软件体系结构分层知识
软件体系结构知识总结

第一部分-------填空,选择,判断1.软件工程三个要素:方法、工具和过程2.软件元素:程序代码、测试用例、设计文档、设计过程、需求分析文档3.构件分类:关键字分类刻画分类法和超文本组织法4.软件体系结构技术反战经历四个阶段(1)无体系结构设计阶段----以汇编语言进行小规模应用程序开发(2)萌芽阶段-----以控制流图和数据流图构成软件结构为特征(3)初期阶段-----出现了从不同侧面描述系统的结构模型,UML(4)高级阶段-----描述系统的高层抽象结构,出现“4+1”模型5.软件体系结构模型:结构模型、框架模型、动态模型、过程模型和功能模型。
6.“4+1”视图模型从五个不同的视角,包括逻辑试图,进程试图,物理视图,开发视图和场景视图来描述软件体系结构。
逻辑视图主要支持系统的功能需求,是系统提供给最终用户的服务。
通过抽象,封装和继承,可以用对象模型来代表逻辑视图,用类图来描述逻辑视图;开发视图也称模块视图,主要侧重于软件模块的组织和管理,主要考虑软件内部的需求,如软件开发的容易性、软件的重用等,通过系统输入输出关系的模型图和子系统图来描述,提供给编程人员的;进程视图侧重于系统的运行特性,主要关注非功能性的需求,如系统的性能和可用性。
进程视图强调并发性、分布性、系统集成性和容错能力管道和过滤器风格、客户/服务器风格等适合进程视图,提供给系统集成人员的;物理视图主要考虑如何把软件映射到硬件上,它通常考虑系统性能、规模、可靠性等,解决系统拓扑结构、系统安装、通信问题,提供给系统工程人员的。
而场景是那些重要系统活动的抽象,它使四个视图有机联系起来,是最重要的需求抽象,它可以帮助设计者找到系统结构的构件和他们之间的作用关系。
总之,逻辑视图和开发视图描述系统的静态结构,而进程视图和物理视图描述系统的动态结构。
软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。
7. 软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。
软件体系结构设计模式

软件体系结构设计模式软件体系结构设计模式是为了解决在软件开发中遇到的常见问题而提出的一种设计思想和方法。
它们是一些被广泛接受和验证的指导原则,可以帮助开发人员设计出易于维护、可扩展、可重用和灵活的软件系统。
本文将介绍几种常见的软件体系结构设计模式。
一、分层模式(Layered Pattern):分层模式是将软件系统划分为若干个层次,每个层次对应不同的功能和责任。
这种模式可以提高系统的可维护性,减少耦合度,使系统更易于扩展和修改。
分层模式一般分为三个层次:表示层、业务逻辑层和数据访问层。
表示层负责与用户交互,展示数据;业务逻辑层负责处理业务逻辑,实现系统功能;数据访问层负责与数据库进行交互,进行数据的读写操作。
二、管道过滤器模式(Pipes and Filters Pattern):管道过滤器模式是一种将数据流按照一定的顺序传递和处理的模式。
数据通过一系列的过滤器,最终产生期望的结果。
管道过滤器模式将任务分解为一系列独立的步骤,每个步骤通过一个单独的过滤器来完成。
每个过滤器只处理特定类型的数据,将结果传递给下一个过滤器。
这种模式可以提高系统的可复用性和可扩展性,便于构建复杂的数据处理流程。
三、客户端-服务器模式(Client-Server Pattern):客户端-服务器模式是一种将软件系统划分为客户端和服务器两个部分的模式。
客户端负责向服务器发送请求,服务器负责处理请求并返回结果。
客户端-服务器模式可以用于实现分布式系统,将系统的负载分散到多台服务器上,提高系统的可扩展性和性能。
同时,通过将客户端和服务器解耦,可以使系统更易于维护和修改。
四、发布-订阅模式(Publish-Subscribe Pattern):发布-订阅模式是一种将消息发送方(发布者)和消息接收方(订阅者)解耦的模式。
发布者将消息发送到消息队列或消息总线,订阅者从中获取感兴趣的消息进行处理。
发布-订阅模式可以实现系统的解耦和异步通信。
软件体系架构中的三层结构

软件体系架构中的三层结构在软件体系架构设计中,分层式结构是最常见,也是最重要的一种结构。
主流的分层式结构一般分为三层,分别为:表示层、业务逻辑层(领域层)、数据访问层,如图所示:数据访问层(DAL):有时候也称为是持久层,其功能主要是负责数据库的访问。
简单的说法就是实现对数据表的操作。
有时也会包括对象和数据表之间的mapping,以及对象实体的持久化。
业务逻辑层(BLL):是整个系统的核心,它与这个系统的业务(领域)有关。
业务逻辑层的相关设计,均和特有业务的逻辑相关,如果涉及到数据库的访问,则调用数据访问层。
表示层(UI):是系统的UI部分,负责使用者与整个系统的交互。
在这一层中,理想的状态是不应包括系统的业务逻辑。
表示层中的逻辑代码,仅与界面元素有关。
分层式结构究竟其优势:1、开发人员可以只关注整个结构中的其中某一层;2、可以很容易的用新的实现来替换原有层次的实现;3、可以降低层与层之间的依赖;4、有利于标准化;5、利于各层逻辑的复用。
概括来说,分层式设计可以达至如下目的:分散关注、松散耦合、逻辑复用、标准定义。
一个好的分层式结构,可以使得开发人员的分工更加明确。
一旦定义好各层次之间的接口,负责不同逻辑设计的开发人员就可以分散关注,齐头并进。
例如UI人员只需考虑用户界面的体验与操作,领域的设计人员可以仅关注业务逻辑的设计,而数据库设计人员也不必为繁琐的用户交互而头疼了。
每个开发人员的任务得到了确认,开发进度就可以迅速的提高。
分层式结构也不可避免具有一些缺陷:1、降低了系统的性能。
这是不言而喻的。
如果不采用分层式结构,很多业务可以直接造访数据库,以此获取相应的数据,如今却必须通过中间层来完成。
2、有时会导致级联的修改。
这种修改尤其体现在自上而下的方向。
如果在表示层中需要增加一个功能,为保证其设计符合分层式结构,可能需要在相应的业务逻辑层和数据访问层中都增加相应的代码。
容易混淆的概念:三层结构与MVC模式。
软件体系结构_第二章软件体系结构的风格与模式

软件体系结构_第二章软件体系结构的风格与模式软件体系结构是指软件系统在运行时所表现出来的组成部分之间的关系。
在软件设计和开发过程中,选择适合的体系结构风格与模式对于实现系统的可扩展性、可维护性和可靠性等方面的要求非常重要。
本章将介绍一些常见的软件体系结构风格与模式。
1. 分层体系结构(Layered architecture)分层体系结构是一种自顶向下的体系结构风格,它将软件系统划分为多个分层,每个分层只与其相邻的分层进行通信,并且每个分层都具有一定的功能和责任。
分层体系结构能够有效地提高系统的模块化程度,降低系统的复杂性。
2. 客户/服务器体系结构(Client/Server architecture)客户/服务器体系结构是基于分布式计算的一种体系结构风格,其中客户端和服务器端是相对的角色。
客户端负责用户界面和用户交互,而服务器端负责数据存储和业务逻辑。
客户/服务器体系结构能够提高系统的可扩展性和性能。
3. 事件驱动体系结构(Event-Driven architecture)事件驱动体系结构是一种基于事件和消息的体系结构风格,其中组件之间通过事件和消息进行通信和协作。
事件驱动体系结构能够实现松耦合,提高系统的灵活性和可扩展性。
4. MVC模式(Model-View-Controller pattern)MVC模式是一种软件设计模式,用于将用户界面、数据处理和业务逻辑相分离,使每个部分可以独立变化。
模型(Model)表示应用程序的数据和业务逻辑,视图(View)表示用户界面,控制器(Controller)负责接收和处理用户的输入。
MVC模式能够提高系统的可维护性和可重用性。
5. 微服务架构(Microservices architecture)微服务架构是一种将系统划分为多个小型、自治的服务的体系结构风格。
每个服务都可以独立地开发、部署和扩展,并且通过轻量级的协议进行通信。
微服务架构能够提高系统的灵活性和可扩展性。
软件体系结构知识点完整

软件体系结构知识点完整首先,软件体系结构的设计目标是确保软件系统具有良好的可维护性、可扩展性、可重用性和可演化性。
为了达到这些目标,需要考虑以下几个重要的知识点:1.架构风格和模式:软件体系结构可以采用不同的架构风格和模式,如客户/服务器架构、分层架构、微服务架构等。
每种架构风格和模式都有其适用的场景和优缺点,开发人员需要根据具体需求选择适合的架构。
2.组件和接口:软件系统通常由多个组件构成,每个组件负责特定的功能。
组件之间通过接口进行通信和交互。
设计良好的组件和接口可以提高系统的模块化程度,便于测试、维护和重用。
3.数据管理:软件系统通常需要对一定量的数据进行管理和存储。
在软件体系结构设计中,需要考虑数据的组织方式、访问方式和持久化方式。
常见的数据管理技术包括关系型数据库、非关系型数据库和缓存等。
4.并发和分布式处理:现代软件系统通常需要处理大量的并发请求,并且可能分布在不同的机器上。
软件体系结构设计需要考虑如何有效地处理并发请求和如何进行分布式部署,以提高系统的性能和可扩展性。
5.安全和可靠性:软件系统面临各种安全和可靠性风险,如数据丢失、数据泄露和系统故障等。
软件体系结构设计需要考虑如何采取措施保障系统的安全和可靠性,如进行数据备份、访问控制和错误处理等。
6.软件系统的分层:软件体系结构通常采用分层的结构,将系统划分为不同的层次,每个层次负责不同的功能。
常见的分层结构有表示层、业务逻辑层和数据访问层等。
分层结构可以提高系统的可维护性和可扩展性。
7.影响因素和约束:软件体系结构设计还需要考虑相关的影响因素和约束,如成本、时间、技术限制等。
这些因素和约束将直接影响软件体系结构的设计和实施。
总结起来,软件体系结构是软件设计的重要组成部分,它涉及到架构风格和模式的选择、组件和接口的设计、数据管理、并发和分布式处理、安全和可靠性等多个方面。
了解这些知识点对于设计出高质量、可维护和可扩展的软件系统至关重要。
软件体系结构的概念

软件体系结构的概念
软件体系结构指的是软件系统中各个部分之间的组织方式和相
互关系,并且对于软件系统的整体性能和质量具有重要影响。
软件体系结构可以分为多层次,包括应用程序、操作系统和硬件等多个层次。
软件体系结构具有以下几个方面的概念:
1. 模块化:将软件系统分解为多个模块,每个模块具有明确的
职责和功能,便于管理和维护。
2. 接口定义:模块之间通过明确的接口定义来进行通信和交互,从而实现系统的协作和集成。
3. 分层结构:软件体系结构可以分为多个层次,每个层次负责
不同的功能,便于组织和管理。
4. 过程控制:软件体系结构可以通过定义明确的流程和控制机
制来实现对软件系统开发和维护的有效控制。
5. 性能优化:软件体系结构的设计应该考虑系统的性能和效率,通过合理的设计和优化来提高系统的性能和质量。
软件体系结构的设计需要考虑到多个方面的因素,包括系统需求、硬件环境、软件技术等等,需要综合考虑并进行优化。
一个好的软件体系结构设计可以提高系统的可维护性、可扩展性和可重用性,从而降低开发和维护成本,提高软件系统的质量和效率。
- 1 -。
软件设计与体系结构知识点

软件设计与体系结构知识点软件设计与体系结构是软件开发过程中非常重要的两个环节。
设计是指通过分析需求,确定软件系统所需的各个组成部分及其相互关系,以及确定各个组成部分的详细设计方案的过程。
体系结构是指软件系统的整体架构,包括各个组件之间的关系,以及软件系统与外部环境的交互方式。
软件设计的主要知识点包括:1.需求分析:分析用户需求,明确软件系统的功能、性能、可靠性等方面的要求。
2.设计原则:包括开放封闭原则、单一职责原则、里氏替换原则、接口分离原则等。
3.设计模式:是一套被反复使用的、经过验证的、用来解决在软件设计过程中常见问题的解决方案。
常见的设计模式有工厂模式、单例模式、观察者模式、策略模式等。
4.UML(统一建模语言):是一种用于软件系统建模的标准化语言。
包括用例图、类图、时序图、状态图等。
5.架构模式:是一种包含一组满足特定需求的技术决策,指导解决软件系统中基本设计问题的模式。
常见的架构模式有分层架构、客户端-服务器架构、发布-订阅架构等。
软件体系结构的主要知识点包括:1.分层架构:将软件系统分为若干层,每一层负责处理特定的功能或任务,层与层之间通过接口进行通信。
2.客户端-服务器架构:将软件系统分为客户端和服务器两部分,客户端向用户提供界面和交互功能,服务器处理客户端发送的请求并返回相应结果。
3.分布式架构:将软件系统的各个组件分布在不同的物理节点上,通过网络进行通信。
4.微服务架构:将软件系统拆分为若干个小型服务,每个服务负责一个特定的功能,通过接口和消息进行通信。
5.事件驱动架构:系统中的各个组件通过发布-订阅模式进行通信,一个组件发生变化时通知其他相关组件。
在实际应用中,软件设计与体系结构的知识点通常会结合起来使用,以满足软件系统的需求。
同时,不同的项目可能有不同的设计与体系结构要求,开发人员需要根据具体项目的需求来选择适合的设计和架构模式。
软件体系结构总结

软件体系结构总结引言软件体系结构是指对软件系统概要设计的抽象表示,它定义了系统的结构组成、各个组件之间的关系以及与外部环境的交互方式。
在软件开发过程中,合理的软件体系结构设计能够提高系统的可维护性、扩展性和复用性。
本文将从软件体系结构的概念、常见的体系结构风格以及体系结构设计原则进行总结。
软件体系结构概念软件体系结构是对软件系统进行高层次抽象的表示,能够描述系统的组成部分以及这些部分之间的关系。
它提供了一个框架,用于指导软件系统的开发和演化。
软件体系结构通常包括以下几个方面的描述:1.结构元素:指系统中的组件、连接器和配置。
组件是系统中的可替换部分,连接器是组件之间进行通信和协作的媒介,配置是组件和连接器的物理安排。
2.组件关系:描述组件之间的静态关系,比如依赖关系、聚合关系、继承关系等。
3.交互方式:描述组件和连接器之间的动态交互方式,包括数据流、控制流和事件触发等。
4.分析视图:描述软件体系结构的静态特性,通过分析视图可以发现系统中的潜在问题和风险。
5.设计视图:描述软件体系结构的具体设计方案,包括组件和连接器的具体实现细节。
常见的体系结构风格在软件体系结构设计中,常见的体系结构风格包括以下几种:1.面向对象体系结构:基于面向对象编程思想,将系统分解为一系列的对象,每个对象封装了数据和操作,通过消息传递进行通信和协作。
2.分层体系结构:将系统分为多个层次,每个层次都有特定的功能和责任,上层层次使用下层层次提供的服务。
3.客户端-服务器体系结构:将系统分为客户端和服务器,客户端发送请求,服务器进行处理并返回结果。
4.数据流体系结构:以数据流为中心,将系统划分为一系列的数据流和处理器,数据流通过处理器进行转换和处理。
5.发布-订阅体系结构:基于事件驱动的编程模式,组件之间通过发布者-订阅者模型进行通信。
不同的体系结构风格适用于不同的应用场景,根据系统的需求和特点选择合适的体系结构风格是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软件体系结构--RPG游戏制作软件
1)分层
2)写出每层的功能
3)向上提供接口
1.分层
层次系统风格将软件结构组织成一个层次结构,一个分层系统是分层次组织的,每层对上层提供服务,同时对下层来讲也是一个服务的对象。
在一些分层系统中,内部的层只对相邻的层可见。
除了相邻的外层或经过挑选用于输出的特定函数以外,内层都被隐藏起来。
这种风格支持基于可增加抽象层的设计。
由于每~层最多只影响两层,同时只要给相邻层提供相同的接口,允许每层用不同的方法实现,同样为软件重用提供了强大的支持。
分层系统体系结构有以下优点:
第一,支持基于抽象程度递增的系统设计。
这允许设计者可以将一个复杂系统设计按递增的步骤进行分解。
第二,支持扩充。
因为每层至多和与之相邻的上层和下层交互,所以,改变某层的功能最多只会影响与之相邻的其它两层。
第三,支持重用。
与抽象数据类型一样,只要对相邻层提供同样的接口,每层可以有很多不同的可相互替代的实现方法。
因此,可能出现对于标准的层接口的定义可以有不同的实现方法。
但是分层系统体系结构也有存在缺点:
首先,并不是每个系统都可以很容易地划分为分层的模式。
甚至即使一个系统可在逻辑上进行分层,但可能出于性能的考虑需要在逻辑上与处于高层的函数和处于低层的实现之间建立紧密的联系。
其次,很难找到一个合适的、正确的层次抽象方法。
分层设计作为一个设计的理念方法,在软件设计中得到越来越广泛的应用,特别是在复杂大型软件的研制开发项目中。
即使是在中小型软件的开发过程中,也要合理的把系统划分为几个层次,把服务接口一步步地建立起来。
系统在进行软件层次设计时应遵循如下三个基本原则:
(1)实现和接口分离原则,这是对所有模块接口的一个通用原则。
不同的层次实际上是不同的模块,只不过这些模块在逻辑关系上有上下的依赖关系。
在这个分离原则之下,层次之间的互换性就可以得到保证。
对于一般的软件设计来说,最常见的是抽象层,即把应用部分与一些具体的实现分离开来。
(2)单向性原则,软件的分层应该是单向的,即只能上层调用下层,反过来通常是不行的。
因为上层调用下层,结果是上层离不开下层,但下层可以独立地存在:如果下层同时调用上层,上下层就紧密地耦合在一起,谁也离不开谁,形成了软件中的共生现象,导致模块的互换性和可重用性就得不到保证。
(3)服务接VI的粒度提升原则,每层的存在应该是为了完成一定的使用,从软件设计和程序编写的角度来讲,应该向上一层提供更加方便快捷的服务接口。
简单重复下一层功能的层是没有意义的,一般越往上层服务接口的粒度越大。
对很多应用软件来说,在与数据库直接打交道的地方有数据抽象层。
该层把上层的应用同具体的数据库引擎分离开来。
在此之上,建立业务对象层(business object),把具体的业务逻辑反映到该层次上。
再往上是交互的用户界面等。
多层结构系统具有良好的可拓展性、可维护性和稳定的系统质量,同时,可以提高软件的可重用性,节省项目的开发时间。
在开发中,具体采取几层构架,可根据系统的业务繁简程度灵活运用
软件的分层
目前典型的应用软件的结构:三层结构
表述层:提供与用户交互的界面。
GUI(图形用户界面)和web页面是表述层的两个典型的例子。
业务逻辑层:实现各种业务逻辑。
数据库层:负责存放和管理应用的持久性业务数据。
区分物理层和逻辑层
软件的分层包含两种含义:一种是物理分层,即每一层都运行在单独的机器上,这意味着创建分布式的软件系统;一种是逻辑分层,指的是在单个软件模块中完成特定的功能。
业务逻辑层和数据库层运行在同一台机器上,这台机器即是应用服务器,又是数据库服务器,因此整个系统物理上分为两层,而逻辑上分为三层结构。
软件层的特征
软件层必须符合以下特征:
1、每个层由一组相关的类或组件(如EJB)构成,共同完成特定的功能。
2、层与层之间存在自上而下的依赖关系,即上层组件会访问下层组建的API,而下层组件不应该依赖上层组件。
例如:表述层依赖于业务逻辑层,而业务逻辑层依赖于数据库层。
(基本特征)
3、每个层对上层公开API,但具体的实现细节对外透明。
当某一层的实现发生变化,只要它的API不变,不会影响其它层的实现。
(向上公开接口,封装实现细节)
软件分层的优点
恰当的为软件分层,将会提高软件的以下性能。
1、伸缩性(指应用程序是否支持更多的用户)
2、可维护性(指的是当发生需求变化,只需修改软件的某一部分,不会影响其它部分的代码。
层数越多,可维护性也会不断提高)
3、可扩展性(指的是在现有系统中增加新功能的难易程度)层数越少,增加新功能就越容易破坏现有的程序结构。
层数越多,就可以在每个层中提供扩展点,不会打破应用的整体框架。
4、可重用性(指的是程序代码没有冗余,同一个程序能满足各种需求)
5、可管理性(管理系统的难易程度)
软件分层的缺点
软件分层越多,对软件设计人员的要求就越高。
在设计阶段,必须花时间构思合理的体系结构。
此外,软件层越多,调试会越困难。
如果应用规模比较小,业务逻辑很简单,软件层数少反而会简化开发流程并提高开发效率。
Java应用的持久化层
业务逻辑层不仅负责业务逻辑,而且直接访问数据库,提供对业务数据的增、删、改、查操作。
为了把数据访问细节和业务逻辑分开,可以把数据访问作为单独的持久化层。
“数据访问”是专业术语,指的是在应用程序代码中生成恰当的SQL语句,然后通过JDBC API 访问数据库,对数据进行增、删、改、查。
持久化层封装了数据访问细节,为业务逻辑层提供了面向对象的API。
完善的持久化层应该达到以下目标:
1、代码可重用性高,能够完成所有的数据库访问操作。
2、如果需要的话,能够支持多种数据库平台。
3、具有相对独立性,当持久化层的实现发生变化,不会影响上层的实现。
目前在持久化层领域,已经出现了许多优秀的ORM软件,有的是商业性的,有的是开发源代码的。
Hibernate就是一种开发源代码的ORM软件。
ORM软件具有中间件的特征。
中间件是在应用程序和系统之间的连接管道。
Hibernate可看成是连接Java应用和关系数据库的管道。
中间件和普通应用程序代码的区别在于,前者具有很高的可重用性,对于各种应用领域都适用;后者和特定的业务功能相关,不同业务领域的应用程序代码显然不一样。
中间。