聚类分析学习总结
聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。
二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。
聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。
聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。
三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。
2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。
3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。
4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。
5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。
四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。
首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。
接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。
五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。
实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。
实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。
此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。
聚类分析结果总结报告

聚类分析结果总结报告聚类分析是一种常用的数据分析方法,通过找出数据样本之间的相似性,将它们分为簇,从而对数据进行分类。
本次聚类分析旨在对一批消费者进行分类,以便更好地理解他们的行为模式、需求和喜好。
以下是对聚类分析结果的总结报告。
通过对消费者的行为数据进行聚类分析,我们将其分为三个簇:簇1、簇2和簇3。
每个簇代表着一组相似的消费者群体,下面对每个簇进行具体分析。
簇1:这是一个高消费群体,他们在各个维度上的消费都较高。
他们对品牌认知较高,更注重购买名牌产品;他们也更倾向于在线购物,且购买的商品种类较广泛;此外,他们更愿意花费时间在购物上,喜欢认真研究和比较产品特点和价格。
簇1群体对价格并不敏感,更看重商品质量和品牌的声誉。
簇2:这是一个价值敏感的消费群体,他们更注重价格相对便宜的商品。
他们对品牌知名度并不是很敏感,更关注购物便利性和商品的实用性。
他们喜欢到实体店购物,可以触摸和试穿商品,这样可以更好地评估商品的实际价值。
簇2群体对线上购物并不是很感兴趣,更喜欢传统的购物方式。
簇3:这是一个中等消费群体,他们在各个维度上的消费行为都处于中等水平。
他们对品牌和价格都没有太强的偏好,更关注商品的功能和性能。
他们对购物的时间和成本都有一定的限制,更倾向于选择便利和高性价比的商品。
通过以上分析,我们得出以下几个结论:1. 个体之间在消费行为上的差异很大,每个簇代表的消费群体有明显的特征和偏好。
2. 消费者对品牌、价格、购物方式等因素的重视程度存在差异,这可以为市场营销提供指导。
3. 不同簇的消费群体在市场定位和产品推广上需要采取不同的策略,吸引不同簇的目标消费群体。
4. 对于高消费群体,可以重点推广高端品牌和品质产品;对于价值敏感的群体,可以提供更具性价比的产品和便利的购物体验;对于中等消费群体,可以提供功能强大且价格适中的商品。
在实际应用中,聚类分析可以辅助企业进行市场细分和目标客户定位,可以帮助提高市场竞争力和个性化营销的效果。
聚类算法心得体会

聚类算法心得体会【篇一:聚类算法总结】聚类算法总结一、概述聚类,就是把整个数据集分成不同的簇,并且要使簇与簇之间的区别尽可能的大,而簇内的数据的差异尽可能的小。
簇是数据样本的集合,聚类分析使得每簇内部的样本之间的相关性比其他簇中样本之间的相关性更紧密,即簇内的任意两个样本之间具有较高的相似度,而属于不同簇的两个样本间具有较高的相异度。
相异度可以根据描述样本的属性值来计算,样本间的“距离”是最常采用的度量标准。
聚类分析(cluster analysis )又称群分析,是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法,同时也是数据挖掘的一个重要算法。
通过聚类分析,可以在没有任何模式可供参考或依循,即在没有先验知识的情况下,将大量数据样本按各自的特性来进行合理的分类。
在开始聚类之前,用户并不知道要把数据集分成几个簇,也不知道划分的具体标准,在聚类分析时数据集的特征是未知的,聚类算法的任务正是要发现这些特征,并把具有相同特征的数据样本聚在一起。
聚类与分类有相似之处,都是将数据进行分组,但两者又有本质的区别。
分类中组(类别)是事先已经定义好的,但聚类中的组(在聚类分析中称为“簇”)不是预先定义的,而是根据实际数据的特征按照数据之间的相似性来定义的。
二、聚类算法的性能评价指标数据挖掘对聚类的典型要求如下:(1)可伸缩性:当聚类对象由几百上升到几百万,我们希望最后的聚类结果的准确度能一致。
(2)处理不同类型属性的能力:有些聚类算法,其处理对象的属性的数据类型只能为数值类型,但是实际应用场景中,我们往往会遇到其他类型的数据,比如二元数据,分类数据等等。
当然,在处理过程我们是可以将这些其他类型的数据预处理成数值型数据的,但是在聚类效率上或者聚类准确度上往往会有折损。
(3)发现任意形状的类簇:因为许多聚类算法是用距离(eg: 欧几里得距离或者曼哈顿距离)来量化对象之间的相似度的,基于这种方式,我们往往只能发现相似尺寸和密度的球状类簇或者成为凸形类簇。
04聚类分析范文

04聚类分析范文聚类分析是一种常用的数据挖掘技术,用于将一组数据点根据它们的相似性分组到不同的类别中。
聚类分析可以帮助我们发现数据的内在结构和模式,并从中获得有关数据的洞察力。
聚类分析的目标是将数据点划分为不同的类别,使得同一类别内的数据点彼此相似,而不同类别之间的数据点之间有很大的不相似性。
聚类分析通常有两种方法:层次聚类和划分聚类。
层次聚类是一种从底层开始逐渐合并类别的方法。
该方法不需要事先确定类别的数量,而是根据数据点之间的相似性逐渐合并类别,形成一个类别的层次结构。
层次聚类可以通过聚合聚类或分裂聚类来实现。
聚合聚类是从每个数据点作为一个单独的类别开始,并将相似的类别逐渐合并。
分裂聚类则是从一个包含所有数据点的类别开始,然后逐渐分裂成更小的类别,直到每个数据点都是一个单独的类别。
划分聚类是一种将数据点划分为预定数量的类别的方法。
该方法需要事先确定类别的数量,并且试图将数据点分配到这些类别中。
划分聚类通常使用迭代算法来优化类别的划分。
最常用的划分聚类算法是K均值聚类。
K均值聚类从随机选择的K个聚类中心开始,然后迭代地将每个数据点分配到最近的聚类中心,并更新聚类中心的位置,直到达到收敛。
聚类分析的应用广泛,可以用于许多领域。
在市场营销中,聚类分析可以帮助企业发现不同市场细分中的潜在客户群体,以制定有针对性的营销策略。
在医学领域,聚类分析可以帮助研究人员将患者分为不同的亚型,以便更好地理解疾病的发病机制并制订个性化的治疗方案。
在社交网络分析中,聚类分析可以帮助研究人员发现不同的社区结构,并研究信息传播的模式和机制。
然而,聚类分析也面临一些挑战和限制。
首先,聚类分析需要预先确定参数或类别的数量,这对于一些数据集可能是困难的。
其次,聚类结果的质量高度依赖于所选择的相似性度量和聚类算法的选择。
不同的相似性度量和聚类算法可能会得出不同的聚类结果。
此外,聚类分析是一种无监督学习方法,它不会给出有关类别之间差异的解释。
聚类分析实验心得体会(通用20篇)

聚类分析实验心得体会(通用20篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!聚类分析实验心得体会(通用20篇)写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。
聚类分析实验心得体会.doc

聚类分析实验心得体会聚类分析实验心得体会1聚类分析作为一种常用的数据分析方法,可以将样本对象按照一定的特征进行分类,并找出类内对象的相似性,类间对象的差异性。
本次实验中,我通过运用聚类分析方法,对一个数据集进行了分类研究,并完成相应的聚类分析报告。
在这个过程中,我不仅巩固了聚类分析的相关知识,还体会到了聚类分析方法的优点和不足之处。
首先,通过本次实验,我深刻体会到聚类分析的优点。
聚类分析是一种非监督式学习方法,不需要事先知道样本对象的标签信息,能够根据样本间的相似性进行自动分类。
在实际应用中,聚类分析能够帮助我们发现数据中的潜在模式和规律,对于数据挖掘、市场细分、社交网络分析等领域具有重要意义。
通过对数据集进行聚类分析,我成功地将样本对象分为不同的类别,发现了一些内在的规律,并且对数据集的整体结构有了更深入的了解。
其次,我也认识到了聚类分析方法存在的不足之处。
聚类分析对初始聚类中心的选择非常敏感,不同的初始聚类中心可能导致完全不同的聚类结果。
在实验过程中,我尝试了不同的初始聚类中心,发现结果差异很大。
此外,聚类分析还对数据的尺度非常敏感,如果数据的尺度不一致,聚类结果会受到影响。
因此,在应用聚类分析方法时,需要对数据进行预处理,保证数据的一致性和可比性。
第三,本次实验让我对聚类分析报告的编写过程有了更深刻的认识。
编写聚类分析报告的过程中,我需要详细描述聚类分析的目标、方法和步骤,说明选择的聚类算法和距离度量方法。
同时,还需要描述数据集的特征、属性和预处理过程。
在得出聚类结果后,我需要对聚类结果进行解释和分析,从中挖掘出模式和规律,并提出相关的结论。
在实验中,我认真对待每个环节,力求使报告内容丰富、准确,并附上相应的数据可视化图表,以更好地展示聚类结果和分析过程。
第四,通过分析聚类分析结果,我发现了一些有价值的结论。
在本次实验中,我发现数据集中的样本对象可以分为三类,每一类具有一定的相似性和差异性。
聚类分析实验报告

聚类分析实验报告
《聚类分析实验报告》
在数据挖掘和机器学习领域,聚类分析是一种常用的技术,用于将数据集中的对象分成具有相似特征的组。
通过聚类分析,我们可以发现数据集中隐藏的模式和结构,从而更好地理解数据并做出相应的决策。
在本次实验中,我们使用了一种名为K均值聚类的方法,对一个包含多个特征的数据集进行了聚类分析。
我们首先对数据进行了预处理,包括缺失值处理、标准化和特征选择等步骤,以确保数据的质量和可靠性。
接着,我们选择了合适的K值(聚类的数量),并利用K均值算法对数据进行了聚类。
在实验过程中,我们发现K均值聚类方法能够有效地将数据集中的对象分成具有相似特征的组,从而形成了清晰的聚类结构。
通过对聚类结果的分析,我们发现不同的聚类中心代表了不同的数据模式,这有助于我们更好地理解数据集中的内在规律和特点。
此外,我们还对聚类结果进行了评估和验证,包括使用轮廓系数和肘部法则等方法来评价聚类的质量和效果。
通过这些评估方法,我们得出了实验结果的可靠性和有效性,证明了K均值聚类在本次实验中的良好表现。
总的来说,本次实验通过聚类分析方法对数据集进行了深入的挖掘和分析,得到了有意义的聚类结果,并验证了聚类的有效性和可靠性。
通过这一实验,我们对聚类分析方法有了更深入的理解,也为今后在实际应用中更好地利用聚类分析提供了有力支持。
班级学生成绩聚类分析报告

班级学生成绩聚类分析报告1. 引言学生成绩是评价学生学习成果的一个重要指标。
通过对学生成绩进行聚类分析可以帮助我们理解学生成绩之间的关系,发现不同学生群体之间的特点和差异,为教育教学提供参考。
本报告旨在对某班级学生成绩进行聚类分析,并探讨聚类结果的意义。
2. 数据准备本次分析使用的数据是某班级学生的成绩数据,包括数学、语文、英语三门课程的成绩。
共有50个学生的成绩数据,每位学生的成绩用一个向量表示,该向量的维度为3。
下表给出了前5位学生的成绩数据示例:学生编号数学成绩语文成绩英语成绩S1 85 90 75S2 72 80 82S3 96 91 93S4 68 75 78S5 92 88 853. 聚类分析方法聚类分析是一种将样本根据其相似性进行分组的方法。
在本次分析中,我们使用K-means算法对学生成绩进行聚类。
K-means算法通过将样本划分到K个聚类中心,使得各个样本到所属聚类中心的距离最小化,来实现聚类的目标。
4. 聚类分析过程在进行聚类分析之前,需要先确定K值,即要将样本分成几个聚类。
我们通过手肘法确定K值。
手肘法通过绘制不同K值下的聚类误差平方和(SSE)与K值的关系图,找到误差平方和变动趋势明显变缓的拐点作为合适的K值。
本次分析中,我们尝试了K从1到10的值,计算了对应的SSE,并绘制了SSE与K值的关系图。
观察到当K=3时,SSE的变化趋势明显变缓,因此我们选择K=3作为合适的聚类数量。
接下来,我们使用K-means算法将学生成绩进行聚类。
在聚类过程中,我们随机选择了3个初始聚类中心,并迭代计算每个样本与各个聚类中心的距离,将其划分到距离最近的聚类中心。
5. 聚类结果分析经过聚类分析,我们将学生成绩分成了3个聚类,分别为聚类1、聚类2和聚类3。
下图给出了聚类结果的可视化效果:从上图可以看出,不同聚类之间存在明显的差异。
我们对每个聚类的特点进行分析如下:- 聚类1: 该聚类中的学生在数学和语文成绩上表现较为突出,英语成绩相对较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析学习体会聚类分析是多元统计分析中研究“物以类聚”的一种方法,用于对事物的类别尚不清楚,甚至在事前连总共有几类都不能确定的情况下进行分类的场合。
聚类分析主要目的是研究事物的分类,而不同于判别分析。
在判别分析中必须事先知道各种判别的类型和数目,并且要有一批来自各判别类型的样本,才能建立判别函数来对未知属性的样本进行判别和归类。
若对一批样品划分的类型和分类的数目事先并不知道,这时对数据的分类就需借助聚类分析方法来解决。
聚类分析把分类对象按一定规则分成组或类,这些组或类不是事先给定的而是根据数据特征而定的。
在一个给定的类里的这些对象在某种意义上倾向于彼此相似,而在不同类里的这些对象倾向于不相似。
1.聚类统计量在对样品(变量)进行分类时,样品(变量)之间的相似性是怎么度量?通常有三种相似性度量——距离、匹配系数和相似系数。
距离和匹配系数常用来度量样品之间的相似性,相似系数常用来变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
通常变量按取值的不同可以分为:1.定量变量:变量用连续的量来表示,例如长度、重量、速度、人口等,又称为间隔尺度变量。
2.定性变量:并不是数量上有变化,而只是性质上有差异。
定性变量还可以再分为:⑴有序尺度变量:变量不是用明确的数量表示,而是用等级表示,例如文化程度分为文盲、小学、中学、大学等。
⑵名义尺度变量:变量用一些类表示,这些类之间既无等级关系,也无数量关系,例如职业分为工人、教师、干部、农民等。
下面主要讨论具有定量变量的样品聚类分析,描述样品间的亲疏程度最常用的是距离。
1.1.距离1. 数据矩阵设ij x 为第i 个样品的第j 个指标,数据矩阵如下表表1 数据矩阵在上表中,每个样品有p 个变量,故每个样品都可以看成是p R 中的一个点,n 个样品就是p R 中的n 个点。
在p R 中需定义某种距离,第i 个样品与第j 个样品之间的距离记为ij d ,在聚类过程中,相距较近的点倾向于归为一类,相距较远的点应归属不同的类。
所定义的距离ij d 一般应满足如下四个条件:⑴0≥ij d ,对一切j i ,;且0),(=j i x x d 当且仅当j i x x =⑵ji ij d d =,对一切j i ,;⑶kj ik ij d d d +≤,对一切k j i ,,2.定量变量的常用的距离对于定量变量,常用的距离有以下几种:⑴闵科夫斯基(Minkowski )距离qp k q jk ik ij x x q d 11][)(∑=-=这里q 为某一自然数。
闵科夫斯基距离有以下三种特殊形式:1)当1=q 时,∑=-=pk jk ik ij x x d 1)1(称为绝对值距离,常被形象地称为“城市街区”距离;2)当2=q 时,2112][)2(∑=-=p k jk ik ij x x d ,称为欧氏距离,这是聚类分析中最常用的距离;3)当∞=q 时,jk ik pk ij x x d -=∞≤≤1m ax )(,称为切比雪夫距离。
)(q d ij 在实际中用得很多,但是有一些缺点,一方面距离的大小与各指标的观测单位有关,另一方面它没有考虑指标间的相关性。
当各指标的测量值相差悬殊时,应先对数据标准化,然后用标准化后的数据计算距离;最常用的标准化处理是:令 j j ij ij s x x x -=*其中∑==n i ij j x n x 11为第j 个变量的样本均值,∑=--=ni j ij j x x n s 12)(11为第j 个变量的样本方差。
⑵兰氏(Lance 和Williams )距离当0>ij x (;,,2,1n i = p j ,,2,1 =)时,第i 个样品与第j 个样品间的兰氏距离为∑=+-=p k jk ik jk ik ij x x x x L d 1)(这个距离与各变量的单位无关,但没有考虑指标间的相关性。
⑶马氏距离(Mahalanobis )距离第i 个样品与第j 个样品间的马氏距离为)()'()(1j i j i ij x x S x x M d --=-其中)',,,(21ip i i i x x x x =,),,(21jp j j j x x x x =,S 为样品协方差矩阵。
使用马氏距离的好处是考虑到了各变量之间的相关性,并且与各变量的单位无关;但马氏距离有一个很大的缺陷,就是S 难确定。
由于聚类是一个动态过程,故S 随聚类过程而变化,那么同样的两个样品之间的距离可能也会随之而变化,这不符和聚类的基本要求。
因此,在实际聚类分析中,马氏距离不是理想的距离。
⑷斜交空间距离第i 个样品与第j 个样品间的斜交空间距离定义为∑∑==*--=p k p l kl jl il jk ik ij r x x x xp d 12112]))((1[其中kl r 是变量k x 与变量l x 间的相关系数。
当p 个变量互不相关时,p d d ij ij )2(=*,即斜交空间距离退化为欧氏距离(除相差一个常数倍外)。
以上几种距离的定义均要求样品的变量是定量变量,如果使用的是定性变量,则有相应的定义距离的方法。
3.定性变量的距离下例只是对名义尺度变量的一种距离定义。
例1 某高校举办一个培训班,从学员的资料中得到这样6个变量:性别(1x )取值为男和女;外语语种(2x )取值为英、日和俄;专业(3x )取值为统计、会计和金融;职业(4x )取值为教师和非教师;居住处(5x )取值为校内和校外;学历(6x )取值为本科和本科以下。
现有两名学员:=1x (男,英,统计,非教师,校外,本科)ˊ=2x (女,英,金融,教师,校外,本科以下)ˊ这两名学员的第二个变量都取值“英”,称为配合的,第一个变量一个取值为“男”,另一个取值为“女”,称为不配合的。
一般地,若记配合的变量数为1m ,不配合的变量数为2m ,则它们之间的距离可定义为 21212m m m d += 按此定义本例中1x 与2x 之间的距离为32。
1.2.匹配系数当样品的变量为定性变量时,通常采用匹配系数作为聚类统计量。
第i 个样品与第j 个样品的匹配系数定义为∑==pk k ij Z S 1,其中jk ik jkik k x x x x Z ≠=⎩⎨⎧=当当,0,1显然匹配系数越大,说明两样品越相似。
1.3.相似系数聚类分析方法不仅用来对样品进行分类,而且可用来对变量进行分类。
在对变量进行分类时,常常采用相似系数来度量变量之间的相似性。
设ij c 表示i x 与j x 的相似系数,它一般应满足如下三个条件:⑴ 1≤ij c ,对一切j i ,;⑵ 1±=ij c ,当且仅当存在常数a 和b ,使得b ax x j i +=;⑶ ji ij c c =,对一切j i ,.最常用的相似系数有以下两种:1. 夹角余弦变量i x 与j x 的夹角余弦定义为 2112121][)1(∑∑∑===⋅=n k kj nk ki n k kj ki ij x x x x c 它是n R 中变量i x 的观测向量'21),,,(ni i i x x x 与变量j x 的观测向量'21),,,(nj j j x x x 之间夹角ij θ的余弦函数,即ij ij c θcos )1(=.2. 相关系数变量i x 与j x 的相关系数为∑∑∑===-⋅---=nk n k j kj i ki n k j kj i ki ij x x x x x x x x c 1211221]})([])({[))(()2(其中∑==n k ki i x x 1,∑==nk kj j x x 12.聚类分析从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。
传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS 、SAS 等。
从机器学习的角度看,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。
聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务,是模式识别的重要前提。
而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。
聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。
2.1.聚类分析的流程及数据来源聚类分析法的主要流程包括: 数据预处理、为衡量数据点间的相似度定义一个距离函数、聚类或分组和评估输出, 用流程图描述如图1所示。
图 1 聚类分析流程图聚类分析的源数据通常是待聚类或分组的数据。
对机械故障模式识别而言, 首先要获取关于本机组的大量运行参数, 既要有机器平稳运行、正常工作时的数据, 更要有机器出现故障时的数据, 并且获知故障的类别。
这样, 由已知故障类别、故障发生时的各运行参数、历史记录组成的数据库便构成了数据挖掘的训练学习样本库。
这里用到的数据就是设备的点检数据。
2.2. 常用的聚类分析方法(1)系统聚类法系统聚类法(Hierarchical clustering method )是目前使用最多的一种方法。
其基本思想是首先将n 个样品看成n 类(即一类包括一个样品),然后规定样品之间的距离和类与类之间的距离。
将距离最近的两类合并为一个新类,在计算新类和其他类之间的距离,再从中找出最近的两类合并,继续下去,最后所有的样品全在一类。
将上述并类过程画成聚类图,便可以决定分多少类,每类各有什么样品。
系统聚类法的步骤为:①首先各样品自成一类,这样对n 组样品就相当于有n 类;②计算各类间的距离,将其中最近的两类进行合并;③计算新类与其余各类的距离,再将距离最近的两类合并;④重复上述的步骤,直到所有的样品都聚为一类时为止。
下面以最短距离法为例来说明系统聚类法的过程。
最短距离法的聚类步骤如下:① 规定样品之间的距离,计算样品的两两距离,距离矩阵记为()0S ,开始视每个样品分别为一类,这时显然应有pq d q p D =),(;② 选择距离矩阵()0S 中的最小元素,不失一般性,记其为),(q p D ,则将pG 与q G 合并为一新类,记为m G ,有q p m G G G ⋃=;③ 计算新类m G 与其他各类的距离,得到新的距离矩阵记为()1S ;④ 对()1S 重复开始进行第②步,…,直到所有样本成为一类为止。
值得注意的是在整个聚类的过程中,如果在某一步的距离矩阵中最小元素不止一个时,则可以将其同时合并。
(2) 动态聚类法开始将n个样品粗略地分成若干类,然后用某种最优准则进行调整,一次又一次地调整,直至不能调整了为止。