碳纳米管的研究进展及应用

合集下载

纳米碳管在催化剂中的应用研究

纳米碳管在催化剂中的应用研究

纳米碳管在催化剂中的应用研究一、碳纳米管的简介碳纳米管(Carbon nanotubes,CNTs)是一种一维的结构,由碳原子形成纳米尺度的管状物质,在物理、化学、材料科学等领域都具有广泛的应用前景。

碳纳米管单壁的直径通常为1-3 nm,在外径大致相同的情况下,壁厚可以等于单壁厚度,也可以有多壁壁层。

二、纳米碳管在催化剂中的作用催化剂是在化学反应中加快反应速率的物质,它本身并不参与反应过程,而是通过调节反应中的能量变化,实现反应条件的提高,从而促使化学反应的进行。

碳纳米管的结构、性质和表面的化学反应活性使其在催化剂中拥有独特的应用优势。

1. 催化剂支撑材料碳纳米管是一种极其优异的催化剂载体,因其优异的阻塞性能、高比表面积、良好的导电性、高的热稳定性和循环稳定性,使得其可以作为非常理想的催化剂载体来使用。

它可以将催化活性剂稳定地固定在表面上,增加反应过程中的反应基团表面密度,增加反应速率和催化效果。

2. 活性催化剂组分碳纳米管本身也具有催化活性,能够在催化反应中提供表面上的活性位点和催化反应,例如常见的氧化还原反应、还原反应、酯化反应、电荷转移反应等。

在某些反应中,碳纳米管具有比常规催化剂更强的反应选择性,更低的反应温度,更高的催化效率和更快的反应速率。

3. 电催化剂碳纳米管在电化学反应中也具有广泛的应用前景,其能够吸附活性氧和氢气等,从而作为阴、阳极催化剂。

此外,碳纳米管还可以作为超级电容器的核心材料,并且也可以应用在直接甲醇燃料电池中等电化学领域。

三、纳米碳管催化剂研究进展1. 金属催化剂的纳米碳管载体碳纳米管作为金属催化剂的载体具有协同催化作用,为氢化反应、酯化反应、氧化反应等一系列反应提供多种选择。

研究表明,使用纳米碳管作为催化剂载体可以实现对反应活性组分的定向修饰,提高反应性能和催化剂稳定性。

2. 有机功能化纳米碳管催化剂在不同的功能性化物质表面,可以通过非常简单的化学处理方法将这些材料修饰在纳米碳管表面上。

碳纳米管材料在锂离子电池中的应用研究

碳纳米管材料在锂离子电池中的应用研究

碳纳米管材料在锂离子电池中的应用研究一、引言锂离子电池是一种重要的电化学装置,广泛应用于移动电子设备、电动汽车、太阳能电池等领域。

然而,锂离子电池在长时间的充放电循环中容易出现容量衰减、安全问题等,严重制约了锂离子电池的应用范围和续航能力。

碳纳米管材料因其优异的电化学性能、高比表面积、优良的机械性能、热稳定性等特点,在锂离子电池中得到了广泛的应用。

本文将从碳纳米管材料的结构和性质出发,介绍碳纳米管材料在锂离子电池中的应用研究进展,同时探讨碳纳米管材料在锂离子电池中的前景和挑战。

二、碳纳米管的结构与性质碳纳米管(CNTs)是一种由碳原子构成的纳米管状结构,具有极高的比表面积、优异的导电性和导热性、高强度、优良的化学稳定性等特性。

根据多壁CNTs的层数、单壁CNTs的直径和结晶方式的不同,碳纳米管可以分为多种类型,如单壁碳纳米管(SWCNTs)、多壁碳纳米管(MWCNTs)、氮化碳纳米管(CNxNTs)等。

其中,单壁碳纳米管由于其单层的球形碳结构,导致其具有高比表面积和优异的导电性和电化学性能,成为深受研究者推崇的一种碳纳米材料。

三、碳纳米管材料在锂离子电池中的应用(一)碳纳米管作为锂离子电池负极材料的研究碳纳米管作为锂离子电池负极材料具有许多优异的性质,如高比表面积、优良的导电性、高的承载能力、优良的电化学稳定性,这使得碳纳米管在锂离子电池负极材料研究中具有广阔的应用前景。

1.单壁碳纳米管作为锂离子电池负极材料单壁碳纳米管作为锂离子电池负极材料具有很多的优点,如高比表面积、低电极极化、快速的电子传输、高的储存容量等。

Kim 等人研究发现,SWCNTs纳米材料可以有效缓解电极材料在充放电过程中的容量损失和安全问题,改善了电极材料的循环性能和容量保持率,为锂离子电池的高能密度和长循环寿命提供了有力的保障。

Jia等人通过对多种单壁碳纳米管结构的比较,发现对外围的羟基基团和其载体模板材料的改变,可以显著地调控单层纳米管结构中的空间结构、纵向空隙和表面物理化学性质,并为锂离子电池电极材料的设计提供了新的思路。

碳纳米管技术在医疗领域的应用研究

碳纳米管技术在医疗领域的应用研究

碳纳米管技术在医疗领域的应用研究随着科技的不断发展,人类对于医疗领域的需求也越来越高。

碳纳米管技术作为一种新兴的技术,已经开始被广泛应用于医疗领域中。

一、碳纳米管基础知识碳纳米管是由碳原子按照一定的方式组成的空心管状结构。

它的壁厚度可以达到纳米级别,而其径线可以达到数百纳米。

碳纳米管的材料具有优异的力学、热力学和电学性能,同时还具有较强的生物相容性和生物分子识别特性。

二、碳纳米管在医疗领域的应用1. 用于药物输送碳纳米管可以用于药物的输送。

由于碳纳米管在生物内部的分子交互作用特殊,因此可以选择性地输送药物到患处,并控制药物的释放时间和速度。

这一技术可以减少药物对人体的副作用,提高药物治疗效果。

2. 用于肿瘤治疗碳纳米管可以被用于肿瘤治疗。

由于碳纳米管可以在肿瘤细胞表面寻找到靶标并识别它们,因此可以将药物直接输送到肿瘤细胞表面,从而发挥更高的治疗效果。

同时,碳纳米管的导热特性也可以被用来高效地杀死肿瘤细胞。

3. 用于成像技术碳纳米管具有较强的光学性能,可以被用于成像技术中。

由于碳纳米管在肿瘤细胞、组织和器官等部分具有较强的光吸收特性,因此可以被用于医学成像,从而实现对病变位置和范围的精准定位。

4. 其他医疗应用此外,碳纳米管还可以用于其他医疗领域的应用。

例如,可以用于人体组织修复、疾病诊断和治疗、生物传感器等。

三、碳纳米管技术的优势与一些传统的医学技术相比,碳纳米管技术具有一些独有的优势。

例如,碳纳米管可以单独或与其他药物、生物分子等复合使用,从而实现更加精准的治疗;碳纳米管还可以通过改变其表面化学结构,从而改变其在生物体内的代谢途径、药物释放速度等;碳纳米管在生物体内的分布和代谢途径也相对较为安全,因此具有较高的生物相容性。

四、碳纳米管技术的风险和挑战碳纳米管技术的应用,虽然具有较多的优点,但是也存在一些风险和挑战。

例如,碳纳米管可能会对生物体造成损伤,并且在代谢过程中会产生一些副产物,因此长期使用可能会对人体产生不良影响。

碳纳米管催化剂在燃料电池中的应用研究

碳纳米管催化剂在燃料电池中的应用研究

碳纳米管催化剂在燃料电池中的应用研究燃料电池是一种能源转换装置,将化学能直接转化为电能,而不产生有害气体和颗粒物。

随着对能源和环境的日益关注,燃料电池作为一种清洁、高效的能源技术备受研究和关注。

然而,燃料电池的高成本和低耐久性限制了其在实际应用中的广泛推广。

因此,研究人员一直在寻找新的材料和方法来改善燃料电池的性能。

碳纳米管作为一种新型的纳米材料,具有优异的电化学性能和催化活性,因此在燃料电池中的应用前景广泛。

下面将从碳纳米管催化剂的制备、电化学性能和催化机理等方面探讨其在燃料电池中的应用研究。

首先,碳纳米管催化剂的制备方法非常多样化。

传统方法包括化学气相沉积、电化学沉积和热解法等,但这些方法制备的碳纳米管催化剂存在着粒径不均匀、分散性差以及封装问题等缺点。

因此,近年来研究人员提出了许多新颖的制备方法,如溶胶凝胶法、微波辐射法和激光烧结法等。

这些新方法可以制备出具有较高比表面积、较好分散性和较高催化活性的碳纳米管催化剂,从而极大地提高了燃料电池的性能。

其次,碳纳米管作为催化剂在燃料电池中具有优异的电化学性能。

研究表明,碳纳米管催化剂具有较高的电催化活性和良好的电子传导性能,能够有效降低电极的极化和电子传输电阻。

此外,碳纳米管的低吸附能力和较高的导电性能也有助于提高催化剂对燃料反应的催化效果。

因此,将碳纳米管催化剂应用于燃料电池中,可以显著提高燃料的电催化活性和燃料电池的能量转换效率。

另外,碳纳米管催化剂还具有独特的催化机理。

研究发现,碳纳米管的表面活性位点可以吸附和激活燃料分子,从而促进氧化还原反应的进行。

碳纳米管的高比表面积和多孔结构可以提供更多的活性位点,提高催化剂的利用率和稳定性。

此外,碳纳米管还可以通过控制其形貌和结构来调节催化剂的催化活性和选择性。

因此,通过研究碳纳米管的催化机理,可以优化催化剂的设计和制备,提高燃料电池的性能。

然而,碳纳米管催化剂在燃料电池中的应用仍然面临一些挑战。

首先,大规模制备碳纳米管催化剂的成本较高,影响了其商业化应用。

碳纳米管的研究及其应用前景

碳纳米管的研究及其应用前景

碳纳米管的研究及其应用前景碳纳米管是一种由碳原子旋转而成的纳米管,具有很高的机械强度、导电性和导热性,因此在众多领域中有着广泛的应用前景。

本文介绍碳纳米管的研究进展、特性及其应用前景。

一、碳纳米管的研究进展碳纳米管最早于1991年被日本学者发现,随后引起了国际科研工作者的极大兴趣,致力于对其结构、物理化学性质以及制备和应用等方面的研究。

目前,制备碳纳米管的方法主要有化学气相沉积法、电弧放电法、化学氧化还原法、模板法等。

其中,化学气相沉积法是迄今为止制备碳纳米管最常用的方法之一。

其基本原理是利用气相生长过程,在高温下使碳源分解产生碳原子并在催化剂的作用下聚集形成碳纳米管。

同时,随着对碳纳米管结构和性质方面研究的深入,科学家们也逐渐认识到碳纳米管的一些重要优点,如其高比表面积、导电性能稳定、机械强度高、化学惰性强等等,这些特性使得碳纳米管有着广泛的应用前景。

二、碳纳米管的物理性质碳纳米管是目前已知最好的纳米导体,其电阻率比铜高约10倍,导电性能稳定性高且电阻率稳定。

此外,碳纳米管的力学性质也十分卓越。

由于其单壁管结构的特殊性,碳纳米管具有极高的机械强度,在弯曲时也不会出现扭曲或弯曲。

碳纳米管还具有极强的导热性能,其蒸发冷却能力甚至可以超过铜。

此外,与金属导体相比,碳纳米管的热容量更小,这使得其在热管理领域中有着广泛的应用前景。

三、碳纳米管的应用前景由于碳纳米管具有多种独特的物理特性,因此有着广泛的应用前景。

1.电子领域由于其极好的导电性能,碳纳米管被广泛应用于电子领域。

例如,它在晶体管、电极和其他电子设备制造中的重要作用,以及在集成电路与纳米电子学领域的应用。

2.能源领域碳纳米管在能源领域中也有着广泛的应用前景。

例如,碳纳米管的高效导电性能使其成为良好的电池材料,而其高导热性使其的应用范围扩展至太阳能电池和热电转换器等方面。

3.材料学领域碳纳米管的极好的力学性能,使其成为了高强性材料的潜在替代品。

由于其良好的机械强度和高导电性能,在复合材料领域中有着广泛的应用前景。

碳纳米管技术的研究和应用前景

碳纳米管技术的研究和应用前景

碳纳米管技术的研究和应用前景随着科技的发展,碳纳米管技术成为新兴领域。

碳纳米管作为一种新型纳米材料,具有优良的导电、导热性能、高强度、轻质、高表面活性等特点,被广泛地应用于能源、材料、电子、生物医学等领域,并且具有非常广阔的应用前景。

一. 碳纳米管的发现1985年,日本科学家Sumio Iijima在透过透射电子显微镜观察相变微结构时,在石墨棒中发现一种空心管状物质,它的直径只有几个纳米,但却非常长,长达数百微米,这就是碳纳米管。

碳纳米管主要由碳原子构成,呈同心圆管状结构,在管壁上以蛇形排列呈单一或多层的结构。

二. 碳纳米管的结构特点碳纳米管是由一层薄而坚韧的碳原子形成的,具有优良的力学稳定性,可以承受高达100Gpa的拉力。

此外,碳纳米管的直径一般在1-100纳米之间,长度可以达到好几个微米,具有高欠垂直度,呈现出一些独特的光学和电学特性。

三. 碳纳米管的制备技术碳纳米管的制备技术目前主要有热解法、甲烷化法、等离子体增强化学气相沉积等。

其中,等离子体增强化学气相沉积技术具有高效率、高质量、可控性强等优点,在制备高质量碳纳米管方面具有较高的研究价值和应用前景。

四. 碳纳米管的应用前景碳纳米管在能源、材料、电子、生物医学等领域均有广泛应用。

其中,在能源领域,碳纳米管可以用于储氢、储能等方面;在材料方面,碳纳米管可以制备出复合材料、纳米复合材料,提高材料的强度、导电、导热性能,被广泛应用于汽车、飞机等领域;在电子方面,碳纳米管可以制备纳米计算机、纳米传感器等应用,也能用于电子显示器件领域;在生物医学方面,碳纳米管可以作为靶向治疗药物所用的载体,以及早期癌症的诊断与治疗。

由此可见,碳纳米管在各个领域都有广泛应用前景。

五. 碳纳米管技术的研究方向碳纳米管技术的研究方向主要有以下几个:1. 碳纳米管的合成和表征;2. 碳纳米管的应用技术和产业化;3. 碳纳米管的毒理学和安全性评价;4. 碳纳米管的功能化和修饰;5. 碳纳米管与其他材料的复合。

碳纳米管的制备方法研究进展

碳纳米管的制备方法研究进展

碳纳米管的制备方法研究进展一、本文概述随着纳米科技的飞速发展,碳纳米管作为一种具有独特结构和优异性能的一维纳米材料,受到了广泛关注。

碳纳米管因其出色的电学、力学、热学等特性,在能源、电子、生物医疗等领域具有巨大的应用潜力。

然而,碳纳米管的规模化制备及其性能优化仍是当前研究的热点和难点。

本文旨在综述近年来碳纳米管制备方法的研究进展,分析不同制备方法的优缺点,探讨未来可能的发展方向,以期为推动碳纳米管的实际应用提供理论支持和技术指导。

文章首先回顾了碳纳米管的基本结构和性质,为后续研究方法的介绍奠定基础。

随后,重点介绍了化学气相沉积法、电弧放电法、激光烧蚀法等多种碳纳米管制备方法的研究进展,分析了这些方法在制备过程中的关键因素及其对碳纳米管性能的影响。

文章还关注了新兴制备方法如溶液法、模板法等在碳纳米管制备中的应用,以及这些方法的创新点和挑战。

通过对已有文献的梳理和评价,本文总结了当前碳纳米管制备领域的主要成果和不足,展望了未来的发展趋势。

未来,随着科学技术的不断进步,碳纳米管的制备方法将更加多样化、高效化,有望为碳纳米管的产业化发展奠定坚实基础。

二、碳纳米管的基本性质碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子以特定方式排列形成的一维纳米材料,自从1991年被首次发现以来,因其独特的结构和性质,已成为纳米科学和技术领域的研究热点。

碳纳米管的基本性质主要体现在其结构、电学、热学和力学性能上。

结构上,碳纳米管可以看作是由单层或多层石墨烯片卷曲而成的无缝管状结构,这种独特的结构赋予了碳纳米管出色的物理和化学性质。

电学方面,碳纳米管因其特殊的电子结构和量子限域效应,表现出优异的导电性能,既可以是金属性,也可以是半导体性,这取决于其直径和螺旋度。

热学方面,碳纳米管具有极高的热导率,使其成为潜在的散热材料。

力学性能上,碳纳米管具有超高的强度和模量,比钢强而轻,这使得它在复合材料增强和纳米机械等领域具有广阔的应用前景。

碳纳米管的研究与应用前景

碳纳米管的研究与应用前景

碳纳米管的研究与应用前景碳纳米管(Carbon Nanotubes,CNTs)是由碳原子组成的一种纳米材料,具有独特的结构和优异的性能,因此在科学研究和应用领域具有广阔的前景。

本文将探讨碳纳米管的研究进展和应用前景。

首先,碳纳米管具有优异的力学性能。

由于其高度有序的原子结构,碳纳米管具有卓越的机械强度和刚度。

研究者已经成功地制备了具有纤维状结构的碳纳米管,这些纤维可以用来制造强度超过钢材的高性能复合材料。

此外,碳纳米管还具有良好的柔韧性和弹性,因此可以用于制造高强度的纺织品、防弹材料和抗摩擦涂层等。

其次,碳纳米管具有出色的导电和导热性能。

由于碳纳米管中的电子能量带结构独特,使得导电性能非常优异。

此外,碳纳米管的热导率也非常高,远高于其他材料。

因此,碳纳米管可以用于制造高性能的导电器件,如高速晶体管、纳米传感器和电子设备等。

此外,碳纳米管还具有优异的化学稳定性和生物相容性。

由于碳原子的结构稳定,碳纳米管在高温、酸碱等极端环境下具有良好的稳定性。

因此,碳纳米管可以应用于催化剂、膜材料和能源存储等领域。

另外,由于碳纳米管的尺寸尺度与生物分子相近,因此具有良好的生物相容性。

研究人员已经成功地将碳纳米管应用于生物成像、药物载体和生物传感器等领域。

此外,碳纳米管还具有其他独特的性能和应用前景。

例如,碳纳米管具有光学特性,可以发射和吸收可见光和紫外光,因此可以被应用于光电器件、太阳能电池和显示技术等。

此外,碳纳米管还具有独特的气体分子吸附能力,可以用于气体传感器和气体分离等领域。

同时,碳纳米管还可以通过掺杂和功能化改善其性能,如掺杂硼、硅等原子可以调控碳纳米管的导电性能。

然而,碳纳米管的研究和应用仍面临一些挑战。

首先,大规模制备碳纳米管的方法仍然不够成熟和经济效益。

其次,碳纳米管的定量检测和表征仍然比较困难,需要开发更准确、高效的实验方法。

此外,碳纳米管的毒性和环境影响也需要深入研究和评估。

总之,碳纳米管作为一种新型纳米材料,具有独特的结构和优异的性能,因此在科学研究和应用领域具有广泛的前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管的研究进展及应用一引言1.1 纳米材料纳米材料是近年来受到人们极大关注的新型领域,纳米材料的概念形成于20世纪80年代,在上世纪90年代初期取得较大的发展。

广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料[1]。

当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。

纳米材料具有四大特点: 尺寸小、比表面积大、表面能高、表面原子比例大。

从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在国防、电子、化工、催化剂、医药等各种领域具有重要的应用价值。

1.2 碳纳米管碳是自然界分布非常普遍的一种元素。

碳元素的最大的特点之一就是存在多种同素异形体,形成许许多多的结构和性质完全不同的屋子。

长期以来,人们一直以为碳的晶体只有两种:石墨和金刚石。

直到1985年,英国科学家Kroto 和美国科学家Smalley在研究激光蒸发石墨电极时发现了碳的第三种晶体形式C60[2],从此开启了人类认识碳的新阶段。

1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)发现了多壁碳纳米管(MultiWalled Carbon Nanotubes ,MWNTs),直径为4-30nm,长度为1um。

,最初称之为“Graphite tubular”。

1993年单壁碳纳米管也被发现(Single-Walled Carbon Nanotubes ,SWNTs),直径从0.4nm到3-4nm,长度可达几微米。

碳纳米管(CNT)[3]又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。

它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。

根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。

MWNTs 一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm 左右,其典型的直径和长度分为 2-30nm0.1-50μm 。

SWNTs 由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。

管径一般从10-20nm ,长度一般可达数十微米,甚至长达20cm 。

自从发现了碳纳米管(Carbon nanotube , CNT ), 人类就开辟了碳科学发展的新空间。

碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、 储能器件电极材料[4-7]等诸多领域得到了广泛应用[8]。

1.2 . 1 碳纳米管分类:碳纳米管按照石墨烯片的层数分类可分为:单壁碳纳米管(SWNTs )和多壁碳纳米管(MWNTs ),与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。

1.2. 2 按手性分: 通常依照n ,m 的相对关系,将单壁碳纳米管分为 achiral 和chiral 两个基本类型。

Achiral 型又分为zigzag (锯齿型)和armchair (扶手椅型) 两类。

当n 和m 其中之一为0 时,为zigzag 型;当n=m 时为armchair 型;其它所有情况都称为chiral 型( 手性管)。

单壁碳纳米管直径为1-6 nm多壁碳纳米管 直径nm →μm1.2. 3 按形态分:碳纳米管的表征: Zigzag(n,m)=(9,0) 变径型 洋葱型 海胆型 竹节型 念珠型纺锤型 其他异型普通封口型 Armchair(n,m)=(5,5)拉曼光谱图二碳纳米管的性质碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。

一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。

此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

2.1 奇异的导电性碳纳米管的性质与其结构密切相关。

由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

理论预测其导电性能取决于其管径和管壁的螺旋角。

当CNTs的管径大于6mm时,导电性能下降;当管径小于6mm时,CNTs可以被看成具有良好导电性能的一维量子导线。

2.2优异的力学性质除了奇特的导电性质之外,碳纳米管还有非凡的力学性质。

理论计算表明,碳纳米管应具有极高的强度和极大的韧性。

由于碳纳米管中碳原子间距短、单层碳纳米管的管径小,使得结构中的缺陷不易存在,因此单层碳纳米管的杨氏模量据估计可高达5太帕,其强度约为钢的100倍,而密度却只有钢的1/6。

因此,碳纳米管被认为是强化相的终极形式,人们估计碳纳米管在复合材料中的应用前景将十分广阔。

碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。

它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。

碳纳米管力学性质对比表2.3良好的热学性能一维管具有非常大的长径比,因而大量热是沿着长度方向传递的,通过合适的取向,这种管子可以合成高各向异性材料。

虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热交换性能较低。

纳米管的横向尺寸比多数在室温至150℃电介质的品格振动波长大一个量级,这使得弥散的纳米管在散布声子界面的形成中是有效的,同时降低了导热性能。

适当排列碳纳米管可得到非常高的各向异性热传导材料。

2.4优良的储氢性能碳纳米管的中空结构,以及较石墨(0.335nm)略大的层间距(0.343nm),是具有更加优良的储氢性能,也成为科学家们关注的焦点。

1997年,A. C. Dillon对单壁碳纳米管(SWNT)的储氢性能做了研究,SWNT 在0℃时,储氢量达到了5%。

DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的氢气,以现有的油箱来推算,需要氢气储存的重量和体积能量密度达到65%和62kg/m3。

这两个结果大大增加了人们对碳纳米管储氢应用前景的希望。

2.5 优异的化学稳定性碳纳米管具有化学惰性(C-C键,无悬空键),经历充放电不发生化学作用。

因此,数据保存在这样的一个存储器中可以拥有更长的保存时间。

三碳纳米管的制备3. 1电弧法石墨电弧法是最早的、最典型的碳纳米管合成方法。

其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定[1]。

放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物[2]。

理想的工艺条件:氦气为载气,气压60—50Pa,电流60A~100A,电压19V~25 V,电极间距1 mm~4mm,产率50%。

IIJI MA 通过电弧放电法首次得到了半径约1 nm的单层碳管。

用纯石墨电极制备的碳纳米管存在石墨碳纳米颗粒、无定形碳等杂质,产量不高且分离困难。

在石墨电极中加入Fe , Co , N i等催化剂可以降低反应温度, 择优生成碳纳米管。

在反应室中充入惰性气体或氢气, 采用不同的工艺条件,可制得单壁碳纳米管或多壁碳纳米管. WANG等认为, 与 A r , H e等惰性气体对碳纳米管的形成主要起冷却作用相比, H2 具有更高的导热率且可形成C—H键,从而刻蚀非晶碳, 因此用H2作缓冲气体合成的碳纳米管更加纯净。

成会明等开发了半连续氢等离子电弧法, 阳极由石墨粉和催化剂组成,阴极是一根石墨棒.用金属络合物催化,含硫化合物抑制杂质生成,促进碳纳米管生长,在H2气氛中电弧放电,单壁碳纳米管0.5 h的产量达1g 。

ISHIGAMI等在液氮环境下得到的多壁碳纳米管, 产量可达44 mg /min·cm2。

LI Xue-song等提出水保护电弧放电法,碳纳米管含量高于50%。

TIAN 等将煤粉和金属粉末混合物直接注入等离子流,用煤电弧法合成了多壁碳纳米管,省却了复杂的煤基电极制作过程。

电弧法具有简单快速的特点,碳纳米管能够最大程度地石墨化,管缺陷少。

但存在的缺点是:电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。

经过多年研究,科研工作者对该方法进行了改进,如Takizawa等人利用电弧放电法,通过改变催化剂镍和钇的比例,实现了控制产物直径分布的目的。

Colbert[3]等人将一般阴极(大石墨电极)改成一个可以冷却的铜电极,再在上面接石墨电极,这样产物的形貌和结构大为改观,使电弧法再次焕发了青春。

图示1 电弧法原理图3.2催化裂解法催化裂解法亦称为化学气相沉积法,通过烃类或含碳氧化物在催化剂的催化下裂解而成。

其基本原理为将有机气体(如乙炔、乙烯等)混以一定比例的氮气作为压制气体,通入事先除去氧的石英管中,在一定的温度下,在催化剂表面裂解形成碳源,碳源通过催化剂扩散,在催化剂后表面长出碳纳米管,同时推着小的催化剂颗粒前移[4]。

直到催化剂颗粒全部被石墨层包覆,碳纳米管生长结束。

该方法的优点是:反应过程易于控制,设备简单,原料成本低,可大规模生产,产率高等。

缺点是:反应温度低,碳纳米管层数多,石墨化程度较差,存在较多的结晶缺陷,对碳纳米管的力学性能及物理化学性能会有不良的影响。

图示2 CVD法制备碳纳米管特点:设备简单、条件易控、能大规模制备、可直接生长在合适的基底上。

常用气体:甲烷、一氧化碳、苯等。

催化剂:Fe、Co、Ni、Mo等以及它们的氧化物。

3.3离子或激光蒸发法1996年,诺贝尔化学奖获得者之一的Smally研究小组首次利用激光蒸发法合成了纳米碳管。

此后,激光蒸发法成为制备单壁碳纳米管的有效方法之一[5]。

此法在氩气气流中,用双脉冲激光蒸发含有Fe/Ni(或Co/Ni)的碳靶方法制备出直径分布范罔在0.81—151 nm的单壁碳纳米管。

该法制备的碳纳米管纯度达70%~90%,基本不需要纯化,但其设备复杂、能耗大、投资成本高。

影响因素:催化剂。

保护压强(3.0x104一4.5 x 104 Pa)。

气体(氦气、氩气)。

激光脉冲时间间隔(间隔越短,产率越高)。

激光脉冲功率(功率↑,直径↓)。

3.4其他合成方法近几年来,科研工作者在改进传统制备技术的同时,探索和研究出了一系列新型碳纳米管的制备技术,其中有水热法、火焰法、超临界流体技术、水中电弧法、固相热解法、太阳能法等。

较典型的如:1996年Yamamoto等人在高真空(5.33×10-3Pa)下通过氩离子束对非晶碳进行辐射的方法获得了较纯的纳米碳管。

相关文档
最新文档