高二数学独立重复试验2
高二数学独立重复试验与二项分布2

[单选]关系数据库设计理论主要包括3个方面的内容,其中起核心作用的是()A.范式B.关键码C.数据依赖D.数据完整性约束 [单选]以下不是烟酸缺乏症病因的为()A.摄入不足B.排泄过多C.吸收不良D.药物影响 [问答题,简答题]如遇突然停电如何操作? [填空题]钢水中的C含量在()范围时连铸坯易产生纵裂、角裂,甚至产生漏钢事故。 [单选]按拣货单位分区的目的是将(),使拣取与搬运作业单元化,并简化拣取作业。A.储存单位与拣货单位分类统一B.拣货单位分类C.储存单位分类D.物品分类统一 [单选,A2型题,A1/A2型题]原核细胞型微生物的结构特点是()A.无核膜核仁B.有核膜核仁C.有完整细胞器D.有染色体E.以上都不是 [单选]行政补偿的目的是()。A.为了弥补私人为公共利益所付出的特别牺牲B.为了使公民获得充分补偿C.取得私人财产利益所有权补偿D.为了公共利益而实施管理行为 [单选]对误服强酸所引起的急性腐蚀性胃炎,下列治疗哪项是错误的()A.镁乳B.碳酸氢钠C.氢氧化铝凝胶D.牛奶E.蛋清 [单选]典型肺炎球菌肺炎的临床特征是()A.寒战、高热、胸痛、咳嗽、咳铁锈色痰B.寒战、高热、咳嗽、脓痰、呼吸困难C.寒战、高热、咳嗽、脓痰、胸膜摩擦音D.胸痛、咳嗽、脓痰、呼吸困难E.发热、咳嗽、咳痰、双肺干、湿性啰音 [问答题][综合分析题]张某是某知名软件公司开发部的高级工程师,自1995年进入公司以来,表现十分出色,每每接到任务时总能在规定时间内按要求完成,并时常受到客户的表扬。在项目进行时还常常主动提出建议,调整计划,缩短开发周期,节约开发成本。但在最近的几个月里情况发生了变 [单选,A型题]胃泡与"左侧膈下游离气"鉴别点不包括()A.气体量多少B.边缘是否有黏膜C.与膈之间是否有分隔影D.气体是否可以游离到右侧膈下E.造影检查可以区别 [填空题]7
辽宁省庄河市高级中学人教B版高二数学课件:选修2-3 2.2.3_独立重复试验与二项分布

第五页,编辑于星期日:二十点 五十四分。
问题 1 的推广: 一般地, 在 n 次独立重复试验中,用 X 表示事件
A 发生的次数,设每次试验中事件 A 发生的概率是 p , 那么事件 A 恰好发生 k 次的概率 Pn (X=k) 是多少呢?
1
2 3
4
65 81
第十八页,编辑于星期日:二十点 五十四分。
(3)设Y为该学生在首次停车前经过的路口次数,求Y的 分布列.(若没有停车,认为Y=4)
分析:(3)Y=0时,该生第一个路口就遇到红灯; Y=1时
,该生第一个路口遇到绿灯,并且第二个路口遇到红 灯.依次递推.
所以
P(Y=k2)=4
“相同条件下”等价于各次试验的结果不会受其他试 验的影响。
第四页,编辑于星期日:二十点 五十四分。
问题:某射手射击 1 次,击中目标的概率是 0.8,现连 续射击 3 次. ⑴第一次命中,后面两次不中的概率; ⑵恰有一次命中的概率; ⑶恰有两次命中的概率.
解: 记事件“第 i 次击中目标”为 Ai ,则 A1、A2、A3 相 互独立.且 P( A1 ) P( A2 ) P( A3 ) 0.8 .
8 16 16 2 答:按比赛规则甲获胜的概率为 1 .
2
第十页,编辑于星期日:二十点 五十四分。
C
C54 0.64 0.4 C55 0.65 0.34
第十一页,编辑于星期日:二十点 五十四分。
3.某人对一目标进行射击,每次命中率都是
0.25,若使至少命中 1 次的概率不小于 0.75,至
来洪臣-独立重复试验与二项分布

课题:独立重复试验与二项分布人教B版选修2-3第二章第二单元第三课时授课教师:东北育才学校来洪臣一、教学内容解析本节内容是高中数学人民教育出版社B版《选修2-3》中的2.2.3节独立重复试验与二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似服从二项分布,它的实际应用广泛,理论上也非常重要.本节课是从生活实际入手,了解独立重复试验,推导概率公式,掌握二项分布,实现建立数学模型,认知数学理论,进而应用于实际,本节课的重点是独立重复试验,以及对伯努利概型和有关二项分布问题的理解.二、教学目标设置(1)理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布.(2)通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,学生充分体会知识的发现过程,并体会由特殊到一般,由具体到抽象的数学思想方法.学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.三、学生学情分析通过前面的学习,高二学生已经掌握了如下概率和统计的基础知识:等可能事件概率、互斥事件概率、离散型随机变量的分布列、条件概率、相互独立事件概率的求法等有关内容.高中学生虽然具有一定的抽象思维能力,但是从实际中抽象出数学模型对于学生来说还是比较困难的,需要老师的启发引导,在启发引导下学生能够概括n次独立重复试验的特点,能够总结出n次独立重复试验中事件A发生k次的概率公式.难点是二项分布模型的构建.四、教学策略分析从掷硬币和掷骰子的试验入手,引导学生总结归纳独立重复试验的概念,深刻理解独立重复试验的内涵.遵循特殊到一般的认识规律,学生由浅入深地探索伯努利概型的概率公式并引入二项分布.学生利用所学知识解决他们熟悉的生活实例中的概率问题,体会“数学来源于生活,并服务于生活”的理念,进而产生成就感.五、教学过程设计六、课堂教学目标检测(1)通过学生的举例感受学生对n次独立重复试验概念的理解,如果同学们很顺畅的举出正确的实例,我们再进行下一环节.(2)例1是教材中的例子目的检测学生对实际问题中如何使用伯努利概型公式,明确n、p、k的含义.让一位同学到黑板上展示自己的书写过程,第5问设计成求分布列目的让孩子对前面的分布列的知识进一步复习。
高中数学 课时跟踪检测(十三)独立重复试验与二项分布 新人教A版高二选修2-3数学试题

课时跟踪检测十三一、题组对点训练对点练一 n 次独立重复试验1.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582解析:选B 当ξ=12时,表示前11次中取到9次红球,第12次取到红球,所以P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.2.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下并放回,如果两球的之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )A.16625B.4625C.624625D.96625解析:选D 依题意得获奖的概率为1+5C 26=25(注:当摸出的两个球中有标号为4的球时,两球的之积是4的倍数,有5种情况;当摸出的两个球中没有标号为4的球时,要使两球的之积是4的倍数,只有1种情况,即摸出的两个球的标号为2,6),因此所求概率为C 34×⎝ ⎛⎭⎪⎫253×⎝ ⎛⎭⎪⎫1-25=96625.故选D. 3.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该学生被选中的概率是( )A .C 45×⎝ ⎛⎭⎪⎫354×25B .C 55×⎝ ⎛⎭⎪⎫355C .C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355D .1-C 35×⎝ ⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252解析:选C 该学生被选中包括“该学生做对4道题”和“该学生做对5道题”两种情形.故所求概率为C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355.4.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625. 答案:625对点练二 二项分布5.下列随机变量X 不服从二项分布的是( )A .投掷一枚均匀的骰子5次,X 表示点数为6出现的次数B .某射手射中目标的概率为p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要的射击次数C .实力相等的甲、乙两选手进行了5局乒乓球比赛,X 表示甲获胜的次数D .某星期内,每次下载某数据被病毒感染的概率为0.3,X 表示下载n 次数据电脑被病毒感染的次数解析:选B 选项A ,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为16,每一次试验都是独立的,故随机变量X 服从二项分布;选项B ,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X 不服从二项分布;选项C ,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X 服从二项分布;选项D ,由二项分布的定义,可知被感染次数X ~B (n,0.3).6.将一枚硬币连掷7次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选D 由题意,知C k 7⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫127-k =C k +17⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫127-k -1,∴C k 7=C k +17,∴k +(k +1)=7,∴k =3.7.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件为相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.解:由题意ξ~B ⎝ ⎛⎭⎪⎫3,25,则 P (ξ=0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫253=8125. 所以随机变量ξ的分布列为对点练三 二项分布的应用8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值X 围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A 由题意,知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,所以0.4≤p <1,故选A.9.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.3281B.1127C.6581D.1681解析:选B 因为随机变量ξ~B (2,p ) ,所以P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13.则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14⎝ ⎛⎭⎪⎫1-133·⎝ ⎛⎭⎪⎫131=1127.故选B. 10.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一名儿童和一位成年人先后分别转动一次游戏转盘,得分情况记为(a ,b )(假设儿童和成年人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X ,求X 的分布列. 解:(1)某个家庭在游戏中获奖记为事件A ,则符合获奖条件的得分包括(5,3),(5,5),(3,5),共3种情况,∴P (A )=13×13+13×13+13×13=13.∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝ ⎛⎭⎪⎫5,13. ∴P (X =0)=C 05×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫235=32243,P (X =1)=C 15×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫234=80243, P (X =2)=C 25×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243, P (X =3)=C 35×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫232=40243, P (X =4)=C 45×⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243, P (X =5)=C 55×⎝ ⎛⎭⎪⎫135×⎝ ⎛⎭⎪⎫230=1243. ∴X 的分布列为X 0 1 2 3 4 5 P32243802438024340243102431243二、综合过关训练1.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n解析:选D 所有同学都不能通过测试的概率为(1-p )n ,则至少有1位同学能通过测试的概率为1-(1-p )n.2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为( )A.6581B.2527 C.827D.79解析:选C 已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827. 3.已知某班有6个值日小组,每个值日小组中有6名同学,并且每个小组中男生的人数相等,现从每个小组中各抽一名同学参加托球跑比赛,若抽出的6人中至少有1名男生的概率为728729,则该班的男生人数为( )A .24B .18C .12D .6解析:选A 设每个小组抽一名同学为男生的概率为p ,则由已知得1-(1-p )6=728729,即(1-p )6=1729,解得p =23,所以每个小组有6×23=4名男生,该班共有4×6=24名男生.4.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( )A.35×14B.⎝ ⎛⎭⎪⎫593×49C .C 14×⎝ ⎛⎭⎪⎫593×49D .C 14×⎝ ⎛⎭⎪⎫493×59解析:选B 取球次数X 是一个随机变量,X =4表明前3次取出的球都是黄球,第4次取出白球.这4次取球,取得黄球的概率相等,且每次取球是相互独立的,所以这是独立重复试验.设A 表示“取出的1个球是白球”,则P (A )=C 14C 19=49,P (A -)=1-49=59,故P (X =4)=P (A -A -A -A )=[P (A -)]3·P (A )=⎝ ⎛⎭⎪⎫593×49.5.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位长度,向右移动两个单位长度,所以蚂蚁在x =1处的概率为C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫131=49.答案:496.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝ ⎛⎭⎪⎫20,23,那么当X ,Y 变化时,下面关于P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为________.解析:根据二项分布的特点可知,(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个.答案:217.某居民小区有两个相互独立的安全防X 系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110p =4950,解得p =15.(2)由题意,ξ的可能取值为0,1,2,3.P (ξ=0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫1-1101⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫1-1102⎝ ⎛⎭⎪⎫1101=2431 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫1-1103⎝ ⎛⎭⎪⎫1100=7291 000,所以随机变量ξ的概率分布列为8.甲、乙两人各射击一次,击中目标的概率分别是3和4.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?解:设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A ,B 相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标},则P (C )=1-⎝ ⎛⎭⎪⎫234=6581.(2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·C 34·⎝ ⎛⎭⎪⎫343·14=18.(3)甲恰好射击5次,被中止射击,说明甲第4,5次未击中目标,第3次击中目标,第1,2两次至多一次未击中目标,故所求概率P =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132×23×⎝ ⎛⎭⎪⎫132=16243.。
高二数学独立重复试验与二项分布教案 新课标 人教版

高二数学独立重复试验与二项分布教案教学目标:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
德育目标:承前启后,感悟数学与生活的和谐之美 ,表达数学的文化功能与人文价值教学重点:独立重复试验的概念形成及二项分布公式的发现与应用教学难点:概率模型的识别与应用教学过程:一、引入课本P63引例:掷一枚图钉,针尖向上的概率为0.6,那么针尖向下的概率为 1-0.6=0.4 问题〔1〕第1次、第2次、第3次…第n 次针尖向上的概率是多少?第1次、第2次、第3次…第n 次针尖向上的概率都是0.6二、新课1、形成概念“独立重复试验〞的概念:在同样条件下进行的,各次之间相互独立的一种试验。
特点:⑴在同样条件下重复地进行的一种试验;⑵各次试验之间相互独立,互相之间没有影响;⑶每一次试验只有两种结果,即某事要么发生,要么不发生,并且任意一次试验中发生的概率都是一样的。
问题〔2〕:掷一枚图钉,针尖向上的概率为0.6,那么针尖向下的概率为1-0.6=0.4,那么连续掷3次,恰有1次针尖向上的概率是多少?分解问题〔2〕问题a 3次中恰有1次针尖向上,有几种情况?问题b 它们的概率分别是多少?问题c 3次中恰有1次针尖向上的概率是多少?引申推广:连续掷n 次,恰有k 次针尖向上的概率是2定义:在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在在n 次独立重复试验中事件A 恰好发生k 次的概率是共有3种情况: , , 123A A A 123A A A 123A A A 120.6(10.6)⨯-概率都是 即 13C 11230.6(10.6)P C =⨯⨯-0.6(10.6)k k n kn P C -=⨯⨯-()(1)k k n kn P X k C P P -==-K=0,1,2,3,……n此时称随机变量X 服从二项分布,记作X ~B(n,p)。
并称P 为成功概率。
高二数学 独立重复试验与二项分布练习题(2)

高二数学 独立重复试验与二项分布练习题(2)1.已知随机变量ξ服从二项分布,ξ~B(6,1/3),则P(ξ=2)等于( )A.3/16;B.4/243;C.13/243;D.80/2432.设某批电子手表正品率为3/4,次品率为1/4,现对该批电子手表进行测试,设第ξ次首次测到正品,则P(ξ=3)等于( ) A.)43()41(223⨯C ;B. )41()43(223⨯C ;C. )43()41(2⨯;D. )41()43(2⨯3.10个球中有一个红球,有放回的抽取,每次取出一球,直到第n 次才取得()k k n ≤次红球的概率为( ) A .2191010n k -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B .191010k n k -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .111191010k n kk n C ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭4.某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布5.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).6.A 、B 两个试验方案在某科学试验中成功的概率相同,已知A 、B 两个方案至少一个成功的概率为0.36,(1)求两个方案均获成功的概率;(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列。
7.设ξ的分布列为p(ξ=k)=,(k=0,1,2,……,10),求:(1)a ;(2)p(ξ≤2);(3)p(9<ξ<20)。
8.一批零件中有九个合格品,三个次品,安装机器时,从这批零件中随机抽取,取出的是废品则不放回,求在第一次取到合格品之前取到废品数ξ的分布列。
9.一人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.10.出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的分布列。
独立重复试验与二项分布 PPT (3)

且甲第5局比赛取胜,前4局恰好2胜2负
课堂练习:
4 1.某机器正常工作的概率是 5 ,5天内有4天正常工作的概率是( )
A.
4
4
1
5 5
B.
4
1
4
5 5
C.C54
4 5
4
1 5
D.C54
4 5
1 5
4
65
2.在4次独立重复试验中,若已知事件A至少发生一次的概率是 81
则事件A在一次试验中发生的概率是
3.某单位6个员工借助互联网开展工作,每个员工上网的概率是0.5 (相互独立),求: (1)至少3人同时上网的概率 (2)至少几人同时上网的概率是小于0.3?
(结果保留两个有效数字)
设X为击中目标的次数,则X~B(10,0.8)
(1)在10次射击中,恰有8次击中目标的概率为
PX 8 C180 0.88 1 0.8 108 0.30
(2)在10次射击中,至少8次击中目标的概率为
PX 8 PX 8 PX 9 PX 10
C180 0.88 1 0.8 108 C190 0.89 1 0.8 109
P(B0) P(A1 A2 A3) q3, P(B1) P(A1 A2 A3) P(A1A2 A3) P(A1 A2 A3) 3q2 p, P(B2) P(A1A2 A3) P(A1A2 A3) P(A1 A2 A3) 3qp2,
P(B3 ) P( A1A2 A3 ) p3.
⑴ P( A B) P( A) P(B)(当 A与B 互斥时); ⑵ P(B | A) P( AB)
P( A) ⑶ P( AB) P( A)P(B) (当 A与B 相互独立时) 那么求概率还有什么模型呢?
独立重复试验与二项分布概率作业练习含答案解析高二数学北京海淀

课时提升作业十一独立重复试验与二项分布一、选择题(每小题5分,共25分)1.已知随机变量X服从二项分布X~B,则P(X=2)= ( )A. B. C. D.【解析】选D.P(X=2)=×=.2.(2018·威海高二检测)在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为( ) A. B. C. D.【解析】选C.设事件A每次试验发生的概率为p,则1-(1-p)3=,解得p=,故事件A发生一次的概率为××=.3.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A.0.998B.0.046C.0.936D.0.954【解析】选D.P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954.4.某人参加一次考试,4道题中答对3道题则为及格,已知他的解题正确率为0.4,则他能及格的概率为( )A. B. C. D.【解析】选B.他答对3道题的概率为·0.43·(1-0.4)=0.153 6,他答对4道题的概率为0.44=0.025 6,故他能及格的概率为0.153 6+0.025 6=0.179 2=.5.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( )A.·B.·C.·D.·【解题指南】由数列{a n}的定义,S7=a1+a2+…+a7和S7=3知7次摸球中有2次摸取红球,5次摸取白球.【解析】选B.由S7=3知在7次摸球中有2次摸取红球,5次摸取白球,而每次摸取红球的概率为,摸取白球的概率为,则S7=3的概率为·.二、填空题(每小题5分,共15分)6.将一枚硬币连续抛掷5次,则正面向上的次数X的分布为__________. 【解析】由题意得,在5次独立重复试验中事件“正面向上”发生的次数为X,每次试验中事件“正面向上”发生的概率是0.5,所以X~B(5,0.5).答案:X~B(5,0.5)7.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为__________.【解析】由题意得,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为p3(1-p)7.答案:p3(1-p)78.下列例子中随机变量ξ服从二项分布的有__________.①随机变量ξ表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M<N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.【解析】对于①,设事件A为“抛掷一枚骰子出现的点数是3的倍数”,P(A)= .而在n次独立重复试验中事件A恰好发生了k次(k=0,1,2,…,n)的概率P(ξ=k)=××,符合二项分布的定义,即有ξ~B.对于②,ξ的取值是1,2,3,…,P(ξ=k)=0.9×0.1k-1(k=1,2,3,…),显然不符合二项分布的定义,因此ξ不服从二项分布.③和④的区别是:③是“有放回”抽取,而④是“无放回”抽取,显然④中n 次试验是不独立的,因此ξ不服从二项分布,对于③有ξ~B.故应填①③.答案:①③三、解答题(每小题10分,共20分)9.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛.答对4题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(1)求选手甲回答一个问题的正确率.(2)求选手甲可以进入决赛的概率.【解析】(1)设选手甲回答一个问题的正确率为p1,则(1-p1)2=,故选手甲回答一个问题的正确率p1=.(2)选手甲答了4道题进入决赛的概率为=,选手甲答了5道题进入决赛的概率为=;选手甲答了6道题进入决赛的概率为=;故选手甲可进入决赛的概率p=++=.【补偿训练】(2018·武威高二检测)某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率.(2)其中恰有3次击中目标的概率.【解析】(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确定的情况下击中目标3次,也即在第二、四次没有击中目标,所以只有一种情况,又各次射击的结果互不影响,故所求概率为P1=××××=.(2)该射手射击了5次,其中恰有3次击中目标,符合独立重复试验概率模型,故所求概率为P2=·=.10.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”“中立”“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率.(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.【解析】(1)该公司决定对该项目投资的概率为P=·+=.(2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数“中立”票张数“反对”票张数事件A 0 0 3事件B 1 0 2事件C 1 1 1事件D 0 1 2 P(A)==,P(B)==,P(C)==,P(D)==,因为A,B,C,D互斥,所以P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]根据勘察设计合同中的法定质量标准,工程设计修改必须由()负责完成。A.建设单位B.施工单位C.原设计单位D.新设计单位 [单选,A2型题,A1/A2型题]患者不宜使用胰岛素治疗的是()。A.糖尿病合并脑血管意外B.糖尿病合并急性心肌梗死C.糖尿病合并重症感染D.肥胖糖尿病患者饮食控制和运动疗法不佳E.糖尿病需急症手术 [单选,A2型题,A1/A2型题]关于疼痛康复治疗叙述不正确的是()A.药物治疗是疼痛治疗中最基本、最常用方法B.物理治疗是疼痛治疗中最基本、最常用方法C.神经病理性疼痛是急性疼痛中治疗较差的疼痛D.神经病理性疼痛需要合并使用抗痉厥药和三环类抗抑郁药E.镇痛药是主要作用于中枢神经 [问答题,简答题]目前我国铁路货车车钩有哪些主要型号? [单选,A1型题]过敏性休克,治疗应首选的药物是()。A.地塞米松B.肾上腺素C.甲氰咪胍D.低分子右旋糖酐E.间羟胺 [单选]黄体的形成、发育和功能,描述恰当的是().A.维持14天左右均退化B.分泌孕激素C.排卵后由卵泡内膜和卵泡颗粒细胞形成D.排卵后由卵泡膜形成E.排卵后由卵泡细胞形成 [单选,案例分析题]某产妇,26岁,自然分娩,产后4天突然畏寒、发热,T39.9℃,伴有恶心呕吐,下腹疼痛,存在压痛、反跳痛、腹肌紧张。最可能的诊断为下面哪一个()。A.急性宫颈炎B.子宫内膜炎C.弥漫性腹膜炎D.盆腔结缔组织炎E.子宫肌炎 [填空题]针对33#添加剂易挥发,比水重的特点,通常要将33#添加剂储罐保持良好()。 [多选]根据《立法法》的规定,下列哪些机关有权制定规章?()A.广州市政府B.教育部C.国家工商行政管理总局D.国家信访局 [单选]Q-开关激光治疗后发性白内障,主要是利用了激光的()A.光化学效应B.光热效应C.弱刺激效应D.光致聚合效应E.光致压强电离作用 [单选,A1型题]下列哪种中药外用可攻毒杀虫、蚀疮祛腐,内服可截痰平喘、截疟()A.蛇床子B.信石C.轻粉D.硫黄E.雄黄 [单选,A1型题]溶栓疗法最有效的药物是()。A.阿司匹林B.肝素C.噻氯匹定D.尿激酶E.双嘧达莫 [单选]电动机的多地控制,其线路上控制按钮的连接原则是()。A.启动按钮要并联B.停止按钮要并联C.启动按钮要串联D.都可以 [单选]()是指在一个独立行使管理权的基层物业管理单位内,独立核算的财务主体所进行的以物业服务费为主要对象的费用计划、编制、控制、使用管理和分析的财务活动。A.物业管理项目财务管理B.物业管理项目企业管理C.财务管理项目物业管理D.企业管理项目财务管理 [单选]B公司的平均投资资本为2000万元,其中净负债600万元,权益资本1400万元;税后利息费用60万元,税后利润200万元;净负债成本(税后)8%,权益成本12%。则剩余经营收益为()万元。A、-40B、-16C、44D、12 [配伍题,B1型题]治疗脾气虚弱型黄体功能不足,应首选的方剂是()。</br>治疗虚热型无排卵型功血,应首选的方剂是()。A.四物汤B.归脾丸C.补中益气汤D.固本止崩汤E.保阴煎 [多选]新生儿肠旋转不良主要死亡原因为A.低体重儿B.合并其他严重畸形C.广泛肠坏死和穿孔D.术后肠梗阻持续存在或再发E.短肠综合征 [单选,A2型题,A1/A2型题]粪便隐血试验呈现阳性,每日出血量要达到()A.50mlB.20~30mlC.10mlD.5ml以上E.20ml [单选]合成塔入口氨含量升高可使合成反应温度()。A.升高B.不变C.降低 [单选]污染物在环境自净中发生的化学反应,不包括A.氧化B.还原C.分解D.电解E.中和 [单选]2007年是内蒙古自治区成立60周年,中共中央在给内蒙古自治区的贺电中说:“内蒙古自治区的成立,是中国共产党把马克思主义基本原理同我国民族实际相结合的一个伟大创举。”这里的“伟大创举”是指()。A.率先实行了民族区域自治B.率先赢得了民族独立C.率先由当地民族当家作 [单选]下列关于校对说法正确的是()。A."校异同"又称"活校",是一种层次更高、难度更大的校对功能B.校对工作与编辑工作两者互相依赖,相互配合C.校是非的功能在于发现并直接改正原稿差错D.校是非的方法是校对人员发现原稿中的疑点并直接改正 [单选,A2型题,A1/A2型题]治疗中风闭证首选下列哪组腧穴()A.关元、神阙B.百会、神庭、大椎、太冲C.人中、十二井、太冲、丰隆D.足三里、关元、气海E.太阳、头维、三阴交、太溪 [名词解释]自燃 [名词解释]芽的晚熟性 [单选]()是指在工程建设项目或第政府采购活动中,具备独立交易条件、可以独立作为合同内容的工作事项或事项的集合。A.最小工作单元B.最小合同单元C.招标合同单元D.最小分解单元 [单选]某公民受某单位委托所开发的软件,则该软件的著作权属于()。A.著作权的归属由双方通过合同约定B.某公民与单位共享C.单位D.就著作权的归属合同未作明确约定或没有订立合同的,著作权属于某公民 [单选]每一类货品有固定存放位置,但在各类储区内,每个货位的指派是随机的。这种方式称为()A.随机储存B.分类储存C.定位储存D.分类随机储存 [单选]某孕妇,28岁。孕1产0,妊娠38周,宫口开全2小时30分,先露高位+2。胎方位LOT,宫缩30″~40″/4~5分,诊断为第二产程延长。造成这种情况最常见的原因是下列哪一项()A.宫缩乏力B.产妇衰竭C.中骨盆平面狭窄D.骨盆出口狭窄E.胎儿过大 [单选]容许建筑高度是指()。A.桥面(或轨顶)标高与设计洪水位之高差B.桥面(或轨顶)标高与通航净空顶部之高差C.桥跨结构最下缘与设计洪水位之高差D.桥面(或轨顶)标高与桥跨结构最下缘之间的距离 [单选,A2型题,A1/A2型题]关于恶性肿瘤的转移方式,不正确的是()A.直接浸润转移B.血液循环转移C.通常自下而上转移D.种植性转移E.淋巴道转移 [填空题]化工管道的涂色。生产中将各种管道涂以各种不同的颜色,可以使人们很容易的辨别判断各种管道中所盛装的不同介质,即方便操作,又易排除故障或处理事故。水蒸汽管涂()。 [单选]锅炉上必须安装两个彼此独立的水位计,以保证正确地指示锅炉水位的高低。水位计与汽包之间的汽、水连接管上不能安装阀门,更不得装设球形阀。如装有阀门,在运行时应将阀门(),并予以铅封。A.全开B.全闭C.半开D.半闭 [单选]某公司注册商标“佳佳乐”,1988年注册,到期后未续展,说法正确的是()。A.1998年后不得使用此商标B.可继续使用并可禁止他人使用C.可以继续使用但不可以禁止他人使用D.不得使用,他人也不得使用 [单选,B型题]根据范围划分,冲突可以分为()A.目标冲突、认知冲突、感情冲突、程序冲突B.建设性冲突、破坏性冲突C.个人冲突、人际冲突、群体冲突D.人际冲突、群体冲突、组织间冲突E.积极性冲突、消极性冲突 [单选]()是指劳工成本指数与所需运输的总重量的比值。A.劳动效率B.劳工效益指数C.劳动生产率D.劳工系数 [单选,A1型题]低肾素性高血压降压首选()A.利尿剂或钙离子通道阻滞剂B.β受体阻滞剂C.肼苯达嗪D.血管紧张素转换酶抑制剂E.利血平 [单选]20℃时,某物质在50g水中溶解20克时,达到饱和,则该物质的溶解度为()g。A、20B、50C、40D、70 [单选]某建设单位于2011年3月1日领取了施工许可证,由于某种原因工程未能按期开工,该建设单位按照《建筑法》的规定向发证机关多次办理了申请延期手续,该工程最迟应当在()开工。A.2011年5月1日B.2011年6月1日C.2011年9月1日D.2011年12月1日 [单选]()是指因未来的不确定性所带来的可能损失,是收益或结果偏离期望值或平均值的可能性。A.风险B.物业管理风险C.管理风险D.提前介入风险
பைடு நூலகம்