合并同类项练习题 课前小测(含答案)

合集下载

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项之杨若古兰创作一、选择题1 .计算223a a +的结果是( )A.23aB.24aC.43aD.44a2 .上面运算准确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .以下计算中,准确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .以下合并同类项准确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .以下计算准确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2 (D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________.10.计算:=-x x 53_________。 11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________.三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a+--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y+;请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=1 25.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。 27.有如许一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是准确的,请你通过计算说明为何?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,缘由可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b=-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+-=-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。17.(1)()()y x xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+- (2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++-- =)5253()33()38331(22222y y xy xy x x x ++-++-=2y当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯= (2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=-(212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=-(2132x y +)+(2113x +)=25473166x y ++=(2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+-()()2254128xy xy x x =-+-24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26.-827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-∴此题的结果与x 的取值有关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y +∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y =∴原式=21(2)12-⨯+=3。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

人教版七年级数学上册第2单元第2节《合并同类项》课后练习题(附答案)

人教版七年级数学上册第2单元第2节《合并同类项》课后练习题(附答案)

人教版七年级数学上册第2单元第2节《合并同类项》课后练习题(附答案)2.2 整式的加减第1课时 合并同类项1、若y x y x y x b a 2234-=+-,则b a +=2、三角形三边长分别为x x x 13,12,5,则这个三角形的周长为 ;当cm x 2=时,周长为 cm 。

3、若单项式m y x 22与-331y x n 是同类项,则n m +的值是 。

4、下列各组中的两式是同类项的是( )A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 5、下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项; ③x 2-与2x -是同类项; ④4321y x 与347.0y x -是同类项 A .1个 B .2个 C .3个 D .4个 6、下列各式中,与y x 2是同类项的是( )A .2xyB .xy 2C .y x 2-D .223y x7、下列式子中正确的是( )A .ab b a 33=+B .143-=-mn mnC .4221257a a a =+D .2229495xy x y xy -=- 8、若323y x m -与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19、一个单项式减去22y x -等于22y x +,则这个单项式是( )A .22xB .22yC .22x -D .22y -10、求单式327y x 、322y x -、323y x -、322y x 的和。

11、合并下列各式中的同类项。

(1)b a ab b a ab b a 2228.44.162.0++---(2)222614121x x x --(3)222234422xy y x xy xy xy y x -++--(4)2238347669a ab a ab +-+-+-(5)22222222215912bc a bc a abc bc a abc bc a -+--+12、先化简,再求值。

合并同类项50题(有答案)

合并同类项50题(有答案)
(6) 与 ( )
2. 判断下列各题中的合并同类项是否正确,对打√,错打
(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )
(3)8x ( ) (4) ( )
(5)5ab+4c=9abc ( ) (6) ( )
(7) ( ) (8) ( )
3.与 不仅所含字母相同,而且相同字母的指数也相同的是( )
22.计算:(1) ;
(2)5(m-n)+2(m-n)-4(m-n)。
23.先化简,再求值: ,其中 , .
答案:
1.⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ
2.⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ
3.C 4.B 5.C 6. a b a b 同类项 7.字母 相同字母的次数
-5x2, -7x21
9、k=3
10、2,4
28.已知: ,求 的值。
参考答案
一、选择题
1.D
2.C
3.D
4.A
5.D
6.D
7.C
8.D
9.A
10.C
二、填空题
11. (答案不唯一)
12.4;
13.3
14. ;
15.
16.
三、解答题
17.解: = ( )=
当 时,
18. =
= ( )=
19.解:
原式=
20.原式 ,当 时,原式 ;
21.原式= ;-2;
= x2-x2+3xy +2y2-x2+xy-2y2= 4xy-x2
当x=1,y=3时 4xy-x2=4×1×3-1=11。
22.(1)
A. B. C. D. x
4.下列各组式子中,两个单项式是同类项的是( )

合并同类项50题(有答案)

合并同类项50题(有答案)

合并同类项50题(有答案)题目1:合并同类项:3x + 2x - 5x解答:3x + 2x - 5x = (3 + 2 - 5)x = 0x = 0题目2:合并同类项:4y + 7y - 2y解答:4y + 7y - 2y = (4 + 7 - 2)y = 9y题目3:合并同类项:2a^2 + 5a^2 - 3a^2解答:2a^2 + 5a^2 - 3a^2 = (2 + 5 - 3)a^2 = 4a^2题目4:合并同类项:6x^2y - 3x^2y + 2x^2y解答:6x^2y - 3x^2y + 2x^2y = (6 - 3 + 2)x^2y = 5x^2y题目5:合并同类项:8xy^2 - 2xy^2 + 3xy^2解答:8xy^2 - 2xy^2 + 3xy^2 = (8 - 2 + 3)xy^2 = 9xy^2题目6:合并同类项:-5a^3b + 2a^3b - 4a^3b解答:-5a^3b + 2a^3b - 4a^3b = (-5 + 2 - 4)a^3b = -7a^3b 题目7:合并同类项:3x^2 - 2x^2 + 6x^2解答:3x^2 - 2x^2 + 6x^2 = (3 - 2 + 6)x^2 = 7x^2题目8:合并同类项:4xy - 3xy + 5xy解答:4xy - 3xy + 5xy = (4 - 3 + 5)xy = 6xy题目9:合并同类项:7a^2b^2 - 2a^2b^2 + 3a^2b^2解答:7a^2b^2 - 2a^2b^2 + 3a^2b^2 = (7 - 2 + 3)a^2b^2 =8a^2b^2题目10:合并同类项:-6x^3y^2 + 4x^3y^2 - 2x^3y^2解答:-6x^3y^2 + 4x^3y^2 - 2x^3y^2 = (-6 + 4 - 2)x^3y^2 = -4x^3y^2题目11:合并同类项:3a + 2a - 4a + 5a解答:3a + 2a - 4a + 5a = (3 + 2 - 4 + 5)a = 6a题目12:合并同类项:-2b - 3b + 7b - 4b解答:-2b - 3b + 7b - 4b = (-2 - 3 + 7 - 4)b = -2b题目13:合并同类项:5x^2 + 6x^2 - 3x^2 + 2x^2解答:5x^2 + 6x^2 - 3x^2 + 2x^2 = (5 + 6 - 3 + 2)x^2 =10x^2题目14:合并同类项:8xy - 2xy + 3xy - 6xy解答:8xy - 2xy + 3xy - 6xy = (8 - 2 + 3 - 6)xy = 3xy题目15:合并同类项:-3a^2b + 2a^2b - 4a^2b + 6a^2b解答:-3a^2b + 2a^2b - 4a^2b + 6a^2b = (-3 + 2 - 4 + 6)a^2b = 1a^2b = ab解答:5x^3 - 3x^3 + 2x^3 - 6x^3 = (5 - 3 + 2 - 6)x^3 = -2x^3题目17:合并同类项:4y^2 - 2y^2 + 7y^2 - 3y^2解答:4y^2 - 2y^2 + 7y^2 - 3y^2 = (4 - 2 + 7 - 3)y^2 = 6y^2题目18:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目19:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目20:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目21:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5 + 2 - 4 + 3)a^2b = -4a^2b题目22:合并同类项:3x^3 - 2x^3 + 6x^3 - 4x^3解答:3x^3 - 2x^3 + 6x^3 - 4x^3 = (3 - 2 + 6 - 4)x^3 = 3x^3解答:4y^2 - 3y^2 + 7y^2 - 2y^2 = (4 - 3 + 7 - 2)y^2 = 6y^2题目24:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目25:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目26:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目27:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5。

七上计算:合并同类项50题(含答案)

七上计算:合并同类项50题(含答案)

合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( )A 。

23aB 。

24a C.43a D 。

44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+D.12322=-y y3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a —1)0=1。

4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x -- B 。

51x + C 。

131x -- D 。

131x +5 .下列合并同类项正确的是A 。

2842x x x =+ B.xy y x 523=+C 。

43722=-x x D 。

09922=-ba b a6 .下列计算正确的是( )(A)3a+2b=5ab (B )5y 2-2y 2=3 (C)-p 2-p 2=-2p 2 (D )7m —m=77 .加上—2a —7等于3a 2+a 的多项式是 ( )A 、3a 2+3a —7B 、3a 2+3a+7C 、3a 2-a-7D 、—4a 2-3a-78 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A 。

5050B 。

100C 。

50 D. —50二、填空题9 .化简:52a a -=_________。

10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________.三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式—9X 3+2X 2+4X —2的差。13.化简:2(2a 2+9b )+3(—5a 2—4b )14.化简:2222343423x y xy y xy x -+--+。

15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值。

合并同类项50题(有答案)

合并同类项50题(有答案)

合并共类项博项训练50题(一)之阳早格格创做一、采用题1 .下列式子中精确的是( )A.3a+2b=5abB.752853x x x =+C.y x xy y x 22254-=-D.5xy-5yx=02 .下列各组中,没有是共类项的是A 、3战0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与3 .下列各对于单项式中,没有是共类项的是( )31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是共类项,那么a 、b 的值分别是( ) A.12a b =⎧⎨=⎩ B.02a b =⎧⎨=⎩ C.21a b =⎧⎨=⎩ D.11a b =⎧⎨=⎩ 5 .下列各组中的二项没有属于共类项的是 ( )A.233m n 战23m n -B.5xy 14D.2a 战3x 6 .下列合并共类项精确的是( )(A)628=-a a ; (B)532725x x x =+ ;(C) b a ab b a 22223=-; (D)y x y x y x 222835-=--7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是8 .x 是一个二位数,y 是一个一位数,如果把y 搁正在x 的左边,那么所成的三位数表示为A.yxB.x y +9 .某班公有x 名教死,其中男死占51%,则女死人数为( )A 、49%xB 、51%xC 、49%x D 、51%x 10.一个二位数是a ,另有一个三位数是b ,如果把那个二位数搁正在那个三位数的前里,组成一个五位数,则那个五位数的表示要领是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、挖空题11.写出322x y -的一个共类项_______________________.12.单项式113a b a x y +--与345y x 是共类项,则a b -的值为_________。13.若2243a b x y x y x y -+=-,则a b +=__________.14.合并共类项:._______________223322=++-ab b a ab b a15.已知622x y 战313m nx y -是共类项,则29517m mn --的值是_____________.16.某公司职工,月人为由m 元删少了10%后达到_______元。三、解问题17.先化简,再供值:)4(3)125(23m m m -+--,其中3-=m . 18.化简:)32()54(722222ab b a ab b a b a --+-+. 19.化简供值: )3()3(52222b a ab ab b a +--,其中31,21==b a . 20.先化简,后供值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简供值:]4)32(23[522a a a a ----,其中21-=a 22.给出三个多项式:212x x + ,2113x +,2132x y +; 请您采用其中二个举止加法或者减法运算,并化简后供值:其中1,2x y =-=.23.先化简,再供值:()()2258124xy x x xy ---+,其中1,22x y =-=. 24.先化简,再供值。(5a2-3b2)+(a2+b2)-(5a2+3b2)其中a=-1 b=125.化简供值(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中 x=-3 ,y=-126.先化简再供值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2。27.有那样一讲题:“估计322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲共教把“12x =”错抄成了“12x =-”但是他估计的截止也是精确的,请您通过估计证明为什么?28.已知:21(2)||02x y ++-= ,供22222()[23(1)]2xy x y xy x y +----的值。参照问案一、采用题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C二、挖空题11.322x y (问案没有唯一)12.4;13.314.ab b a -25;15.1-16.11.m三、解问题17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m 当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+- =22)35()247(ab b a ++--( )=228ab b a +19.解:本式=32 20.本式mn =,当2,1-==n m 时,本式2)2(1-=-⨯=;21.本式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (来括号2分) 当1,2x y =-=,本式=2(1)(1)326-+-+⨯= (2)(212x x +)-(2132x y +) =3x y - (来括号2分) 当1,2x y =-=,本式=(1)327--⨯=-(212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= 23.解:本式2258124xy x x xy =-+-()()2254128xy xy x x =-+-24xy x =+ 当1,22x y =-=时,本式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:本式=5a2-3b2+a2+b2-5a2-3b2=-5b2+a2当a=-1 b=1本式=-5×12+(-1)2=-5+1=-425.33. 26. -827.解:∵本式=32232332323223x x y xy x xy y x x y y ---+--+- ∴此题的截止与x 的与值无闭。28.解:本式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y +∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴本式=21(2)12-⨯+=3 合并共类项博项训练50题(二)1. 推断下列各题中的二个项是没有是共类项,是挨√,错挨⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2 ( )⑶bc a 22与-2c ab 2 ( )(4)4xy 与25yx ( )(5)24 与-24 ( )(6) 2x 与22 ( )2. 推断下列各题中的合并共类项是可精确,对于挨√,错挨⨯(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )(3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( )(7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) y x 221没有但是所含字母相共,而且相共字母的指数也相共的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,二个单项式是共类项的是( ) 2a b a2 与b a 2 C. xy 与y x 22n 2y5.下列估计精确的是( )222=-x x C. 7mn-7nm=0 D.a+a=2a2b 与32ab 皆含字母,而且皆是一次,皆是二次,果此-4a 2b 与32ab 是7.所含 相共,而且 也相共的项喊共类项.222276513844x x x y xy x -+-+--+中,24x 的共类项是 ,6的共类项是 .9.正在9)62(22++-+b ab k a 中,没有含ab 项,则k= 22+k k y x 与n y x 23的战已5n y x 2,则k= ,n= 11. 若-3xm-1y4与2n 2y x 31+是共类项,供m,n.12、3x2-1-2x-5+3x-x2 13、-0.8a2b-6ab-1.2a2b+5ab+a2b14、222b ab a 43ab 21a 32-++- 15、6x2y+2xy-3x2y2-7x-5yx-4y2x2-6x2y16、4x2y-8xy2+7-4x2y+12xy2-4; 17、a2-2ab+b2+2a2+2ab - b2.18、化简:2(2a2+9b)+3(-5a2-4b)19、.化简:2222343423x y xy y xy x -+--+.20.先化简,后供值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,供上式的值.21.先化简,再供值:x2 + (-x2 +3xy +2y2)-(x2-xy +2y2),其中x=1,y=3.22.估计:(1)()()32223232y xy y x xy y ---+-; (2)5(m-n)+2(m-n)-4(m-n)。23.先化简,再供值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y . 问案:1.⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ 2.⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ 3. C 4.B 5.C 6. a b a b 共类项 7.字母 相共字母的次数-5x2, -7x2 19、k=310、2,411 m=3 n=212、2x2+x-613、-a2b-ab14、22b ab 21a 1217-+ 15、-7x2y2-3xy-7x16、4xy2+317、3a218、解:本式=4a2+18b-15a2-12b=-11a2+6b19、解:本式=)44()32()33(2222y y xy xy x x -+-+-=-xy20、本式=21a b -=1.21、x2 + (-x2 +3xy +2y2)-(x2-xy +2y2)= x2-x2 +3xy +2y2-x2+xy-2y2 = 4xy-x2当x=1,y=3时 4xy-x2=4×1×3-1=11。22.(1) ()()y x xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。23、解:本式=2222252338533331y xy x y xy x x ++++-- =)5253()33()38331(22222y y xy xy x x x ++-++-=2y 当21-=x ,y=2时,本式=4 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档