
其中,六自由度机械臂由于其结构灵活、多功能和高精度的特点,成为研究和应用较多的一种类型。
二、六自由度机械臂结构与运动学原理六自由度机械臂由机械臂底座、第一关节、第二关节、第三关节、第四关节、第五关节和末端执行器组成。
每个关节都有一个自由度,使得机械臂可以在六个方向上进行运动。
机械臂的运动是通过电机控制与驱动的。
机械臂的运动学原理是通过求解机械臂的位置、速度和加速度,来实现机械臂的运动控制。
机械臂的位置可以通过关节角度得到,而关节角度可以通过编码器和传感器实时获取。
机械臂的速度和加速度可以通过微分、反向运动学求解得到。
利用运动学原理,可以在给定任务下控制机械臂的精准运动。
三、六自由度机械臂控制系统设计方案本文设计的机械臂控制系统采用了嵌入式控制器进行控制。
主要原因是嵌入式控制器具有体积小、功耗低、响应速度快等优点,能够满足机械臂控制系统的需求。
控制系统主要包括关节驱动模块、通信模块、控制算法和人机交互界面。
其中,关节驱动模块用于控制机械臂的运动,通信模块用于与上位机进行数据传输,控制算法用于实现机械臂的运动控制,人机交互界面用于操作和监控机械臂的运动状态。
四、运动学仿真实验与结果分析为了验证设计方案的可行性和稳定性,本文进行了运动学仿真实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2005 03 11;修返日期:2005 05 24基金项目:国家 863 计划资助项目(2001AA 423230);中新联合研究计划项目;湖北省自然科学基金(2003ABA 002)六自由度机械手三维运动仿真研究*陈幼平,马志艳,袁楚明,周祖德(华中科技大学机械科学与工程学院,湖北武汉430074)摘 要:以六自由度机械手三维运动仿真为背景,介绍了利用Ope nGL 实现机械手运动仿真的有效方法,重点分析了机械手运动学模型的构建以及运动轨迹规划的实现。
对于一般的机械手运动仿真系统,该实例具有一般普遍性。
关键词:Open GL ;机械手;三维运动仿真;轨迹规划中图法分类号:TP242 文献标识码:A 文章编号:1001 3695(2006)06 0205 03R esearch on S i m u l ati on of 3D M oti on for 6 DOF M an i pu latorC HEN Y ou p i ng ,MA Zh i y an ,YUAN Chu m i ng,ZHOU Zu de(Colle g e o f M ec han ic a l Sc i ence &E ng i n ee ring,Huazhong Universit y of S cie n c e &T ec hnology ,W uhan Hu bei 430074,Ch i na )Abstract :The effecti ve met hod of a sm i u lati on syste m ofm anipu l atorw it h Open GL based on t he sm i ulati on of 3D m otion for6 DOF m an i pu lator i s presented .The constructi on of k i neti cm odel and pat h p lann i ng are anal yzed e m phaticall y .To the usual 3D sm i u lati on syste m ofm anipu l ator ,the instance is un i versal reference .Key words :Open GL ;M an i pu l ator ;Sm i ulati on of 3D Moti on ;Path Planni ng 科学可视化、计算机仿真和虚拟现实是近年来计算机仿真领域的三大热门技术,而这三大热门技术的核心均是三维真实感图形的显示与交互。
其中机器人三维运动仿真技术在机器人的研究与应用中发挥着重要的作用。
它对于在实际工作中机器人行走路径的生成、工作空间防碰撞等具有十分重要的现实意义[1,2]。
在我国某些核电站的设备检修工作中,目前采用的机器人检修系统全部是国外的软硬件设备。
在使用过程中,对于工作对象的尺寸变更难以适应,而且对工作人员有较高的使用要求,不能根据实际使用要求定制软硬件功能。
本文根据实际项目经验,对检修机器人三维运动仿真部分进行了介绍。
1 三维实体建模1 1 仿真方案的确定进行机器人仿真的三维实体建模工作方案一般有如下几种:!使用VRM L 和Jav a3D 在一般的微机上构造轻量级的仿真平台,可应用于网络功能要求较高的机器人运动仿真。
VRM L 和Java3D 的跨平台性、网络化和强大的可编程能力,对于实现网络化机器人仿真不失为一种简单、廉价而有效的手段。
∀使用虚拟样机技术。
通过在PRO /E 或其他三维环境下建立的机器人三维模型和在ADAM S 环境下建立的力学模型对机器人进行仿真研究。
主要应用于检验机器人各部件的设计性能以及部件之间的兼容性,并检查整机的综合设计性能,实现高质量、快速、低成本的设计。
#在W i ndows 环境下配合某些三维建模工具如Autodesk Inventor 或3D M ax 等,使用V is ua lC++工具调用O pen GL 图形库中的函数,实现三维运动仿真。
O penGL 是SG I 公司开发的,作为一种三维工具软件包在交互式三维图形建模能力和编程方面具有无可比拟的优越性,可以灵活方便地实现二维和三维的高级图形技术。
由于其强大的图形功能和跨平台的能力,已经成为事实上的图形标准,广泛应用于科学可视化、实体造型、CAD /CAM 、模拟仿真等诸多领域。
目前,M icroso ft ,S G I ,IB M 等大公司都采用了O pen G L 作为三维图形标准。
特别是随着PC 性能的不断提升和微软的加入,使得在微机上实现三维真实感图形的显示与交互成为可能,也为广大用户提供了在微机上使用以前只能在高性能图形工作站上运行各种软件的机会。
另外,由于系统中涉及较多的机械手正、逆运动学方程求解问题,因而采用V C 作为编程语言,一方面可以方便地调用O pen G L 图形库函数;另一方面有利于算法的实现[3]。
1 2 仿真实体的绘制在本系统中,三维实体的绘制采用了以下方法来实现:(1)对于结构比较复杂而控制要求简单的工作对象或者其他附件,使用O penGL 直接绘制是一件十分烦琐的工作。
而3D M ax 是一个相当好的流行建模工具,通过对简单几何形体进行并、交、切等布尔运算和曲面编辑等功能就能构造出复杂的几何形体。
在完成复杂的建模后,输出3DS 格式文件,再通过一些相关工具软件(如3D Explorati on)可以生成O penGL 格式的C++数据文件,直接导入到VC 工程中,稍加修改就可完成复杂模型的绘制工作。
(2)对于结构简单而控制要求较复杂的机械手各轴,可直接使用Open GL 提供的三维建模函数完成绘制[1]。
在此过程中,对各轴的缩放、位置、角度的调整主要使用函数g lSca lef(),g l T ranslatef(),g l R otate f()来完成,为使绘制出来的各轴形象逼真,可对各轴进行相应的材质、光照设置;在进行轴之间进行装∃205∃第6期陈幼平等:六自由度机械手三维运动仿真研究配时,需要使用矩阵堆栈来保证预留对各轴控制接口的正确性,其函数原型是g l Push M a tr i x(),g l Pop M atri x (),另外,本文所介绍的机械手属于双端协调工作方式,所以装配还受到工作模式的动态控制;为使仿真显示的图形变化连续,一般使用O pen GL 提供的缓存交换函数auxS w apBuffers()来实现双缓存绘制。
三维实体建模的原理图和效果图分别如图1、图2所示。
2 运动学建模运动学的建模任务是整个系统运动分析及轨迹规划的基础,主要工作是完成对机械手位姿描述和坐标变换的分析,设置机械手的各连杆坐标系,确定各连杆的齐次坐标变换矩阵,建立机械手的运动学方程并求解。
六自由度机械手采用六个旋转关节按照图3所示的方法装配而成,建立的坐标系包括:!世界坐标系{W };∀机械手基座坐标系{O };#机械手连杆坐标系{1,2,%,6};&机械手末端工具坐标系{T }。
2 1 运动学方程的建立及正解首先计算各个连杆坐标系的变换矩阵,变换矩阵中包括了机械手连杆结构尺寸参数。
将连杆坐标系{i}相对于{i -1}的变换i -1i T 称为连杆变换。
每一个连杆变换i -1i T 是经由以下四个子变换得到的:!绕x i -1旋转 角;∀绕y i -1旋转 角;#绕z i -1旋转 角;&将坐标系原点移到坐标{i -1}下的点:i -1p i 0=(x,y,z )T 。
其中三次旋转是相对于固定坐标系{i -1},得到相应的旋转矩阵i -1i R xy z 与i -1p i 0,从而可以得到从坐标系{i -1}到坐标系{i}的齐次变换i -1i T [4]。
在本文介绍的机械手中,六个关节均为转动关节,对于转动关节i ,连杆变换i -1i T 是关节转动角度!i 的函数。
根据连杆变换的齐次矩阵式和连杆参数,可求得各连杆变换矩阵01T,12T,23T,34T,45T ,56T 。
据此,可推导出机械手末端连杆相对于基座坐标系的运动学方程,将各个连杆变换i -1i T (i =1,2,%,6)相乘,得手臂变换矩阵06T ,它是六个关节变量!1,!2,%,!6的函数,表示末端连杆坐标系{6}相对于基坐标系{O }的描述:06T (!1,!2,%,!6)=01T(!1)12T (!2)%56T (!6(1)由此方程可解出n x ,n y ,n z ,o x ,o y ,o z ,a x ,a y ,a z ,p x ,p y ,p z ;方程式(1)表示机械手的手臂变换矩阵06T ,它描述末端连杆坐标系{6}相对于基坐标系{O }的位姿,是机械手运动分析和位姿确定的基础。
机械手在仿真运动过程中,其末端位姿状态的实时显示即是由它来确定的。
2 2 运动学反解运动反解主要讨论上述位姿运动方程的反解问题,即求由机械手坐标系的笛卡尔空间到关节空间(即所有关节转角)的逆变换,以求解各关节转角!i [4]。
采用代数法反解,将机械手的运动方程写为0T 6=n x o x a x p xn y o y a y p y n z o z a z p z 01=(2)T 1(!1)1T 2(!2)2T 3(!3)3T 4(!4)4T 5(!5)5T 6(!6)若末端连杆的位姿矢量已经给定,即n,o,a 和p 为已知,则可反向求出各关节变量的值。
为此,可用相应的逆变换矩阵左乘式(2)两边,可将指定的关节变量!i 分离出来,从而求解。
运动学反解分两步进行:先解!3,!2,!1(腕部位置),再解!4,!5,!6(腕部姿态),可以得到运动到达指定位姿的机械手各轴状态角度。
在反解过程中可以看出,对于该机械手同一种手部位姿可能存在着八种关节转角的组合,如图4所示。
图4 运动学多解示意图在实际应用中,应根据机器人实际结构选取其中最优的一组解(如行程最短、功率最省、受力最好、回避障碍),建立对反解值进行划分的规范。
在仿真系统算法中,为使机器人在最短时间完成任务,采取了行程最短的方案,即对各转动关节根据其单位转角对机器人位姿的影响设定其权值,然后据此对各反解分别计算机械手各关节运动加权和,并选取加权和最小的一组可行解作为反解的最终解。
3 运动轨迹规划机械手的轨迹是指机器人在运动过程中的位移、速度和加速度。
而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹,首先对机器人的任务、运动路径和轨迹进行描述,然后在机器人运动学和动力学的基础上,研究在关节空间和笛卡尔空间中机器人运动的轨迹规划和轨迹生成方法。