表2-1 常用函数傅立叶变换表
常用的傅里叶变换+定理+各种变换的规律(推荐)

਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
㪉
[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它
rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a
常用傅立叶变换表

弧频率表示的
傅里叶变换
注t)+b・h(t)
iGV) + b・H(f)
线性
2
g(f —q)
「如叮G(f)
时域平移
3
广勺(t)
W)
频域平移,变换2的频域对应
4
g(at)
如果hl值较大,则g(m)会收缩 到原点附近,而间丿会扩
散并变得扁平.当丨$丨趋向 无穷时,成为Delta函数。
2
由变换1和25得到,应用了:cos (at)=(尹 +e F)/2.
22
sin(at)
灯-刼-幻+知
21
由变换1和25得到
23
tn
(2;)网⑺
这里,n是一个.6®(3)是狄拉 克5函数分布的力阶微分。这个变换 是根据变换7和24得到的。将此变 换与1结合使用,我们可以变换所 有。
24
1
1
一沏•sgn(/)
Mrec,(0
变换10的频域对应。矩形函数是理 想的低通滤波器,是这类滤波器对冲 击的响应。
11
sine2(at)
右'trl(0
tri是
12
tri (at)
变换12的频域对应
13
e~°^
/7T(“2
低•…
exp(-a r)的傅里叶变换是他 本身.只有当Re(a)> 0时,这是 可积的。
14
cos(al2)
W)
15
sin (at2)
卜(卓)
16
e-a|t|
2a
3>0
a2H-47T2/2
17
1丽
1
丽
变换本身就是一个公式
18
信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。
下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。
频域表示,1。
2. 正弦函数:
时域表示,sin(2πft)。
频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。
频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。
频域表示,T sinc(fT)。
5. 三角脉冲信号:
时域表示,tri(t/T)。
频域表示,T^2 sinc^2(fT)。
6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。
频域表示,exp(-π^2f^2σ^2)。
7. 指数衰减信号:
时域表示,exp(-at)。
频域表示,1/(a+j2πf)。
8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。
频域表示,1/(j2πf) + 1/2。
9. 周期方波信号:
时域表示,square(t/T)。
频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。
以上仅列举了一些常见的信号及其傅里叶变换形式。
傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。
傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
常用傅里叶变换表

G ⑴ 1 2 3 g(M) 4 a a 5 6 7 2T T dt n 注释 5(0=| 盘・g ⑴+ b ・h(t\ 线性 QT 如吋G(f) 曲一。
) 时域平移 频域平移,变换2的频域对应 如果Ml 值较大,则ggt )会收缩到原 会扩散并变得 b (-f) 阳刀切 傅里叶变换的微分性质 变换6的频域对应弧频率表示的 傅里叶变换 傅里叶变换的二元性性质。
通过交换 时域变量f 和频域变量 3得到. '用 G(f) 时域信号 「gg 叫才 J _8 点附近,而kl 扁平.当| a |趋向无穷时,成为 Delta 函数。
18 S ( 3 )代表狄拉克S函数分布• 这个变换展示了狄拉克S函数的重要性:该函数是常函数的傅立叶变换19 变换23的频域对应20 由变换3和24得到.21 cos(at)2223242526 sgn(t)27 u(f) 咐-卸+刃十知由变换1和25得到,应用了欧拉公式:cos( at) = ( e iat + e - iat) / 2.卩(于一薛)一d"十盏) 2i-仙*Sgll:/)一卅黑;'唧(f)"(刀由变换1和25得到这里,n是一个自然数.S (n)( 3 ) 是狄拉克S函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
此处sgn( 3)为符号函数;注意此变换与变换7和24是一致的.变换29的推广.变换29的频域对应.此处u(t)是单位阶跃函数;此变换根据变换1和31得到.。
常用信号的傅里叶变换

ω1 Sa (ω 1t ) 2 cos ω c t f 5 ( t ) = f ( t ) 2 cos ω c t = π
东南大学 信息科学与工程学院
若再有 6 (ω ) = (ω ωc )t1
f 6 (t ) = f 5 (t t1 )
则
若又有 7
=
2ω1
π
Sa [ω1 (t t1 )] cos[ ω c (t t1 )]
东南大学 信息科学与工程学院
8. 周期信号
An jnΩt 2π fT (t ) = ∑ e , Ω = T n=∞ 2
+∞
+∞ +∞
An FT ( jω) = ∑ 2πδ(ω nΩ) = π ∑ An δ(ω nΩ) 则 n=∞ 2 n=∞
东南大学 信息科学与工程学院
9. 周期性冲激序列
f (t ) = =
π 4ω = {δ(ω+ ωc ) + δ(ω ωc )}+ 2 2 2 j(ω ωc )
东南大学 信息科学与工程学院
东南大学 信息科学与工程学院
4. 尺度变换(比例)性质:
1 ω f ( at ) F( j ) |a | a , a ≠ 0
< Bτ = 常数 >
例:
f ( at t 0 ) ?
j
ω
a
t0
=
dF ( j ω ) j ω dF ( j ω ) j e = e dω dω
j (ω +
π
2
)
东南大学 信息科学与工程学院
8. 卷积定理 (1) 时域卷积定理: f1 (t ) * f 2 (t ) F1 ( jω) F2 ( jω)
常见的傅里叶变换+定理+各种变换的规律(推荐)
= Gaus(u)
结论:
Gaus(x) F.T. Gaus(u)
7
五、余弦函数的傅里叶变换
F [cos(2πu0x) ] 其中 u0 = 1 / Τ Τ 为周期 ∞
= ∫ [cos2πu0 x ]• exp[− j2πux]dx
−∞
∫ =
∞ −∞
1 2
[exp(
j
2πu0
x)
x a
= a sin(πau) πau
= a sinc(au)
证明:根据相似性定理
6
四、高斯函数的傅里叶变换
Gaus(x) = exp[- πx2]
推导一维情况
F [Gaus(x) ]= F { exp[- πx2]}
∞
= ∫ exp[-πx2 ]• exp[− j2πux]dx −∞
−∞ 1/ 2
= ∫ exp(− j2πux)dx
rect
x a
=
1, 0,
−1/ 2
=1
1/2
exp(− j2πux)
− j2πu
-1/2
= sin(πu) πu
结论:
x ≤a 2
其它
= sinc(u) rect(x) F.T. sinc(u)
5
普遍型
F
rect
˄অ㕍㹽ሴˈ㕍ゴ㹽ሴਈᇭ˅
˄˅ս〫ᇊ⨶˖ྲ᷌ F^g x ` G fx
ࡉᴹ F^g x a ` G fx exp j2Sfxa
࠭ᮠ൘オฏѝⲴᒣ〫ˈᑖᶕ仁ฏѝⲴ〫
਼ᰦ F^g x exp j2Sfax ` G fx fa ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
常用fourier变换表
常用fourier变换表傅里叶变换是一种重要的数学工具,常用于信号处理、图像处理、通信等领域。
以下是一些常用的傅里叶变换表:1.Fourier变换对:•时间域函数x(t) 的傅里叶变换X(f):F{ x(t) } = X(f) = ∫[−∞, +∞] x(t) * exp(-j2πft) dt•频率域函数X(f) 的傅里叶逆变换x(t):F^−1{X(f)} = x(t) = ∫[−∞, +∞] X(f) * exp(j2πft) df2.常见信号的傅里叶变换:•常数信号的傅里叶变换:F{1} = δ(f) (其中,δ(f) 表示狄拉克δ函数)•单频正弦信号的傅里叶变换:F{cos(2πf0t)} = 0.5 * [ δ(f - f0) + δ(f + f0) ]•矩形脉冲信号的傅里叶变换:F{rect(t / T)} = T * sin(πfT) / (πfT) (其中,rect(t / T) 表示矩形函数)•高斯函数的傅里叶变换:F{exp(-πt^2)} = exp(-πf^2)3.常见性质和公式:•傅里叶变换的线性性质:F{a * x(t) + b * y(t)} = a * X(f) + b * Y(f)•频率平移性质:F{ x(t - t0) } = X(f) * exp(-j2πft0)•时域和频域的缩放性质:F{ x(a * t) } = (1 / |a|) * X(f / a)•卷积定理:F{ x(t) * y(t) } = X(f) * Y(f) (其中* 表示卷积操作)这些是一些常见的傅里叶变换表中的内容,可以帮助我们理解信号在时域和频域之间的关系,进而应用到实际问题的分析和处理中。
请注意,这里只给出了部分常见的表达式和性质,实际的傅里叶变换表还包含更多的公式和变换对,具体的应用需要根据具体问题进行深入研究和理解。
傅里叶变换和工程窗函数
傅里叶变换和工程窗函数感谢数学手册傅里叶变换1. 傅里叶级数周期函数的傅里叶级数(简称傅氏级数)是由正弦函数和余弦函数项组成的三角函数。
周期为T的任一周期函数f(t),若满足下列狄里克雷条件:1) 在一个周期内只有有限个不连续点;2) 在一个周期内只有有限个极大和极小值点;T/2ftdt(),,T/23) 积分存在,则f(t)可展开为如下傅氏级数:,1ftaantbnt,,,,,()(cossin),0nn2n1, (F-1)bann式中系数和由下式给出:T/22aftntdtn,,,,()cos;(0,1,2,...,)n,T,T/2T/22bftntdtn,,,,()sin;(0,1,2,...,)n,T,T/2,,,2/T式中称为角频率周期函数f(t)的傅氏级数还可以写为复数形式(或指数形式):,jnt,ftae(),,nn,,, (F-2) 式中系数T/21,,jntaftedt,()n,jt,Tetjt,,cossin,,,T/2 其中欧拉公式如果周期函数f(t)具有某种对称性质,如为偶函数、奇函数,或只有偶次谐波,则傅氏级数中的某些项为0,系数公式可以简化,下表列出了具有几种对称性质的周期函数f(t)的傅氏级数简化结果:ba对称性特点 nnT/24只有余ftft()(),,ft()ftntdt,()cos0 1111, 偶函数弦项 T0T/2只有正4ftft()(),,,ft()ftntdt,()sin0 2222 奇函数, 弦项 T0只有偶次谐波T/2T/2只有偶44ft()ftntdt,ftntdt,()cos()sin333,, 数n ftTft(/2)(),,TT3300只有奇次谐波T/2T/2只有奇44ft()ftntdt,ftntdt,()cos()sin444,, 数n ftTft(/2)(),,,TT44002. 傅里叶积分和傅里叶变换任一周期函数只要满足狄里克雷条件,便可以展开为傅氏级数,对于非周期函数,因为其周期T为趋于无穷大,不能直接用傅氏级数展开,而要做某些修改,这样就引出了傅里叶积分。
常用傅里叶变换表
弧频率表示的时域信号注释傅里叶变换线性1时域平移2频域平移3, 变换2的频域对应会收缩值较大,则如果4会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。
Delta 通过傅里叶变换的二元性性质。
5交换时域变量和频域变量.得到6傅里叶变换的微分性质变换76的频域对应表示和的卷积—这8就卷积定9矩形脉冲和归一化的sinc函数变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。
tri是三角形函数 1112变换12的频域对应2t) ?α的傅里叶变 exp( 高斯函数换是他本身. 只有当 Re(α) 13> 0时,这是可积的。
1415a>0 1617变换本身就是一个公式δ(ω) 代表狄拉克δ函数分布.这个变换展示了狄拉克18δ函数的重要性:该函数是常函数的傅立叶变换19变换23的频域对应20由变换3和24得到.由变换1和25得到,应用了欧拉公21iat?iat eeat) / 2.式: cos() = ( +22由变换1和25得到n)(n(ω) . δ这里, 自然数是一个n阶微分。
函数分布的是狄拉克δ这个变换是根据变换237和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
此处sgn(ω)为符号函数;注意此变24换与变换7和24是一致的.25变换29的推广.26变换29的频域对应.ut)是单位阶跃函数此处(; 此变换27根据变换1和31得到.uta > 0.,且()是单位阶跃函数28狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.。