碳纳米管纳米复合材料的研究现状及问题(一)

合集下载

碳纳米管技术的现状与应用前景

碳纳米管技术的现状与应用前景

碳纳米管技术的现状与应用前景碳纳米管是由纯碳组成的一种纳米管结构,具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力。

因此,在众多纳米材料中,碳纳米管被认为是一种极具潜力的新型材料。

本文将介绍碳纳米管技术的现状和应用前景。

一、碳纳米管技术的现状碳纳米管的制备技术主要有两种方法:一种是化学气相沉积法(CVD),另一种是溶液法。

其中,化学气相沉积法是目前最主要的碳纳米管制备方法。

化学气相沉积法通过气氛中的化学反应将碳原子沉积在基底上,这种方法可以控制碳纳米管的直径、长度和取向。

此外,化学气相沉积法还可以控制碳纳米管的外径和内径,从而调节其电学和机械性能。

虽然化学气相沉积法具有很高的制备效率和生产能力,但同时也存在巨大的成本和环境污染问题,限制了其在工业领域的应用。

溶液法是另一种常用的碳纳米管制备方法,其主要包括化学还原剂法、水热法、电沉积法等。

溶液法制备碳纳米管的优点是方法简单、成本低、环境友好,它可以大规模生产碳纳米管,并得到高纯度和高品质的碳纳米管,但其制备效率和生产能力还需要进一步提高。

二、碳纳米管技术的应用前景碳纳米管具有极高的强度、导电性和导热性,还具有独特的光电性质和分子识别能力,因此有着广泛的应用前景。

1. 新一代电子器件碳纳米管可以制成纳米电子器件,如纳米场效应晶体管、纳米透明导电膜、纳米光电探测器、纳米场发射器等,具有非常好的性能表现。

相比传统的硅基电子器件,碳纳米管器件具有更好的尺寸一致性和热稳定性,还具有更佳的电子传导性能和灵敏性。

2. 生命科学碳纳米管在生物医学方面具有广泛应用前景,如用于药物递送、疫苗制备、生物传感等。

碳纳米管具有高度的生物相容性和分子靶向性,可以用于开发高效、低毒的靶向药物,有效减少药物的副作用和毒性。

3. 材料科学碳纳米管具有出色的机械性能和导电性能,可以应用于制备各种高性能的材料,如碳纳米管增强的复合材料、高导电性银浆、导电性弹性体等。

碳纳米管增强陶瓷基复合材料的研究现状

碳纳米管增强陶瓷基复合材料的研究现状

碳纳米管增强陶瓷基复合材料的研究现状碳纳米管增强陶瓷基复合材料碳纳米管 (简称为 CNTs)自20世纪末被 Iijima 发现以来,以其优异的力学、电学和热学性能而引起了广泛关注。

研究表明,CNTs的硬度是传统钢材的50倍,其杨氏模量是传统钢材的5倍,其热导率高达3000W ·m-1·K-1,同时还具有独特的电学性能,因此被应用于复合材料的增强和改性。

陶瓷材料由于具有非常优异的力学性能、电热绝缘性能和抗化学蚀变性能而被广泛应用于机械、化工和冶金等传统工业部门,并在光电、生物医学和航空航天等领域也得到愈来愈广泛的应用。

但是陶瓷材料的塑性变形能力、导热性。

和导电性能较差。

研究表明,在陶瓷材料的制备过程中加入一定量的CNTs,能很大程度地增强和改善陶瓷材料的各项性能。

碳纳米管增强氧化物陶瓷材料1.碳纳米管增强氧化铝陶瓷基复合材料氧化铝(Al2O3)陶瓷¨的机械强度高,化学稳定性好,绝缘隔热性能良好,被广泛应用在刀具、工业阀门、石油化工、建材、医学、航天和电子电器等领域。

氧化ZrO2铝m1/2陶瓷的脆性限制了其在结构材料中的应用。

研究表明,将碳纳米管引入Al2O3陶瓷中可显著改善其力学性能。

将CNTs引入Al2O3陶瓷中的方法主要有:直接加入法、水热法(HTC)、杂凝聚法(HC)、溶胶一凝胶法(Sol—gel)和催化化学气相沉积法(CCVD)。

直接加入法是将CNTs和陶瓷粉体置于研钵或球磨罐中机械混合,其工艺简单,因此应用比较广泛。

Ahmad等以酸洗过的外径约为40nm的CNTs和粒径40nm的纳米氧化铝粉体为原料,先机械混合再热压烧结制得了多壁碳纳米管(MWCNTs)增强Al2O3,陶瓷基复合材料。

结果表明,相比于单相A1O陶瓷,MWCNTs增强Al2O3陶瓷的断裂韧性有很大程度的提升,加入2%和5%(w)的CNTs时,试样的断裂韧性分别提升了94%和65%。

Zhang等将商业CNTs先酸洗纯化,然后在pH为12的水溶液中与Al2O3粉体混合,再将其冷冻干燥制得CNTs/Al2O3复合粉体。

碳纳米管技术的应用发展现状与未来趋势

碳纳米管技术的应用发展现状与未来趋势

碳纳米管技术的应用发展现状与未来趋势碳纳米管是一种具有优异物理和化学性质的纳米材料,因其极高的强度、导电性和导热性而备受关注。

在过去几十年里,碳纳米管技术在各个领域都有着广泛的应用,同时也展现了巨大的潜力。

本文将探讨碳纳米管技术的应用发展现状与未来趋势。

碳纳米管技术在材料科学领域的应用已经取得了令人瞩目的成就。

首先,碳纳米管的强度远远超过钢铁,使其成为制造高强度材料的理想选择。

例如,在航空航天领域,碳纳米管可以用于制造轻质且坚固的飞机结构,以减少燃料消耗和碳排放。

此外,碳纳米管还可以应用于电子器件和传感器中,因为它的高导电性和导热性。

这种特性使得碳纳米管可以用于制造更小、更快和更节能的电子设备,如智能手机和电脑。

在医药领域,碳纳米管技术也有着广阔的前景。

研究表明,碳纳米管可以用作药物输送系统,将药物精确地投递到体内特定的位置。

这种精准的药物输送可以减少药物的副作用,并提高治疗的有效性。

此外,碳纳米管还可以用于肿瘤治疗。

通过将药物或光热剂引导到肿瘤细胞中,碳纳米管可以实现针对性治疗,并对肿瘤进行消融。

这一技术被认为是未来肿瘤治疗的重要方向之一。

除了材料科学和医药领域,碳纳米管技术还在能源和环境领域发挥着重要作用。

碳纳米管可以用于制造高效的太阳能电池和锂离子电池,以提高能源转化和存储的效率。

此外,碳纳米管还可以用于水处理和空气净化。

通过利用碳纳米管的高比表面积和吸附性能,有毒物质和污染物可以被高效吸附和去除,从而改善环境质量。

未来,随着对碳纳米管技术的深入研究和发展,它的应用前景将进一步拓展。

一方面,研究人员可以通过改变碳纳米管的结构和功能化修饰来优化其性能。

例如,通过对碳纳米管表面进行修饰,可以增强其与其他物质之间的相互作用,从而实现更多样化的应用。

另一方面,研究人员还可以通过改变碳纳米管的形式和组合,探索更多新兴领域的应用。

例如,碳纳米管可以与其他纳米材料结合使用,形成复合材料,以实现更高级的性能和功能。

碳纳米管复合材料研究进展

碳纳米管复合材料研究进展

碳纳米管复合材料研究进展碳纳米管(Carbon nanotubes,CNTs)是由碳原子构成的长管状结构,直径在纳米级别范围内,具有优异的力学性质、电学性质和热学性质等特性。

碳纳米管的应用极其广泛,涉及到材料、化学、电子、生物和医学等领域。

在材料领域,由碳纳米管复合材料制成的材料在机器人、汽车、飞机、结构材料等方面具有广泛的应用前景。

本文将就碳纳米管复合材料研究进展,从制备、性质及其应用等方面进行论述。

一、制备方法碳纳米管复合材料的制备方法有许多种,包括机械法、溶液法、气相法、离子液体法等。

其中机械法制备的碳纳米管复合材料具有制备工艺简便、低成本、易扩展等优点,但是因为机械法的制备方式较为粗糙,可能会导致制备的复合材料的性能不佳。

离子液体法制备的碳纳米管复合材料具有制备工艺简便、成品纯度高等优势,但是由于离子液体具有较大的粘度,可能限制了碳纳米管的扩散,并形成束缚作用,从而影响复合材料的性能。

相比之下,气相法制备的碳纳米管具有制备工艺简单、制备效率高、碳纳米管纯度高等优势,但是气相法制备的碳纳米管需要高分辨率的仪器进行纯化处理,且气相法制备出的碳纳米管质量与管径分布不均匀。

二、材料性质碳纳米管复合材料具有优异的力学性质、电学性质和热学性质等。

碳纳米管复合材料的力学性能优于传统材料,其拉伸强度达到多千兆帕,弹性模量达到10万吨/立方厘米以上。

电学性质方面,碳纳米管的宽禁带结构使其表现出了金属和半导体的一些性质。

电学性质的优异性可用于电子器件的开发。

热学性质方面,碳纳米管的热传导性能突出,热扩散系数高达4000至6000W/mK左右,是金属的数倍。

然而,碳纳米管在制备和应用时也存在一些问题。

由于碳纳米管的外壳和内腔具有不同的物理结构,也导致了其结构多样化的特性。

复合材料内的碳纳米管方向性效应的强弱决定了复合材料的最终性能,因此研究碳纳米管在复合材料中的应用及取向问题至关重要。

同时,单根碳纳米管的直径和长度均较小,因此用于制备纳米复合材料时需要用到大量碳纳米管,制备过程的成本较高。

碳纳米管的研究现状

碳纳米管的研究现状

碳纳米管的研究现状1991年,日本电子显微镜专家S. Iijima将他在高分辨电镜下发现的这种由直径为4-30nm,长度在微米级的多个同心管构成的中空针状物命名为碳纳米管[1],这是最早的多壁碳纳米管,后来到1993年报道发现了只有一层碳原子的圆管,即单壁碳纳米管[2]。

碳纳米管被发现后,立即就以其独特的物理和化学特征引起研究者的广泛关注,使其成为近年来物理和化学研究的一大热点。

碳纳米管是一种一维中空的纳米材料,管径为纳米级,而长度可以达到微米甚至毫米级,所以其长径比可控范围较大,而且其表面化学性质特殊(电子缺陷等),具有很高的比表面积、机械强度(杨氏模量比较大[3])、热导率(是目前认为导热性能最好的金刚石的2倍)和导电能力(是铜线的1000倍[4],同时还具有半导体的性质[5]),而且还具有很强的耐酸碱的能力,这些优良的性能使碳纳米管在很多方面都有潜在的应用前景,例如在场发射电极、微电子器件、吸波材料、电池、储氢材料和其他新材料等领域都有很广泛的应用。

目前科学家正在挖掘碳纳米管更多的新的独特性质和形貌,而且逐渐拓宽碳纳米管在其他更多领域的应用。

基于碳材料目前取得的伟大成就和进展,碳纳米管必将在纳米科技的新时代取得更加巨大的进步,作出更大的贡献。

1.1.1 碳纳米管的制备制备出高质量的碳纳米管为其更广泛的理论研究和工业应用提供了前提,因此近年人们在开拓碳纳米管的应用前景的同时,也在逐渐改善碳纳米管的制备方法,向管径均匀、缺陷和杂质少、产量高、成本低以及操作简单等方向努力。

最早用于制备碳纳米管的方法是电弧放电法[1],后来也被人们进行了各种优化工艺,使其现在仍然是广泛应用的一种方法,但是此方法虽然速度快操作简单,但是产量低、所得碳纳米管缺陷和杂质多,很难分离提纯,不适用于工业化生产。

化学气相沉积法(CVD)即催化热解法,主要是通过将烃类(如CH4和C2H2等)或者其他含碳化合物(乙醇等)在催化剂的作用下裂解沉积得到碳纳米管。

中国碳纳米管发展现状

中国碳纳米管发展现状

中国碳纳米管发展现状一、引言碳纳米管,作为一种具有独特结构和优异的物理化学性能的纳米材料,在多个领域具有广泛的应用前景。

近年来,随着科技的不断进步,中国在碳纳米管的研究与应用方面取得了显著的进展。

本文将对中国碳纳米管的发展现状进行概述。

二、研究进展1. 制备技术:中国在碳纳米管的制备技术方面取得了重要突破。

通过改进催化剂、控制温度和压力等手段,成功实现了大规模、高效、环保的碳纳米管制备。

这为碳纳米管在各个领域的应用提供了充足的原料保障。

2. 应用领域:碳纳米管在能源、环保、医疗、航空航天等领域具有广泛的应用。

中国科研团队在多个领域开展了深入研究,取得了一系列重要成果。

例如,碳纳米管在电池、超级电容器等储能器件中的应用,提高了能量密度和循环寿命;在环保领域,碳纳米管可用于吸附和去除水体中的有害物质;在医疗领域,碳纳米管可用于药物输送、生物成像等。

3. 产业布局:中国政府高度重视碳纳米管产业的发展,通过政策引导、资金支持等方式推动产业集聚和创新。

目前,中国已形成了多个碳纳米管产业园区,聚集了众多优秀企业和研发机构,形成了完整的产业链。

三、挑战与展望1. 技术挑战:尽管中国在碳纳米管的研究和应用方面取得了显著进展,但仍面临一些技术挑战。

例如,如何进一步提高碳纳米管的性能和稳定性,以满足不同领域的需求;如何降低生产成本,提高产业竞争力等。

2. 政策环境:随着全球环保意识的提高,各国政府对环保材料的需求日益增长。

中国政府应加大对碳纳米管产业的支持力度,推动产业绿色发展,提高国际竞争力。

3. 人才培养:碳纳米管领域需要具备跨学科背景的高素质人才。

中国应加强人才培养和引进,建立完善的人才激励机制,为碳纳米管领域的发展提供智力保障。

4. 合作与交流:加强国际合作与交流是推动碳纳米管领域发展的重要途径。

中国应积极参与国际合作项目,引进先进技术和管理经验,推动中国碳纳米管产业走向世界。

四、结论中国在碳纳米管的研究和应用方面取得了显著进展,但仍面临一些挑战。

2024年碳纳米管市场分析现状

2024年碳纳米管市场分析现状

2024年碳纳米管市场分析现状引言碳纳米管(Carbon Nanotubes, CNTs)是一种纳米级的材料,由碳原子构成的管状结构。

由于其独特的物理和化学性质,碳纳米管被广泛应用于多个领域,如电子学、纳米材料、生物医药等。

本文将对2024年碳纳米管市场分析现状进行探讨。

市场规模和增长趋势目前,碳纳米管市场规模不断扩大,并呈现出良好的增长趋势。

根据MarketsandMarkets的报告,碳纳米管市场从2019年的约8.2亿美元增长到预计的2025年的约18.0亿美元,年复合增长率为9.8%。

这是由于碳纳米管在电子元件、传感器、储能装置等多个领域的广泛应用。

主要应用领域电子元件碳纳米管在电子元件中的应用前景广阔。

由于其高导电性和高迁移率,碳纳米管可以作为晶体管替代品在场效应管(FETs)上使用。

此外,碳纳米管也可以用于制造柔性显示器、柔性电子等可弯曲的电子设备。

碳纳米管的高灵敏度和高选择性使其成为理想的传感器材料。

它可以用于气体传感器、压力传感器、湿度传感器等多个领域。

此外,由于其独特的电化学性质,碳纳米管还可以用于生物传感器的制备。

储能装置碳纳米管具有高比表面积和优异的导电性能,这使其成为理想的储能材料。

碳纳米管可以用于超级电容器和锂离子电池等储能装置的制备。

它可以显著提高储能装置的能量密度和循环寿命。

纳米材料碳纳米管还可以应用于纳米复合材料的制备。

通过将碳纳米管与其他材料进行复合,可以制备出具有高强度、高导电性、高热导率等优异性能的材料。

这种材料可以应用于航空航天、汽车、建筑等多个领域。

主要市场参与者华东地区华东地区作为中国碳纳米管产业的主要地区,有许多重要的碳纳米管制造企业,如南京纳米技术研究所、苏州纳米技术研究所等。

这些企业在碳纳米管的制备、应用研究等方面具有一定的优势。

美国在碳纳米管市场中处于领先地位。

众多创新型企业和研究机构,如Nanocyl、ARKEMA等,在碳纳米管的研发和生产方面具有较强的实力和经验。

碳纳米管材料的研究现状及发展展望[1]

碳纳米管材料的研究现状及发展展望[1]

碳纳米管材料的研究现状及发展展望摘要:碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。

本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。

关键词:碳纳米管;制备;抗静电;隐身涂料;吸波涂料纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出许多独特的物理化学性质。

20世纪80年代初期纳米材料这一概念形成以后,世界各国都给予了极大关注。

它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带米新的机遇。

1、碳纳米管的制备、结构与性能1.1、碳纳米管的制备1.1. 1电弧法石墨电弧法是最早的、最典型的碳纳米管合成方法。

其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定[1]。

放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物[2]。

这种方法具有简单快速的特点,碳纳米管能够最大程度地石墨化,管缺陷少。

但存在的缺点是:电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。

经过多年研究,科研工作者对该方法进行了改进,如Takizawa等人利用电弧放电法,通过改变催化剂镍和钇的比例,实现了控制产物直径分布的目的。

Colbert[3]等人将一般阴极(大石墨电极)改成一个可以冷却的铜电极,再在上面接石墨电极,这样产物的形貌和结构大为改观,使电弧法再次焕发了青春。

1.1.2催化裂解法催化裂解法亦称为化学气相沉积法,通过烃类或含碳氧化物在催化剂的催化下裂解而成。

其基本原理为将有机气体(如乙炔、乙烯等)混以一定比例的氮气作为压制气体,通入事先除去氧的石英管中,在一定的温度下,在催化剂表面裂解形成碳源,碳源通过催化剂扩散,在催化剂后表面长出碳纳米管,同时推着小的催化剂颗粒前移[4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管纳米复合材料的研究现状及问题(一)
文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。

碳纳米管的这些特性使其在复合材料领域成为理想的填料。

聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。

因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。

近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。

文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。

1聚合物/碳纳米管复合材料的制备
聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1溶液共混复合法
溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。

这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。

Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。

除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

1.2熔融共混复合法
熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。

这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。

该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。

Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。

结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。

复合材料的储能模量显著提高。

1.3原位复合法
将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。

这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。

Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。

结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。

这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。

采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。

2聚合物/碳纳米管复合材料的研究现状
2.1聚合物/碳纳米管结构复合材料
碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。

近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

提高聚合物机械性能的主要问题是它们在聚合物基体内必须有良好的分散和分布,并增加它们与聚合物链的相互作用。

通过优化加工条件和碳纳米管的表面化学性质,少许的添加量已经能够使性能获得显著的提升。

预计在定向结构(如薄膜和纤维)中的效率最高,足以让其轴向性能发挥到极致。

在连续纤维中的添加量,单壁碳纳米管已经达到60%以上,而且测定出的韧度相当突出。

另外,只添加了少量多壁或单壁纳米管的工程纤维,其强度呈现出了较大的提升。

普通纤维的直径仅有几微米,因此只能用纳米尺度的添加剂来对其进行增强。

孙艳妮等12]将碳纳米管羧化处理后再与高密度聚乙烯(HDPE)复合,采用熔融共混法制备了碳纳米管/高密度聚乙烯复合材料,并对其力学性能进行了研究。

结果表明:碳纳米管的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率。

Liu 等13]采用熔融混合法制得了MWNT/PA6(尼龙6)复合材料,结果表明,CNTs在PA6基体中得到了非常均匀的分散,且CNTs和聚合物基体间有非常强的界面粘接作用,加入2wt%(质量分数)的MWNTs时,PA6的弹性模量和屈服强度分别提高了214%和162%。

总之,碳纳米管对复合材料的机械性能的影响,在很大程度上取决于其质量分数、分散状况以及碳纳米管与基质之间的相互作用。

其他因素,比如碳纳米管在复合材料中的取向,纤维在片层中的取向,以及官能团对碳纳米管表面改性的不均匀性,也可能有助于改善复合材料的最终机械性能。

相关文档
最新文档