常用傅立叶变换表
常用傅立叶变换表

弧频率表示的
傅里叶变换
注t)+b・h(t)
iGV) + b・H(f)
线性
2
g(f —q)
「如叮G(f)
时域平移
3
广勺(t)
W)
频域平移,变换2的频域对应
4
g(at)
如果hl值较大,则g(m)会收缩 到原点附近,而间丿会扩
散并变得扁平.当丨$丨趋向 无穷时,成为Delta函数。
2
由变换1和25得到,应用了:cos (at)=(尹 +e F)/2.
22
sin(at)
灯-刼-幻+知
21
由变换1和25得到
23
tn
(2;)网⑺
这里,n是一个.6®(3)是狄拉 克5函数分布的力阶微分。这个变换 是根据变换7和24得到的。将此变 换与1结合使用,我们可以变换所 有。
24
1
1
一沏•sgn(/)
Mrec,(0
变换10的频域对应。矩形函数是理 想的低通滤波器,是这类滤波器对冲 击的响应。
11
sine2(at)
右'trl(0
tri是
12
tri (at)
变换12的频域对应
13
e~°^
/7T(“2
低•…
exp(-a r)的傅里叶变换是他 本身.只有当Re(a)> 0时,这是 可积的。
14
cos(al2)
W)
15
sin (at2)
卜(卓)
16
e-a|t|
2a
3>0
a2H-47T2/2
17
1丽
1
丽
变换本身就是一个公式
18
信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。
下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。
频域表示,1。
2. 正弦函数:
时域表示,sin(2πft)。
频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。
频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。
频域表示,T sinc(fT)。
5. 三角脉冲信号:
时域表示,tri(t/T)。
频域表示,T^2 sinc^2(fT)。
6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。
频域表示,exp(-π^2f^2σ^2)。
7. 指数衰减信号:
时域表示,exp(-at)。
频域表示,1/(a+j2πf)。
8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。
频域表示,1/(j2πf) + 1/2。
9. 周期方波信号:
时域表示,square(t/T)。
频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。
以上仅列举了一些常见的信号及其傅里叶变换形式。
傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。
完整版常用傅立叶变换表

xinc(出)
同
产(5
变换10的频域对应.矩形函数是理 想的低通滤波器,sinc函数是这类 滤波器对反因果冲击的响应.
11
siii〞(出
6'tri(0
tri是三角形函数
12
tri(tzZ)
Lsmc2图
变换12的频域对应
13
高斯函数exp( - at2)的傅里叶 变换是他本身.只有当Re( a) > 0时,这是可积的.
24
1
-f7T-sgn(/)
止匕处sgn(⑴)为符号函数;注意止匕变 换与变换7和24是一致的.
25
1
1
变换29的推广.
E(昌6gli0
26
后gn(£)
1i^L
变换29的频域对应.
27
U(Q
此处u(t)是单位阶跃函数;此变换 根据变换1和31得到.
时域信号
弧频率表小的 傅里叶变换
注释
/ kG(3)£3面
g⑴三,27r /-co
劭4?圾3M
1
匕g⑴ +6.h(t)
R・G(f) +b・H(力
线性
2
g(£ —s
)
e-t27rafG(f)
时域平移
3
网g⑴
卜〔〜霜
频域平移,变换2的频域对应
4
皿出〕
如果
m值较大,那么g〔出〕会收缩
ES
工G〔竺〕到原点附近,而।&1口,会扩散并变得扁平.当|a|趋向 无分时,成为Delta函数.
5
幽
k-/)i
傅里叶变换的二元性性质.通过 交换时域及量力和频域发量3得到.
6
即g(t)dtn
常用傅里叶变换表

G ⑴ 1 2 3 g(M) 4 a a 5 6 7 2T T dt n 注释 5(0=| 盘・g ⑴+ b ・h(t\ 线性 QT 如吋G(f) 曲一。
) 时域平移 频域平移,变换2的频域对应 如果Ml 值较大,则ggt )会收缩到原 会扩散并变得 b (-f) 阳刀切 傅里叶变换的微分性质 变换6的频域对应弧频率表示的 傅里叶变换 傅里叶变换的二元性性质。
通过交换 时域变量f 和频域变量 3得到. '用 G(f) 时域信号 「gg 叫才 J _8 点附近,而kl 扁平.当| a |趋向无穷时,成为 Delta 函数。
18 S ( 3 )代表狄拉克S函数分布• 这个变换展示了狄拉克S函数的重要性:该函数是常函数的傅立叶变换19 变换23的频域对应20 由变换3和24得到.21 cos(at)2223242526 sgn(t)27 u(f) 咐-卸+刃十知由变换1和25得到,应用了欧拉公式:cos( at) = ( e iat + e - iat) / 2.卩(于一薛)一d"十盏) 2i-仙*Sgll:/)一卅黑;'唧(f)"(刀由变换1和25得到这里,n是一个自然数.S (n)( 3 ) 是狄拉克S函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
此处sgn( 3)为符号函数;注意此变换与变换7和24是一致的.变换29的推广.变换29的频域对应.此处u(t)是单位阶跃函数;此变换根据变换1和31得到.。
常用傅里叶变换表

线性
时域平移
频域平移
如果值较大,则会收缩到原
点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为Delta函数。
傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.
傅里叶变换的
变换
表示和的卷积—这就是卷积定理
矩形脉冲
变换
想的低通滤波
滤波器
tri
变换
高斯函数
换
这是可积的。
a>0
变换本身就是
δ
这个变换展示要性:
变换
由变换
由变换
式
由变换
这里
是狄拉克
这个变换是根将此变换与换
此处
换与
变换
变换
此处
根据变
u
狄拉克梳状函理解从连续到。
常用傅里叶变换表

时域信号弧频率表示的傅里叶变换注释1线性2时域平移3频域平移, 变换2的频域对应4如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当| a | 趋向无穷时,成为Delta函数。
5傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.6傅里叶变换的微分性质7变换6的频域对应8表示和的卷积—这就是卷积定理9矩形脉冲和归一化的sinc函数10变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
11tri是三角形函数12变换12的频域对应13高斯函数exp( − αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。
14 1518δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换19变换23的频域对应20由变换3和24得到.21由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e−iat) / 2.22由变换1和25得到23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所16a>017变换本身就是一个公式有多项式。
此处sgn(ω)为符号函数;注意此变换24与变换7和24是一致的.25变换29的推广.26变换29的频域对应.此处u(t)是单位阶跃函数; 此变换根27据变换1和31得到.28u(t)是单位阶跃函数,且a > 0.狄拉克梳状函数——有助于解释或34理解从连续到离散时间的转变.。
常用傅里叶变换表

时域信号
弧频率表示的
傅里叶变换
注释
1
线性
2
时域平移
3
频域平移, 变换2的频域对应
4
如果
值较大,则会收缩到原
点附近,而会扩散并变得
扁平. 当 | a | 趋向无穷时,成为
Delta 函数。
5
傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到.
6
傅里叶变换的微分性质
7
变换6的频域对应
表示和的卷积—这就是卷积定理
矩形脉冲和归一化的
变换
想的低通滤波器,
滤波器对反因果冲击的响应。
tri
变换
高斯函数
换是他本身
这是可积的。
a>0
变换本身就是一个公式δ
这个变换展示了狄拉克要性:
变换
由变换
由变换
式
由变换
这里
是狄拉克
这个变换是根据变换将此变换与
换所有多项式。
此处
换与变换
变换
变换
此处
根据变换
u
狄拉克梳状函数
理解从连续到离散时间的转变
Welcome !!! 欢迎您的下载,资料仅供参考!。
常用傅立叶变换表

18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该
时域信号
弧频率表示的
傅里叶变换
注释
1
线性
2
时域平移
3 频域平移, 变换2的频域对应 4
如果
值较大,则
会收缩
到原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到.
6 傅里叶变换的微分性质 7
变换6的频域对应
8
表示 和 的卷积 — 这
就是
9 和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11 tri 是
12
变换12的频域对应 13 exp( αt 2) 的傅里叶变换是
他本身. 只有当 Re(α) > 0时,这是可积的。
14
15 16 a>0
17 变换本身就是一个公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时域信号弧频率表示的
傅里叶变换
注释
1 线性
2 时域平移
3 频域平移, 变换2的频域对应
4 如果值较大,则会收缩
到原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta函数。
5 傅里叶变换的二元性性质。
通过交换时域变量和频域变量
得到.
6 傅里叶变换的微分性质
7 变换6的频域对应
8
表示和的卷积—这
就是卷积定理
9 矩形脉冲和归一化的sinc函数
10 变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
11 tri是三角形函数
12 变换12的频域对应
13 高斯函数 exp( −αt2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17 变换本身就是一个公式
18 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e−iat) / 2.
22 由变换1和25得到
23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
24 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的.
25 变换29的推广.
26 变换29的频域对应.
27 此处u(t)是单位阶跃函数; 此变换根据变换1和31得到.
28 u(t)是单位阶跃函数,且a > 0.
34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.。