n次独立重复试验的模型及二项分布.
第63讲 │ n次独立重复试验与二项分布

第63讲 │ 要点探究
P=P(DE F )+P(D E F)+P( D EF)+P(DEF) =0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+ 0.6×0.5×0.5 =0.55. (2)由题意知X可能的取值为0,1,2,3. 又由(1)知 D E F、 D E F 、D E F 是两两互斥事件,且各 盘比赛的结果相互独立. 因此P(X=0)=P( D E F )=0.4×0.5×0.5=0.1.
[答案] (1)对
(2)对
(3)对
(4)对
[解析] 根据事件独立性的概念可知(1)(2)(3)(4)均正确.
第63讲 │ 问题思考
► 问题3 关于n次独立重复试验和二项分布
(1)n次独立重复试验要满足:①每次试验只有两个相互对立 的结果,可以分别称为“成功”和“失败”;②每次试验“成 功”的概率为p,“失败”的概率为1-p;③各次试验是相互独 立的;(
第63讲 │ 要点探究
变式题 (1)一个箱中有9张标有1,2,3,4,5,6,7,8,9的卡片,从
中依次取两张,则在第一张是奇数的条件下第二张也是奇数的 概率是________. (2)某种家用电器能使用三年的概率为0.8,能使用四年的概 率为0.4,已知某一这种家用电器已经使用了三年,则它能够使 用到四年的概率是________.
X P 0 0.1 1 0.35 2 0.4 3 0.15
第63讲 │ 要点探究
因此E(X)=0×0.1+1×0.35+2×0.4+3×0.15=1.6
[点评]
概率计算的核心环节就是把一个随机事件利
用事件的互斥和相互独立进行合理分拆,这样就能把复杂 事件的概率计算转化为一个个简单事件的概率计算.
n次独立重复试验

(四)巩固练习:
(A)1、将一枚硬币连续抛掷5次,则正面向上的次数X的分布为( )
A X~B ( 5,0.5 )B X~B (0.5,5 )
C X~B ( 2,0.5 )D X~B ( 5,1 )
(A)2、随机变量X~B ( 3, 0.6 ) ,P(X=1 ) =()
那么:“重复掷一粒骰子3次,其中有2次出现1点”( ),用 表示出现k次“点数为1点”的事件,类似于上面的讨论,可以得到:
;
;
;
。
可以发现, 一般的,在n次独立试验中,
称随机变量X服从二项分布,记作 。
阅读课本56-58页
(三)典例与变式:
(A)例一:设有一大批产品,其中有20%是非一等品,今从中任取5件产品,则这5件产品中的非一等品的件数X是一个随机变量,求“事件 ”的概率。
探究二:上述问题(2)中的概率是多少?
重复掷一粒骰子3次,就是做3次独立重复试验,设用 ( )表示第 次掷出1点的事件,用 表示“2次出现1点”的事件,则:
设:“出现1点”的概率为 ,“不出现1点”的概率为 ,则 ;
由于事件 、 、 彼此互斥,由概率加法公式得:
所以“重复掷一粒骰子3次,其中有2次出现1点”的概率为
§2.1离散型随机变量及其分布列
学习目标
理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。
学习重点
独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。
学习难点
二项分布模型的构建。
导学设计:
(一)知识链接:
刘备帐下以诸葛亮为首的智囊团共有9名谋士(不包括诸葛亮),假定对某事进行决策时,每名谋士贡献正确意见的概率为0.7,诸葛亮贡献正确意见的概率为0.85.现为此事可行与否而征求每名谋士的意见,并按多数人的意见作出决策,求作出正确决策的概率.
第十一章 第8讲 n次独立重复试验与二项分布

第8讲n次独立重复试验与二项分布基础知识整合1.条件概率及其性质2.事件的相互独立(1)设A,B为两个事件,如果P(AB)=□05P(A)·P(B),那么称事件A与事件B相互独立.(2)如果事件A与B相互独立,那么□06A与□07B,□08A与□09B,□10 A与□11B也都相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=□12P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=□13C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.1.A ,B 中至少有一个发生的事件为A ∪B . 2.A ,B 都发生的事件为AB . 3.A ,B 都不发生的事件为A -B -.4.A ,B 恰有一个发生的事件为(A B -)∪(A -B ).5.A ,B 至多一个发生的事件为(A B )∪(A B )∪(A B ).1.甲射击命中目标的概率为0.75,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为( )A.12 B .1 C.1112 D.56 答案 C解析 1-13×14=1112,选C.2.由0,1组成的三位编号中,若用A 表示“第二位数字为0的事件”,用B 表示“第一位数字为0的事件”,则P (A |B )=( )A.12B.14C.16D.18 答案 A解析 因为第一位数字可为0或1,所以第一位数字为0的概率P (B )=12,第一位数字为0且第二位数字也是0,即事件A ,B 同时发生的概率P (AB )=12×12=14,所以P (A |B )=P (AB )P (B )=1412=12.3.(2019·吉林通化模拟)若ξ~B ⎝ ⎛⎭⎪⎫10,12,则P (ξ≥2)等于( )A.10131024B.111024C.501512D.507512 答案 A 解析P (ξ≥2)=1-P (ξ=0)-P (ξ=1)=1-C 010⎝ ⎛⎭⎪⎫1210-C 110⎝ ⎛⎭⎪⎫1210=10131024.4.(2019·广东汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512 答案 D解析 根据题意,恰有一人获得一等奖就是甲获奖乙没获奖或甲没获奖乙获奖,则所求概率是23×⎝ ⎛⎭⎪⎫1-34+34×⎝ ⎛⎭⎪⎫1-23=512.故选D.5.(2019·福建厦门模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25B.35C.18125D.54125 答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125.6.袋中有红、黄、蓝球各1个,从中有放回地每次任取1个,直到取到红球为止,则第4次首次取到红球的概率为( )A.980B.881C.382D.827 答案 B解析 前3次都取不到红球的概率为⎝ ⎛⎭⎪⎫233,第4次首次取到红球的概率为13,4个独立事件同时发生的概率为⎝ ⎛⎭⎪⎫233×13=881.核心考向突破考向一 条件概率例1 (1)(2019·大庆模拟)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12答案 B解析P(A)=C23+C22C25=25,P(B)=C22C25=110,又A⊇B,则P(AB)=P(B)=110,所以P(B|A)=P(AB)P(A)=P(B)P(A)=14.(2)(2019·江西南昌模拟)口袋中装有大小、形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.答案3 5解析口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A表示“第一次取得红球”,事件B表示“第二次取得白球”,则P(A)=26=13,P(AB)=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P(B|A)=P(AB)P(A)=1513=35.触类旁通条件概率的求法(1)定义法:先求P(A)和P(AB),再由P(B|A)=P(AB)P(A)求P(B|A).即时训练 1.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110 B.15 C.25 D.12答案 C解析设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P (AB )P (A )=1512=25.故选C.2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.答案 0.72解析 设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9, 由P (B |A )=P (AB )P (A ),得P (AB )=P (B |A )·P (A )=0.9×0.8=0.72. 故这粒种子成长为幼苗的概率为0.72. 考向二 相互独立事件的概率例2 (2017·天津高考)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解 (1)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝ ⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为随机变量X的数学期望E(X)=0×14+1×1124+2×14+3×124=1312.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为11 48.触类旁通求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积;(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.即时训练 3.某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ).解(1)记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1-P(A-B-C-)=1-13×14×25=2930.(2)由题意可得,ξ的所有可能取值为0,1,2,3,则P(ξ=0)=P(A-B-C-)=13×14×25=130;P(ξ=1)=P(A B-C-)+P(A-B C-)+P(A-B-C)=23×14×25+13×34×25+13×14×35=13 60;P(ξ=2)=P(AB C-)+P(A B-C)+P(A-BC)=23×34×25+23×14×35+13×34×35=920;P(ξ=3)=P(ABC)=23×34×35=310.所以ξ的分布列为E(ξ)=0×130+1×1360+2×920+3×310=12160.考向三独立重复实验与二项分布例3(2019·重庆模拟)为了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A,B,C,D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A能够入选的概率;(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).解(1)设A通过体能、射击、反应分别记为事件M,N,P,则A能够入选包含以下几个互斥事件:MN P-,M N-P,M-NP,MNP,∴P(A)=P(MN P-)+P(M N-P)+P(M-NP)+P(MNP)=23×23×12+23×13×12+13×23×12+23×23×12=1218=23.(2)记ξ表示该训练基地入选人数,则得到的训练经费为η=5000ξ,又ξ的可能取值为0,1,2,3,4,∴P (ξ=0)=C 04⎝ ⎛⎭⎪⎫230⎝ ⎛⎭⎪⎫134=181, P (ξ=1)=C 14⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫133=881, P (ξ=2)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=2481=827, P (ξ=3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281,P (ξ=4)=C 44⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫130=1681. ∴ξ的分布列为触类旁通求解独立重复试验概率时应注意的问题(1)概率模型是否满足公式P n (k )=C k n p k (1-p )n -k的三个条件:①在一次试验中某事件A 发生的概率是一个常数p ;②n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;③该公式表示n 次试验中事件A 恰好发生了k 次的概率.(2)独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的题用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”等字样的题用对立事件的概率公式计算更简单一样.即时训练 4.某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n 首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解 (1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首. 由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23, ∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081, P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为∴E (ξ)=10×4081+30×3081+50×1181=185081.。
选修2-3教案2.2.3独立重复试验与二项分布(1)

2.2.3独立重复试验与二项分布(第一课时)教学目标:理解n 次独立重复试验的模型及二项分布教学重点:理解n 次独立重复试验的模型及二项分布教学过程一、复习引入:1. 已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .2. 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=()3. 事件B 发生与否对事件A 发生的概率没有影响,即(|)()P A B P A =.称A 与B 独立二、讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.它是[](1)n P P -+展开式的第1k +项 例1.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-450.80.80.4100.328=+≈+≈答:5次预报中至少有4次准确的概率约为0.74. 例2.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55513(0)(1)()44P =-=,1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =⨯⨯-, 所以1小时内5台机床中至少2台需要工人照管的概率为[]551(0)(1)P P P =-+≈答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击n 次记事件A =“射击一次,击中目标”,则()0.25P A =.∵射击n 次相当于n 次独立重复试验,∴事件A 至少发生1次的概率为1(0)10.75nn P P =-=-. 由题意,令10.750.75n -≥,∴31()44n ≤,∴1lg4 4.82lg 4n ≥≈, ∴n 至少取5. 答:要使至少命中1次的概率不小于0.75,至少应射击5次课堂小节:本节课学习了n 次独立重复试验的模型及二项分布。
知识讲解独立重复试验与二项分布

知识讲解独立重复试验与二项分布(理)(提高)(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--独立重复试验与二项分布【学习目标】1.理解n 次独立重复试验模型及二项分布.2.能利用n 次独立重复试验及二项分布解决一些简单的实际问题. 【要点梳理】要点一、n 次独立重复试验每次试验只考虑两种可能结果A 与A ,并且事件A 发生的概率相同。
在相同的条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验。
要点诠释:在n 次独立重复试验中,一定要抓住四点: ①每次试验在同样的条件下进行;②每次试验只有两种结果A 与A ,即某事件要么发生,要么不发生; ③每次试验中,某事件发生的概率是相同的; ④各次试验之间相互独立。
总之,独立重复试验,是在同样的条件下重复的,各次之间相互独立地进行的一种试验,在这种试验中,每一次的试验结果只有两种,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的。
要点二、独立重复试验的概率公式1.定义如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n kn n P k C p p -=-(k=0,1,2,…,n ). 令0k =得,在n 次独立重复试验中,事件A 没有发生的.....概率为...00(0)(1)(1)n nn n P C p p p =-=-令k n =得,在n 次独立重复试验中,事件A 全部发生的概率为........0()(1)n n n n n P n C p p p =-=。
要点诠释:1. 在公式中,n 是独立重复试验的次数,p 是一次试验中某事件A 发生的概率,k 是在n 次独立重复试验中事件A 恰好发生的次数,只有弄清公式中n ,p ,k 的意义,才能正确地运用公式.2. 独立重复试验是相互独立事件的特例,就像对立事件是互斥事件的特例一样,只是有“恰好”字样的用独立重复试验的概率公式计算更方便.要点三、n 次独立重复试验常见实例:1.反复抛掷一枚均匀硬币2.已知产品率的抽样3.有放回的抽样4.射手射击目标命中率已知的若干次射击 要点诠释:抽样问题中的独立重复试验模型:①从产品中有放回地抽样是独立事件,可按独立重复试验来处理; ②从小数量的产品中无放回地抽样不是独立事件,只能用等可能事件计算;③从大批量的产品中无放回地抽样,每次得到某种事件的概率是不一样的,但由于差别太小,相当于是独立事件,所以一般情况下仍按独立重复试验来处理。
二项分布与超几何分布(第1课时+n次独立重复试验与二项分布)课件

1
率均为 ,抽取
5
则 X~B
所以
1
3,
5
3 次可以看成 3 次独立重复试验,
.
P(X=0)=C30
P(X=1)=C31
×
1 0
5
×
1 1
5
×
×
4 2
5
4 3
5
=
=
48
,
125
64
,
125
P(X=2)=C32
P(X=3)=C33
抛硬币这个伯努利试验.
(1)每次试验结果有哪些?
提示:正面向上或反面向上.
(2)各次试验的结果有无影响?
提示:无影响.
2.在相同条件下重复n次伯努利试验时,人们总是约定这n次试验是相互独
立的,此时这n次伯努利试验也常称为n次独立重复试验.
3.独立重复试验应满足的条件是(
)
①每次试验之间是相互独立的;②每次试验只有事件发生与不发生两种结
4
P(A1)=P(A2)=6,P(B1)=P(B2)=5.
(1)至少有 1 棵成活的概率为
1-P(1 2 1 2 )=1-P(1 )P(2 )P(1 )P(2 )
=1-
1 2
6
×
1 2 899
=
.
5
900
(2)由独立重复试验中事件发生的概率公式知,所求概率为
P=C2156Fra bibliotek16
× × ×
C32 ×0.82×0.2+C33 ×0.83×0.20=0.896.
(2)在未来3天中,至少有连续2天预报准确的概率为
n 次独立重复试验及二项分布

《第八讲n次独立重复试验与二项分布》教学设计(初稿)C .15D .120做题方法: 条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).考点二 相互独立事件——多维探究 角度1 相互独立事件同时发生的概率例2 (1)(2022·石家庄质检)甲、乙独立地解决同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( )A .0.48B .0.52C .0.8D .0.92(2)(2019·全国)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”,设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是___.(3)(2019·课标Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了X个球该局比赛结束.①求P(X=2);②求事件“X=4且甲获胜”的概率.角度2与相互独立事件相关的数学期望例3(2022·内蒙古包头调研)一台设备由三个部件构成,假设在一天的运转中,部件甲、乙、丙需要调整的概率分别为0.1,0.3,0.4,各部件的状态相互独立.(1)求设备在一天的运转中,部件甲、乙中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X,求X的分布列及数学期望.做题方法:求相互独立事件同时发生的概率的主要方法(1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁琐(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.考点三独立重复试验的概率与二项分布——师生共研例4(1)(2022·“四省八校”联考)已知随机变量ξ服从二项分布B(n,p),若E(ξ)=12,D(ξ)=3,则n=____.(2)(2021·山东枣庄期末)2020年是不平凡的一年,世界经济都不同程度地受到疫情的影响.某公司为了促进产品销售,计划从2020年11月起到2021年2月底,利用四个月的时间,开展产品宣传促销活动,为了激励员工,拟制定如下激励措施:从2020年11月1日开始,全部销售员工的销售业绩等级定为0级,每月考核一次,若员工A .4B .5C .6D .73.(2022·甘肃嘉峪关一中模拟)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A .25B .35C .18125D .541254.(2022·山东日照联考)两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .165.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱子,重新取球;若取出白球,则停止取球,那么第4次取球之后停止的概率为( )A .C 35C 14C 45B .⎝⎛⎭⎫593×49C .35×14D .C 14×⎝⎛⎭⎫593×496.(2022·江苏镇江八校期中联考)甲、乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪方先胜三局比赛都结束,假定甲每局比赛获胜的概率均为23,则甲以31的比分获胜的概率为( )A .827B .6481C .49D .897.(2022·重庆市诊断)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )A .313B .413C .14D .158.(2021·河南新乡市二模)某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为( )各局比赛结果相互独立,则甲队以32获胜的概率是 .三、解答题14.(2022·云南大理统测)三人参加篮球投篮比赛,规定每人只能投一次.假设甲投进的概率是12,乙、丙两人同时投进的概率是320,甲、丙两人同时投不进的概率是15,且三人各自能否投进相互独立.(1)求乙、丙两人各自投进的概率;(2)设ξ表示三人中最终投进的人数,求ξ的分布列和数学期望.15.(2022·陕西汉中质检)清华大学自主招生考试题中要求考生从A ,B ,C 三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A ,B ,C 三题答卷如下表:题 A B C 答卷数180300120(1)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A 题作答的答卷中抽出了3份,则应分别从选择B ,C 题作答的答卷中各抽出的多少份?(2)测试后的统计数据显示,A 题的答卷得优的有60份,若以频率作为概率,在(1)问中被抽出的选择A 题作答的答卷中,记其中得优的份数为X ,求X 的分布列及其数学期望E (X ).B 组能力提升(选做题)1.如图是某个闭合电路的一部分,每个元件正常导电的概率均为23,则从A 到B 这部分电源能通电的概率为 .2.(2020·天津和平区期末)某中学组织高三学生进行一项能力测试,测试内容包括A 、B 、C 三个类型问题,这三个类型所含题目的个数分别占总数的12,13,16,现有3名同学独立地从中任取一个题目作答,则他们选择的题目所属类型互不相同的概率为( )A .136B .112C .16D .133.(2021·黑龙江哈尔滨六中考前押题)甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )。
二项分布

108
0.30
(2)在10次射击中,至少8次击中目标的概率为
P X 8 P X 8 P X 9 P X 10
8 C10 0.88 1 0.8 108 9 C10 0.89 1 0.8 10 9 10 C10 0.810 1 0.8 1010
一、 n次独立重复试验
在相同条件下重复做的n次试验,各次试验的结 果相互独立,称为n 次独立重复试验
特点:
1).每次试验是在同样的条件下进行的; 2).各次试验中的事件是相互独立的 3).每次试验都只有两种结果:A发生与不发生 4).每次试验,某事件A发生的概率是相同的. 5).每次试验,某事件发生的次数是可以列举的。
P X k C p 1 p
k n k nk
, k 0,1,..., n
公式理解
一次试验中事件 A 发 生的概率
一次试验中事件A 发生的概率
P ( X k ) C p (1 p)
k n k
nk
(其中k = 0,1,2,·,n ) · · 试验总次数
独立重复试验与二项分布
高二数学组 ----------齐艳
复习引入
前面我们学习了互斥事件、 相互独立事件, 这些都是我 们在具体求概率时需要考虑的一些模型, 吻合模型用公式去 求概率简便. ⑴ P ( A B) P ( A) P ( B) (当 A与B 互斥时) ; ⑵ P ( AB ) P ( A) P ( B ) (当 A与B 相互独立时) 那么这节课来学习一个新的模型-----n 次独立重复试验与 二项分布
事件 A 发生的次数
探究三
三、二项分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 n 次独立重复试验与二项分布[备考方向要明了]考什 么怎 么 考1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.相互独立事件、n 次独立重复试验的概率求法是每年高考的热点,特别是相互独立事件、n 次独立重复试验及二项分布的综合更是高考命题的重中之重,如2012年山东T19等.[归纳·知识整合]1.条件概率及其性质条件概率的定义条件概率的性质设A 、B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率(1)0≤P (B |A )≤1(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A )2.事件的相互独立性(1)定义:设A 、B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立.(2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). ②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. [探究] 1.“相互独立”和“事件互斥”有何不同?提示:两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.3.独立重复试验与二项分布独立重复试验 二项分布定义在相同条件下重复做的n 次试验称为n 次独立重复试验 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率计算公式 A i (i =1,2,…,n )表示第i次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n )在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n )[探究] 2.二项分布的计算公式和二项式定理的公式有何联系? 提示:如果把p 看成a,1-p 看成b ,则C k n p k(1-p )n -k就是二项式定理中的通项.[自测·牛刀小试]1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0 B.116C.14D.12解析:选B EF 代表E 与F 同时发生, 故P (EF )=P (E )·P (F )=116.2.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C 由P (AB )=P (A )P (B |A )可得P (A )=34.3.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )A .0.26B .0.08C .0.18D .0.72解析:选A P =0.8×0.1+0.2×0.9=0.26.4.掷一枚不均匀的硬币,正面朝上的概率为23,若将此硬币掷4次,则正面朝上3次的概率是________.解析:设正面朝上X 次,则X ~B ⎝ ⎛⎭⎪⎫4,23, P (X =3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281. 答案:32815.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”, 则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P AB P A =16.答案:16条件概率[例1] (1)甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A .0.6B .0.7C .0.8D .0.66(2)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.[自主解答] (1)甲市为雨天记为事件A ,乙市为雨天记为事件B ,则P (A )=0.2,P (B )=0.18,P (AB )=0.12,故P (B |A )=P AB P A =0.120.2=0.6.(2)记A =“甲厂产品”,B =“合格产品”,则P (A )=0.7,P (B |A )=0.95.故P (AB )=P (A )·P (B |A )=0.7×0.95=0.665.[答案] (1)A (2)0.665在本例2中条件改为“甲厂产品的合格率是95%,其中60%为一级品”,求甲厂产品中任选一件为一级品的概率.解:设甲厂产品合格为事件A ,一级品为事件B ,则甲厂产品中任一件为一级品为AB , 所以P (AB )=P (A )P (B |A )=95%×60%=0.57.———————————————————条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A );(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB .(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=A 25=20;根据分步乘法计数原理,n (A )=A 13×A 14=12; 于是P (A )=n An Ω=1220=35. (2)因为n (AB )=A 23=6,所以P (AB )=n AB n Ω=620=310.(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率 P (B |A )=P ABP A =31035=12.法二:因为n (AB )=6,n (A )=12,所以P (B |A )=n AB n A =612=12.相互独立事件的概率[例2] 某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城市E 到城市F 有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为110,不堵车的概率为910;走公路Ⅱ堵车的概率为35,不堵车的概率为25,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.(1)求甲、乙两辆汽车中恰有一辆堵车的概率; (2)求三辆汽车中至少有两辆堵车的概率.[自主解答] 记“汽车甲走公路Ⅰ堵车”为事件A , “汽车乙走公路Ⅰ堵车”为事件B . “汽车丙走公路Ⅱ堵车”为事件C .(1)甲、乙两辆汽车中恰有一辆堵车的概率为P 1=P (A ·B )+P (A ·B )=110×910+910×110=950.(2)甲、乙、丙三辆汽车中至少有两辆堵车的概率为P 2=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=110×110×25+110×910×35+910×110×35+110×110×35=59500. ——————————————————— 求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.2.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率; (2)求红队队员获胜总盘数为1的概率.解:(1)设甲胜A 为事件D ,乙胜B 为事件E ,丙胜C 为事件F ,则D ,E ,F 分别表示事件甲不胜A 、事件乙不胜B 、事件丙不胜C .因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5.红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意知ξ可能的取值为0,1,2,3.又由(1)知D ] E ]F 、D E F 、D E -F -是两两互斥事件,且各盘比赛的结果相互独立.P (ξ=1)=P (D E F )+P (D E F )+P (D E -F -)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35. 即红队队员获胜1盘的概率为0.35.独立重复试验与二项分布[例3] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X ,求X 的分布列.[自主解答] (1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A ,B ,C ,则P (A )=0.7,P (B )=0.6,P (C )=0.8.所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为P 1=1-P (A )P (B )P (C )=1-0.3×0.4×0.2=0.976.(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为P 2=2×0.7+0.6+0.84=0.7.(3)依题意抽取的4件样品中一等品的个数X 的可能取值为0,1,2,3,4,则P (X =4)=C 04×0.74=0.2401, P (X =3)=C 14×0.3×0.73=0.4116, P (X =2)=C 24×0.32×0.72=0.2646, P (X =1)=C 34×0.33×0.7=0.0756, P (X =0)=C 44×0.34=0.0081.∴X 的分布列为:X 4 3 2 1 0 P0.24010.41160.26460.07560.0081———————————————————二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数.3.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意识,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为: X 0 1 2 3 P27642764964164(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.1个技巧——抓住关键词求解相互独立事件的概率在应用相互独立事件的概率公式时,要找准关键字句,对含有“至多有一个发生”,“至少有一个发生”,“恰有一个发生”的情况,要结合对立事件的概率求解.1个明确——明确常见词语的含义解题过程中要明确事件中“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词的意义.已知两个事件A ,B ,则(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A B ; (4)A ,B 恰有一个发生的事件为A B ∪A B ; (5)A ,B 至多一个发生的事件为A B ∪A B ∪A B .易误警示——独立事件概率求法中的易误点[典例] (2012·珠海模拟)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.[解] (1)设X 为射手在5次射击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29. P (ξ=2)=P (A 1A 2A 3)=23×13×23=427,P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827,P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232=827,所以ξ的分布列为:ξ0 1 2 3 6 P12729427827827[易误辨析]1.本题第(2)问因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=80243这一错误结果;2.本题第(2)问中因忽视连续三次击中目标,另外两次未击中导致分类不准确; 3.正确区分相互独立事件与n 次独立重复试验是解决这类问题的关键. [变式训练]某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是13.(1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列.解:(1)设小明第i 次投篮投中为事件A i ,则小明在投篮过程中直到第三次才投中的概率为P =P (A 1)·P (A 2)·P (A 3)=23×23×13=427.(2)由题意知ξ的可能取值为0,2,4,6,8,则P (ξ=0)=⎝ ⎛⎭⎪⎫234=1681;P (ξ=2)=C 14×⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫233=3281;P (ξ=4)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=C 34×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫23=881;P (ξ=8)=⎝ ⎛⎭⎪⎫134=181. 所以ξ的分布列为:ξ0 2 4 6 8 P16813281827881181一、选择题(本大题共6小题,每小题5分,共30分)1.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.88解析:选D 由题意知,甲、乙都不被录取的概率为(1-0.6)·(1-0.7)=0.12.故至少有一人被录取的概率为1-0.12=0.88.2.(2013·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为13,向右移动的概率为23,则质点P 移动五次后位于点(1,0)的概率是( )A.4243 B.8243 C.40243D.80243解析:选D 依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有某两次向左移动,另三次向右移动,因此所求的概率等于C 25⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫233=80243.3.(2013·荆州质检)已知随机变量ξ服从二项分布ξ~B ⎝ ⎛⎭⎪⎫6,13,即P (ξ=2)等于( )A.316B.1243C.13243D.80243解析:选D 已知ξ~B ⎝ ⎛⎭⎪⎫6,13,P (ξ=k )=C k n p k q n -k,当ξ=2,n =6,p =13时,有P (ξ=2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-136-2=80243.4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18 B.14 C.25D.12解析:选B P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P A ∩BP A =110410=14.5.将一枚硬币连掷5次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选C 由C k 5⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫125-k =C k +15⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫155-k -1,即C k 5=C k +15,故k +(k +1)=5,即k =2.6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为( ) A.35 B.15 C.45D.25解析:选A 设该队员每次罚球的命中率为p (其中0<p <1),则依题意有1-p 2=1625,p 2=925.又0<p <1,因此有p =35. 二、填空题(本大题共3小题,每小题5分,共15分)7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析:设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.答案:0.728.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B ⎝⎛⎭⎪⎫5,13,即有P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ×⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243.答案:102439.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.解析:设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A 、B 是相互独立的事件,所求概率为P (AB ).据题意可知P (A )=40100=25,P (B )=70100=710,故P (AB )=P (A )·P (B )=25×710=725.答案:725三、解答题(本大题共3小题,每小题12分,共36分)10.在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.解:(1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB +A - B -”,且事件A 、B 相互独立.故P (AB +A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝⎛⎭⎪⎫4,12则P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4).故变量ξ的分布列为:ξ0 1 2 3 4 P11614381411611.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x 的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列.解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1) 因此P (X =0)=C 03×0.93=0.729,P (X =1)=C 13×0.1×0.92=0.243, P (X =2)=C 23×0.12×0.9=0.027, P (X =3)=C 33×0.13=0.001.故随机变量X 的分布列为:X 0 1 2 3 P0.7290.2430.0270.00112.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头、石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P =13.(2)X 的可能取值分别为0,1,2,3.X ~B ⎝ ⎛⎭⎪⎫3,13,则 P (X =0)=C 03·⎝ ⎛⎭⎪⎫233=827, P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫232=1227, P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫231=627, P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127. X 的分布列如下:X 0 1 2 3 P82712276271271.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12D.116解析:选A 理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件A ·C ·B ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12.所以P (A ·B ·C )=P (A )·P (B )·P (C )=18.2.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 解析:由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132. 答案:11323.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解:(1)该公司决定对该项目投资的概率为P =C 23⎝ ⎛⎭⎪⎫132 ·23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数 “中立”票张数 “反对”票张数 事件A 0 0 3 事件B 1 0 2 事件C 1 1 1 事件D12P (A )=C 33⎝ ⎛⎭⎪⎫133=127,P (B )=C 13⎝ ⎛⎭⎪⎫133=19, P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29,P (D )=C 13⎝ ⎛⎭⎪⎫133=19. ∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327.。