初中数学规律题解题基本方法------图形找规律
初中数学找规律的方法

初中数学找规律的方法
初中数学中,找规律常用的方法有以下几种:
1. 数列法:观察数列的前几项,找出数列的通项公式。
常见的数列有等差数列、等比数列、斐波那契数列等。
2. 图形法:观察图形的形状、位置、图案等特征,找出图形的规律。
可以通过绘制表格、拆分图形等方式来帮助分析。
3. 代数法:将题目中的未知数设定为x或n,建立方程式,通过解方程找出规律。
可以通过代入法、消元法、因式分解等方法解方程。
4. 反推法:从结果出发,通过逆向的思维反推出规律。
常用于找等式、判断大小关系等题型。
5. 分类讨论法:针对题目中的不同情况,进行分类讨论,找出每种情况下的规律。
可借助列举法或排除法等帮助分类。
以上方法仅为初中数学中常用的找规律方法,具体应根据题目特点和个人理解选择合适的方法。
在实际解题中,多练习、多思考,对各种类型题目进行归纳总结,是提高找规律能力的有效途径。
(完整版)初中数学规律题解题基本方法------图形找规律

初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
个数 1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
初中数学找规律方法

初中数学找规律方法初中数学找规律是数学学习的一种重要方法,它帮助学生发现数学问题中的共性和规律,从而提高问题解决能力和创新思维能力。
在初中数学中,找规律的方法十分灵活多样,有多种途径可以应用。
下面将介绍一些常用的初中数学找规律方法。
一、观察法观察法是找规律的基本方法,通过观察题目中给出的数列、图形、关系式等,寻找其中的共性和变化规律。
观察法的核心是要“看得出来”,通过观察发现数列中的数字之间的关系、图形之间的特征以及等式左右两边的关系等。
例如,观察下面的数列:3,6,9,12,15,...通过观察可以发现,这个数列中的每一个数字都是前一个数字加上3得到的。
因此可以得出这个数列的通项公式为An=3n,其中An表示第n个数。
二、列举法列举法是找规律的一种常见方法,它通过列举一些具体的数来整理和总结问题中的规律。
通过列举不同情况下的数值,可以发现问题中不变的部分和变化的部分,从而找到问题的解决思路。
例如,要找出一个数,它的各位数相加等于5,并且能被6整除。
我们可以列举出符合条件的数:5、14、23、32等等。
通过这些列举的数,我们可以发现它们的个位数循环为5、1、7、3,因此可以得出结论:符合条件的数的个位数循环出现5、1、7、3三、归纳法归纳法是将已知的特例或者部分情况往大处归纳,找出其中的共性和规律,从而推广到更一般的情况。
通过归纳法,我们可以将具体的问题抽象出一般的结论。
例如,我们要找出一共有多少个球队参加三场比赛,每场比赛两队相比,每个球队参加且只参加一场比赛。
我们可以先从小规模情况开始研究,当球队个数为2时,只有一支球队,当球队个数为3时,只有两支球队,当球队个数为4时,只有3支球队。
通过这些列举的特殊情况,我们可以发现球队个数n和比赛场次T的关系为T=n-1、因此,我们可以得出结论,n个球队一共有n-1场比赛。
四、递推法递推法是通过已知的一些数据,推导出下一个数据的方法。
当问题中给出了一些起始的数值,我们可以通过对这些数值进行观察和分析,并找出它们之间的递推关系,从而得到下一个数据的值。
初中数学规律题解题基本方法

初中数学规律题解题基本方法初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学规律题解题基本方法

初中数学规律题解题基本方法初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a 为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n 位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1 所以,第n位数是:2+ n²-1= n²+1 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
初中数学找规律方法

初中数学找规律方法
有以下几种常见的方法可以帮助初中生找规律:
1. 列举法:将问题中的数据逐个列出来,观察数据之间的变化规律。
可以将数据写在表格中,帮助整理和比较。
2. 画图法:将问题中的数据用图形表示出来,可以是折线图、条形图等等。
观察图形的形状、趋势和关系,看是否能够找到规律。
3. 规律性观察法:观察问题中的数据,看是否有一些明显的数学规律。
例如,是否存在等差数列、等比数列等等。
可以通过计算差、比等来推断规律。
4. 逆向思维法:如果无法直接找到规律,可以尝试逆向思考,即从问题的答案出发,推断出问题中的规律。
通过反向推理,可以发现一些隐藏的规律。
5. 试错法:尝试不同的方法和假设,然后验证它们是否符合问题的要求。
如果结果不正确,再进行调整和尝试。
综合运用以上方法,可以帮助初中生更好地找到数学问题中的规律。
(完整版)初中数学规律题解题基本方法------图形找规律

(完整版)初中数学规律题解题基本方法------图形找规律初中数学规律题解题基本方法------图形找规律1.探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
4.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81的矩形,如此进行下去,试利用图形提示的规律计算:=+++++++256112816413211618141215.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是例8.观察下列图形并填表。
个数1 2 3 4 5 6 7…n32121 41 811611126.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n 个图案中有白色地面砖块。
……7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子来表示。
……8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17,,。
②4,5,7,11,19,,。
③10,20,21,42,43,,,174,175。
④4,9,19,34,54,,,144。
⑤45,1,43,3,41,5,,,37,9。
⑥6,1,8,3,10,5,12,7,,。
初一数学找规律经典题技巧解析

初一数学找规律经典题技巧解析
1. 嘿,你知道吗?有些初一数学找规律的题就像隐藏的宝藏等你去发现!比如说那道找数字规律的题,5、10、15、20,这不是很明显每个数都在递增嘛,这不就是等差数列嘛,哈哈,是不是很简单?技巧就是要先观察数字的变化趋势哟!
2. 哇塞,同学们,找规律的时候可要看仔细啦!像那种图形规律题,一堆图形摆在一起,可别眼花缭乱啦!比如三角形、圆形、正方形这样排列的,那肯定是有一定周期的呀,你得从这些图形中找到那个关键的点啊!记住了没?
3. 哎呀呀,初一数学找规律也没那么难嘛!就好比那道找式子规律的题,先别急着下手,好好看看式子之间的关系呀!为啥这个式子会这样变化,这里面肯定有门道的呀!你难道不想把它弄明白?
4. 嘿,初一的小朋友们,找规律的时候要大胆去猜呀!好比那道根据已知条件猜下一个数的题,不要怕错,先大胆猜一个,说不定就猜对了呢!这就像是在探险,勇敢迈出第一步才可能找到宝藏呀!
5. 哇哦,有时候找规律真的超有趣的!比如说那道找规律填数字,前几个数是2、4、6、8,这不是偶数序列嘛,简单得很呐!大家可别想得太复杂啦!
6. 哈哈,初一数学找规律的经典题,那就是一个个小挑战呀!就像那道要你根据几个数推出下一组数的,你就得像个小侦探一样去分析,去推理呀!能不能行呀你?
7. 哎哟喂,找规律可是门技术活呀!比如说那道通过几个算式找规律的,那算式里肯定藏着线索呢,瞪大眼睛好好找呀,你肯定能行的!
8. 哼,初一数学找规律一点都不可怕!像有些先递增后递减的规律题,多想想,多分析,肯定能找到突破口!加油吧同学们,这些题都能被你们拿下的!
我的观点结论就是:初一数学找规律需要细心观察、大胆猜测、认真分析,只要掌握了技巧,这些题都不在话下!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学规律题解题基本方法------图形找规律
1.探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒? 2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐 人。
⑵按照上图方式继续排列桌子,完成下表:
3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n 张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
4.如图,把一个面积为1的正方形分等分成两个面积为2
1
的矩形,接着把面积为2
1的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为8
1的矩形,如此进行下去,试利用图形提示的规律计算:
=+++++++256
11281641321161814121
5.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。
1
1
6.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……
7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……
8.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
⑦0,1,1,2,3,5, , 。
⑧180,155,131,108, , 。
⑨5,15,45,135, , 。
⑩60,63,68,75, , 。
9.(2010年山东省青岛市)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要
19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.
【关键词】规律
第三个
第一个
第二个
4
2
==s n
8
3==s n
12
4==s n
16
5==s n
…
第13题图
1条 2条 3条
10、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.
11. 如图用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
(1)第4个图案中有白色地面砖__________块; (2)第n 个图案中有白色地面砖__________块.
12.现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。
13:(05山东泉州)下图是某同学在沙滩上用石于摆成的小房子.
观察图形的变化规律,写出第n 个小房子用了 块石子.
14、探索题: 如下图在一些大小相等的正方形内分别排列着一些等圆.
˙˙˙
(1) (2) (3) ① 请观察上图并填写下表 ② 你能试着表示出第n 个正方形中圆的个数吗?用你发现的规律计算出第2008个图形中有多少个圆.
(3)
(2)
(1)
15.如图,都是由若干盆花组成的形如三角形的图案,则组成第n 个图案所需花盆的总数是___________________.
* * * * * * * * * *
* * * * * * * * *
16.观察正方形图案,每条边上有)2( n n 个圆点,每个图案中圆点总数式S ,按此推断S 与n 的关系式为
17.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,通过观察可以发现:
(1)第4个图形中火柴棒的根数是 ;(2)第n 个图形中火柴棒的根数是 ; 4. ① ② ③
●●● ●●●●● ●●●●●●●
● ● ● ● ● ●
● ● ●
上面是用棋子摆成的“T ”字,按这样的规律摆下去,摆成第10个“T ”字需要多少个棋子?第n 个呢? n 的式子表示)
. 18.按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________. 19.观察如下图的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式;
n=1n=2
n=3
n=4
n=2,S=4
n=3,s=8
n=4,s=12
…… ……
①1=12; ②1+3=22; ③1+3+5=32;
④ ;
⑤ ;。