常用傅立叶变换表

合集下载

常用傅立叶变换表

常用傅立叶变换表
时域信号
弧频率表示的
傅里叶变换
注t)+b・h(t)
iGV) + b・H(f)
线性
2
g(f —q)
「如叮G(f)
时域平移
3
广勺(t)
W)
频域平移,变换2的频域对应
4
g(at)
如果hl值较大,则g(m)会收缩 到原点附近,而间丿会扩
散并变得扁平.当丨$丨趋向 无穷时,成为Delta函数。
2
由变换1和25得到,应用了:cos (at)=(尹 +e F)/2.
22
sin(at)
灯-刼-幻+知
21
由变换1和25得到
23
tn
(2;)网⑺
这里,n是一个.6®(3)是狄拉 克5函数分布的力阶微分。这个变换 是根据变换7和24得到的。将此变 换与1结合使用,我们可以变换所 有。
24
1
1
一沏•sgn(/)
Mrec,(0
变换10的频域对应。矩形函数是理 想的低通滤波器,是这类滤波器对冲 击的响应。
11
sine2(at)
右'trl(0
tri是
12
tri (at)
变换12的频域对应
13
e~°^
/7T(“2
低•…
exp(-a r)的傅里叶变换是他 本身.只有当Re(a)> 0时,这是 可积的。
14
cos(al2)
W)
15
sin (at2)
卜(卓)
16
e-a|t|
2a
3>0
a2H-47T2/2
17
1丽
1

变换本身就是一个公式
18

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。

下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。

频域表示,1。

2. 正弦函数:
时域表示,sin(2πft)。

频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。

频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。

频域表示,T sinc(fT)。

5. 三角脉冲信号:
时域表示,tri(t/T)。

频域表示,T^2 sinc^2(fT)。

6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。

频域表示,exp(-π^2f^2σ^2)。

7. 指数衰减信号:
时域表示,exp(-at)。

频域表示,1/(a+j2πf)。

8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。

频域表示,1/(j2πf) + 1/2。

9. 周期方波信号:
时域表示,square(t/T)。

频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。

以上仅列举了一些常见的信号及其傅里叶变换形式。

傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。

常用傅立叶变换表完整版

常用傅立叶变换表完整版

常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。

5 傅里叶变换的二元性性质。

通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。

矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。

11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。

14
15
16 a>0
17
变换本身就是一个公式。

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表傅里叶变换(Fourier Transform)是一种重要的信号处理方法,可以将一个信号表示为频域上的复合波。

在实际应用中,我们常常需要用到一些常用的傅里叶变换表来简化计算过程。

下面是常用的傅里叶变换表。

1. 频域采样点数与时间域采样点数的对应关系:当时间域采样点数为 N 时,对应的频域采样点数为 N/2+1。

采样点数越多,则频域分辨率越高,对于高频信号的分析会更准确。

2. 傅里叶变换对称性:傅里叶变换具有一定的对称性,包括对称性、共轭对称性和反对称性。

利用这些对称性,我们可以简化计算过程。

- 偶函数的频谱是实数,在频域中左右对称;- 奇函数的频谱是虚数,具有共轭对称;- 复合偶函数和复合奇函数的频谱会具有反对称性。

3. 常用信号的傅里叶变换表:以下是一些常见的信号的傅里叶变换表:- 矩形脉冲信号(Rectangular Pulse)的傅里叶变换:矩形脉冲信号在时域上是一个宽度有限且幅度为常数的信号。

其傅里叶变换在频域上是一个 sinc 函数,表达式为:F(w) = wwww(ww/2) / (ww/2)其中,w是信号的宽度,w是频率。

- 高斯函数(Gaussian Function)的傅里叶变换:高斯函数在时域上是一个钟形曲线,其傅里叶变换仍然是一个高斯函数。

傅里叶变换的表达式如下:F(w) = ww^(−w^2w^2/4w^2)其中,w是高斯函数的标准差,w是时间尺度。

- 正弦函数(Sine Function)的傅里叶变换:正弦函数在时域上是一个连续的周期函数。

其傅里叶变换也是一个周期函数,表达式为:F(w) = 0.5j (w(w−w)−w(w+w))其中,w是正弦函数的频率。

4. 傅里叶变换的性质:傅里叶变换具有很多重要的性质,包括线性性质、平移性质、尺度性质、卷积定理等。

这些性质在信号处理中起到了重要的作用,可以简化傅里叶变换的计算过程。

- 线性性质:傅里叶变换具有线性性质,即线性组合的函数的傅里叶变换等于各个函数的傅里叶变换之和。

常用傅里叶变换表

常用傅里叶变换表

G ⑴ 1 2 3 g(M) 4 a a 5 6 7 2T T dt n 注释 5(0=| 盘・g ⑴+ b ・h(t\ 线性 QT 如吋G(f) 曲一。

) 时域平移 频域平移,变换2的频域对应 如果Ml 值较大,则ggt )会收缩到原 会扩散并变得 b (-f) 阳刀切 傅里叶变换的微分性质 变换6的频域对应弧频率表示的 傅里叶变换 傅里叶变换的二元性性质。

通过交换 时域变量f 和频域变量 3得到. '用 G(f) 时域信号 「gg 叫才 J _8 点附近,而kl 扁平.当| a |趋向无穷时,成为 Delta 函数。

18 S ( 3 )代表狄拉克S函数分布• 这个变换展示了狄拉克S函数的重要性:该函数是常函数的傅立叶变换19 变换23的频域对应20 由变换3和24得到.21 cos(at)2223242526 sgn(t)27 u(f) 咐-卸+刃十知由变换1和25得到,应用了欧拉公式:cos( at) = ( e iat + e - iat) / 2.卩(于一薛)一d"十盏) 2i-仙*Sgll:/)一卅黑;'唧(f)"(刀由变换1和25得到这里,n是一个自然数.S (n)( 3 ) 是狄拉克S函数分布的n阶微分。

这个变换是根据变换7和24得到的。

将此变换与1结合使用,我们可以变换所有多项式。

此处sgn( 3)为符号函数;注意此变换与变换7和24是一致的.变换29的推广.变换29的频域对应.此处u(t)是单位阶跃函数;此变换根据变换1和31得到.。

常见傅里叶变换对照表

常见傅里叶变换对照表

常见傅里叶变换对照表常见傅里叶变换对照表傅里叶变换是一种将信号从一个域(时间域或空间域)转换到另一个域(频率域或波数域)的方法,它在各个领域中都有广泛应用。

下面是一份常见傅里叶变换对照表,供大家参考。

一、离散时间傅里叶变换(Discrete Fourier Transform,DFT)离散时间傅里叶变换是一种将离散时间域信号转换为频率域信号的方法。

它在数字信号处理、通信等领域广泛应用。

DFT可以通过FFT(快速傅里叶变换)算法高效地实现。

二、快速傅里叶变换(Fast Fourier Transform,FFT)快速傅里叶变换是一种将信号从时间域转换到频率域的算法。

它是DFT的一种优化,能够在O(n log n)的时间复杂度内完成。

FFT在图像处理、语音信号处理、音频信号处理等领域都有广泛应用。

三、离散余弦变换(Discrete Cosine Transform,DCT)离散余弦变换是一种将信号从时域转换到频域的方法,它在数字信号压缩、音频信号处理、图像处理等领域中广泛应用。

DCT与DFT相比,具有更好的压缩性能,因此在多媒体领域中更常用。

四、小波变换(Wavelet Transform)小波变换是一种将信号分解成多个不同频率的小波形式的方法。

它在信号处理、压缩、去噪、模式识别等领域中被广泛用于分析。

五、海森矩阵变换(Haar Transform)海森矩阵变换是小波变换的一种变体,它将输入信号分解成长度为2的小块,并对每个小块进行平均和差分运算。

海森矩阵变换在压缩、减少存储需求等方面有应用。

综上所述,傅里叶变换及其衍生算法在数字信号处理、音频信号处理、图像处理、通信等领域中有广泛的应用。

不同的变换方法适用于不同的信号处理任务,因此了解不同的变换方法及其应用场景是十分必要的。

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版
(实偶函数)
(为虚、奇函数)
7
奇偶性
(为实、偶函数)
(为实、偶函数)
(为实、奇函数)
(为虚、奇函数)
8
尺度展缩

9
时域延迟

10
频移
▲初值:
(条件:)
(条件:)
(条件: )
11
时域微分
▲ 函数的性质
·
·


·
·
* ;

·
·


·
12
时域积分
பைடு நூலகம்13
频域微分
14
频域积分
15
时域卷积
16
频域卷积
17
时域抽烟
序号
性质名称
▲信号功率:
(直流分量+各次谐波分量)
▲能量信号:
1.一个信号只能是功率信号或
能量信号二者之一,但也可
以两者都不是。
2.直流信号与周期信号为功率
信号;收敛和有界的非周期
信号为能量信号。
3.功率信号能量为∞,能量信
号功率为0.
1
唯一性
2
齐次性
3
叠加性
4
线性
5
折叠性
6
对称性
(一般函数)
(为实、偶函数)
18
频域抽样
常用时间信号傅里叶变换
常用非周期信号的傅里叶变换
周期信号的傅里叶变换
序号

1
1

2

3
单位直流信号1

4
5
6
一般周期信号

其中
或,
或 ,

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
信号与系统中的傅里叶变换对照表是一种工具,用于将时域信号转换为频域信号。

下面是常见的信号与系统中常用的傅里叶变换对照表:
1. 常数信号:
时域表示,x(t) = A.
频域表示,X(f) = Aδ(f)。

2. 单位冲激信号(单位脉冲):
时域表示,δ(t)。

频域表示,1。

3. 正弦信号:
时域表示,x(t) = Acos(2πf0t + φ)。

频域表示,X(f) = A/2[δ(f f0) + δ(f + f0)] 4. 脉冲信号:
时域表示,x(t) = rect(t/T)。

频域表示,X(f) = T sinc(fT)。

5. 阶跃信号:
时域表示,u(t)。

频域表示,U(f) = 1/(j2πf) + 1/2δ(f)。

6. 指数信号:
时域表示,x(t) = Ae^(αt)。

频域表示,X(f) = 1/(α j2πf)。

7. 矩形信号:
时域表示,x(t) = rect(t/T)。

频域表示,X(f) = T sinc(fT) e^(-jπfT)。

8. 三角信号:
时域表示,x(t) = tri(t/T)。

频域表示,X(f) = T sinc^2(fT)。

以上是一些常见信号的傅里叶变换对照表。

傅里叶变换对照表
可以帮助我们在信号处理和系统分析中方便地进行时域和频域之间
的转换。

需要注意的是,这里给出的仅是一些常见信号的变换对照表,实际应用中可能还会涉及到其他信号类型和更复杂的变换形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18
δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立
时域信号
弧频率表示的
傅里叶变换
注释
1
线性
2
时域平移
3 频域平移, 变换2的频域对应 4
如果值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。

5 傅里叶变换的二元性性质。

通过交换时域变量 和频域变量 得到
. 6 傅里叶变换的微分性质 7 变换6的频域对应
8
表示 和 的卷积 — 这就是卷积定理
9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。

矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。

11 tri 是三角形函数
12
变换12的频域对应 13
高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。

14
15
16 a>0 17
变换本身就是一个公式。

相关文档
最新文档