第五章-传热学数值计算资料

合集下载

数值传热_南昌大学传热学复习资料(计算题)

数值传热_南昌大学传热学复习资料(计算题)

12.“善于发射的物体必善于吸收” ,即物体辐射力越大,其吸收比也越大。你认为对吗?
解:基尔霍夫定律对实际物体成立必须满足两个条件:物体与辐射源处于热平衡,辐射源为黑体。 也即物体辐射力越大,其对同样温度的黑体辐射吸收比也越大,善于发射的物体,必善于吸收同温 度下的黑体辐射。所以上述说法不正确。
13.在波长 λ <2 µ m 的短波范围内,木板的光谱吸收比小于铝板,而在长波( λ >2 µ m )范围内则
即方腔内自然对流完全忽略时,依靠纯导热的 Nu 数将等于 1,即 Nu 数的最小值为 1,不会小于 1, 所以上述结果是不正确的。
10.一般情况下粘度大的流体其 Pr 数也较大。 由对流换热的实验关联式 Nu = C Rem Pr n 可知 ( m >0, n >0) , Pr 数越大, Nu 数也越大,从而 h 也越大。即粘度大的流体其表面传热系数也越高。这与 经验得出的结论相反,为什么? 解:粘度越高时, Pr 数越大,但 Re 数越小。由 ud ν Nu = C Re Pr = C e ∝ ν n − m 。一般情况下,对流换热 m > n ,即 n − m <0,所以粘 ν a
相反。在木板和铝板同时长时间放在太阳光下时,哪个温度高?为什么?
解:波长小于 2 µ m 时,太阳光的辐射能量主要集中在此波段,而对常温下的物体,其辐射波长一 般大于 2 µ m 。在同样的太阳条件下,铝板吸收的太阳能多,而在此同时,其向外辐射的能量却少 于木板(在长波范围内,铝板吸收比小于木板,由基尔霍夫定律,其发射率亦小于木板) 。因此, 铝板温度高。
15.试解释下列名词 (1)有效辐射; (2)表面辐射热阻; (3)重辐射面; (4)遮热板。
解: (1) 有效辐射——包括辐射表面的自身辐射 E 和该表面对投入辐射 G 的反射辐射 ρ G , 记为 J , 即 J = E + ρG 。 (2)表面辐射热阻——当物体表面不是黑体表面时,该表面不能全部吸收外来投射辐射能量, 这相当于表面存在热阻。该热阻称为表面辐射热阻。以 1− ε 表示,它取决于表面的辐射特性。 εA

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

哈尔滨工业大学 计算传热学 第五章 对流-扩散方程的离散格式-2013

aPP aEE aWW
Fe Fw exp( Pw ) aE , aW exp( Pe ) 1 exp( Pw ) 1
(D)
aP aE aW (Fe Fw )
区别就在函数 aE和aW
aE De
Pe aE De exp( Pe ) 1
aE Pe De
该格式计算量比指数小,且指数格式的解差别很小。
§ 5-3
为了在讨论中引入 PE 记
通用表达式
x
i
J*
i+1 i+1/2
x
1 界面i+ 上的值可以用界面两侧节点值表示 2
J * Bi Ai 1 (y)
系数A和B的性质的讨论 (1)当 i i 1 时,扩散量=0, J *完全由对流造成,即

aPP aEE aW W
显然不论那种格式,仅仅是 A(| P |) 表达式的区别。
A( P )
A(|P |)
中心 1 0.5 | P | 迎风 1 混合 [| 0,1 0.5 | P | |] 指数 | P | [exp(| P |) 1]
1.0
迎风
指数 乘方
乘方 | 0, (1 0.1| P |)5 |
中心
混合
P
§ 5-4
原始的假扩散概念
关于假扩散的讨论
一维非稳态对流方程(纯对流,没有扩散)
u t x
显示迎风差分格式
in1 in
t
u
in in 1
x
, o(x, t )
将上式在(i,n)点做Taylar级数展开,保留二阶。
上述若对任何成立,必得
B( P ) A( P ) A( P ) B( P )

传热学-第五章1-2

传热学-第五章1-2

假设边界层内的速度分布和温度分布,解积分方程 c)数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速 (2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流 时的局部表面摩擦系数推知局部表面传热系数 (3)实验法 用相似理论指导
五、
对流换热过程的单值性条件
c [J (kg C) ]
[N s m2 ]
[1 K ]
运动粘度 [m 2 s]
1 v 1 v T p T p
h (流体内部和流体与壁 面间导热热阻小)
、c h (单位体积流体能携带更多能量)
流动引起的对流相项 非稳态项
导热引起的扩散项
1)如u=0、v=0上式即为二维导热微分方程。 2)如控制体内有内热源,在其右端加上
1 ( x, y) c
3)由能量方程说明,运动的流体除了依靠流体的 宏观位移传递热量,还依靠导热传递热量。
归纳对流换热微分方程组:(常物性、无内热源、 二维、不可压缩牛顿流体)
前面4个方程求出温度场之后,可以利用牛顿冷 却微分方程: t
hx t y w, x
计算当地对流换热系数 hx
四、表面传热系数的确定方法 (1)微分方程式的数学解法 a)精确解法(分析解):根据边界层理论,得到 边界层微分方程组 常微分方程 求解
b)近似积分法:
单值性条件:能单值地反映对流换热过程特点的条件 完整数学描述:对流换热微分方程组 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界 (1) 几何条件 说明对流换热过程中的几何形状和大小 平板、圆管;竖直圆管、水平圆管;长度、 直径等 (2) 物理条件 说明对流换热过程的物理特征

传热学数值计算

传热学数值计算

Fe aE De 2
Thermal
Fw Fe aP Dw De aW aE Fe Fw 2 2
2、对方程的几点说明 由于连续性,Fe=Fw, aP aW aE(只是在流 场满足连续性条件时才具有这一性质); 方程 aP P aE E aW W 隐含着分段线性分布的含
讨论只有对流项和扩散项存在时的一维稳态问题,控 制方程为:
u j ( ) S x j x j x j
d d d u ( ) dx dx dx
d 连续方程: u 0 dx
u const
任务:导出相应方程的离散化形式
义,也是熟知的中心差分格式(用左右节点值表示
界面上的值以及界面上的导数值); 方程必须遵守四项基本法则,否则会产生灾难性的 结果。
2018-11-24
太 原 理 工 大 学
7 /70
Thermal
例如:设 De Dw 1, Fe Fw 4 若E、W给定,即可由离散方程求得P 。
即, F 2D时,有可能使 aE 或aW 为负 产生不切实际的结果
2018-11-24
太 原 理 工 大 学
8 /70
Thermal
这就是中心差分格式求解对流换热问题时仅限于低
Fw Fe Re(低的F/D)的原因 . aP Dw De aW aE Fe Fw 2 2
原通用方程可改写为
u j ( )S x j x j x j
对于已知的ρ、uj、Γ及S(常量)的分布,任何解及
+c 将同时满足方程,故系数和的法则仍然适用。
2018-11-24
太 原 理 工 大 学

传热学计算公式范文

传热学计算公式范文

传热学计算公式范文传热学是物理学的一个分支,研究能量在物体之间的传递过程。

在传热学中,有许多重要的计算公式可以用于解决热传导、对流和辐射等传热现象。

下面将介绍一些常见的传热学计算公式。

热传导是物质内部由高温区向低温区传递热量的过程。

热传导热量的大小与物体的温度差、物体的热导率以及物体的尺寸等因素有关。

下面是一些常用的热传导计算公式:1.热流密度公式:热流密度(q)是单位时间内通过单位面积的热量传递量,可以由下式计算:q = -k * (dT/dx)其中,k是物体的热导率,dT/dx是温度梯度。

2.热传导率(k):物体的热传导率是描述物质导热能力的物理量,可以用以下公式计算:k=Q*L/(A*ΔT)其中,Q是通过物体的热量,L是物体的长度,A是传热的横截面积,ΔT是温度差。

3.热阻(R):热阻是描述物质阻碍热传导的程度的物理量,可以用以下公式计算:R=L/(k*A)其中,L是物体的长度,k是物体的热导率,A是传热的横截面积。

对流是物体表面与流体之间的热传递方式,流体通过对流来接触物体表面并将热量带走。

对于对流传热的计算,常用的公式有:1.流体的对流换热公式:流体通过对流来接触物体表面并带走热量,可以由下式计算:q = h * A * (T - Tfluid)其中,h是对流换热系数,A是物体表面积,T是物体表面的温度,Tfluid是流体的温度。

2.对流换热系数(h):对流换热系数描述了流体的传热能力,它可以由以下公式计算:h=(Nu*k__)/L其中,Nu是Nusselt数,k__是流体的导热系数,L是流体经过的长度。

3. Nusselt数(Nu):Nusselt数描述了流动体系中传热性能的参数,可以通过以下公式计算:Nu=(h*L)/k__其中,h是对流换热系数,L是流体经过的长度,k__是流体的导热系数。

辐射传热是物体通过辐射来传递能量的过程,对于辐射传热的计算,常用的公式有:1.斯特藩-玻尔兹曼定律:斯特藩-玻尔兹曼定律描述了黑体辐射能量的传递率,可以用下式表示:q=σ*ε*A*(T1^4-T2^4)其中,σ是斯特藩-玻尔兹曼常数,ε是物体的辐射率,A是物体的面积,T1和T2是物体的温度。

大学课件_计算传热学_第五章非稳态问题的求解方法

大学课件_计算传热学_第五章非稳态问题的求解方法

第5章 非稳态问题的求解方法1.1 通用输运方程()()()()()t t f q Γv tφφρφρφφ,grad div div =++-=∂∂ ( 5-1 )5.1 显式Euler 方法考虑1D, 定速度,常物性,无源项的特例22xx u t ∂∂Γ+∂∂-=∂∂φρφφ ( 5-2 ) 时间向前,空间中心差分,得FD 与FV 相同形式代数方程()t x x u nin i n i n i n i nin i∆⎥⎦⎤⎢⎣⎡∆-+Γ+∆--+=-+-++21111122φφφρφφφφ( 5-3 ) 可写成()ni n i n i n i c d c d d 1112221-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=φφφφ ( 5-4 ) 其中()xtu c and x t d ∆∆=∆Γ∆=2ρ ( 5-5 ) d 表示时间步长与特征扩散时间()Γ∆/2ξρ的比。

后者代表一个扰动由于扩散通过∆x 一段距离所需时间。

c 表示时间步长与特性对流传递时间x u ∆/的比。

后者代表一个扰动由于对流通过∆x 一段距离所需时间。

c 成为Courant number, 为CFD 中一个关键的参数。

此格式为时间为1阶精度,空间为2阶精度。

方程(4)内的系数在某些条件下,可能会是负值。

用矩阵表示:n n A φφ=+1 ( 5-6 )观察函数:()∑---=-=in i ni n n 211φφφφε( 5-7 )如果系数矩阵A 的本征值中有大于1,则ε随着n 的增加而增加。

如果本征值全部小于1,则ε是递减的。

一般本征值很难求得,对于本特例,它的解可用复数形式表示ji n n j e ασφ= ( 5-8 )其中,α为波数,可取任意值。

∙ 无条件发散:φn 无条件随n 增加→|σ|>1 ∙无条件稳定:φn 无条件随n 降低→|σ|<1代入差分方程,得到本征值为:()αασsin 2cos 21c i d +1-+= ( 5-9 )考虑特殊情况,∙ 无扩散:d=0, →σ >0, 无条件发散,充分条件∙无对流:c=0, →当cos α= -1时,σ最大,→d<1/2,无条件收敛,充分条件从另一个稳定条件考虑,要求系数矩阵A 的所有系数为正,可得到类似稳定性条件:(充分条件)d c d 2and 5.0<<( 5-10 )第一个条件要求()Γ∆<∆22x t ρ ( 5-11 )表示,每当∆x 减少一半,时间步长需减少到1/4. 第二个条件要求2Pe or2<<Γ∆cell xu ρ ( 5-12 )这同前述的用1D 稳态对流/扩散问题的CDS 要求是一致的。

传热学5

传热学5
7/42
分析 解法
采用数学分析求解的方法。
传热学 Heat Transfer
2.如何从获得的温度场来计算h 无论是分析解法还是数值法首先获得都是温度场, 如何由T→h? t q 由傅里叶定律 w y
y 0
牛顿冷却公式
q w qc
qc h t w t
y
主流区
u∞
d 5 .0 离开前缘x处的边界层厚度 x Re x
局部表面传热系数
1/ 2 1/ 3 hx 0.332 Re x Pr x hx x 0.332 Re x1/ 2 Pr 1/ 3 Nu x 努塞尔数
(特征数方程,关联式)
u x 雷诺数: Re x 5 Re Re 5 10 关联式适用范围: c
25/42
传热学 Heat Transfer
1.数量级分析方法的基本思想 分析比较方程中等号两侧各项的数量级大小,在 同一侧内保留数量级大的项而舍去数量级小的项 2.实施方法 ①列出所研究问题中几何变量及物理变量的数量 级的大小,一般以1表示数量级大的物理量的量级。 以Δ表示小的数量级 ②导数中导数的数量级由自变量及因变量的数量 级代入获得
2t t t 2t c p u x v y x 2 y 2
28/42
传热学 Heat Transfer
5.4流体外掠平板传热层流 分析解及比拟理论
29/42
传热学 Heat Transfer
一、外掠等温平板层流流动下对流换热问 题的分析解
u v 0 x y
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y

第五章-传热学

第五章-传热学

h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y

2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 以后介绍的格式,除特殊说明,扩散项均采用中心 差分格式离散。因此离散格式的不同是指对流项离 散方法的不同。
➢ 上风方案充分考虑了流动方向对导数差分计算式及 界面上函数取值方法的影响。
2020-9-23
太原理工大学
11 /70
1、上(迎)风格式两种离散方式的定义
①. 泰勒级数展开法定义(第
ui 0
若E 200, W 1P 250 符合实际
aE De Fe 2 1 2 1 违 背 了 正 系 数 规 则
aW Dw Fw 2 1 2 3
aP aE aW 1 3 2, 而 anb 1 3 4
这样,aP anb , 违反了斯卡巴勒准则(主对角占优)
( u j
x j
)
u j
x j
u j
x j
原通用方程可改写为
u j
x j
x j
( ) S
x j
对于已知的ρ、uj、Γ及S(常量)的分布,任何解及 +c 将同时满足方程,故系数和的法则仍然适用。
2020-9-23
太原理工大学
4 /70
Thermal
§5.2 一维稳态对流与扩散
讨论只有对流项和扩散项存在时的一维稳态问题,控
Thermal
一类迎风格式)
i-1
i
i+1
以流动方向而言,P 点的
W
P
E
一阶导数是该方向的向后差
分,即永远是从上游获得构
(a)
ui 0
造一阶导数的信息,公式表
示:
d
dx
i
i i1
x w
ui 0
i-1 w W
(b)
ui 0
i
e i+1
P
E
ui 0
d i1 i
dx i
x e
ui 0
一阶上(迎)风的构造方式
x
x x
3、通用方程的改写形式
x j
u j
( ) S
xj xj
x j
u j
(u j )
x j
u j
x j
2020-9-23
太原理工大学
3 /70
Thermal
两式相加得
x j
u j
(u j )
x j
u j
x j
x j
u j
Thermal
第五章 对流与扩散
主要内容: • §5.1 任务 • §5.2 一维稳态对流与扩散 • §5.3 二维问题的离散化方程 • §5.4 三维问题的离散化方程 • §5.5 单向空间坐标 • §5.6 假扩散
2020-9-23
太原理工大学
1 /70
§5.1 任 务
1、上章内容总结
Thermal
即,F 2D时,有可能使aE或aW为负 产生不切实际的结果
2020-9-23
太原理工大学
9 /70
Thermal
这就是中心差分格式求解对流换热问题时仅限于低
Re(低的F/D)的原因aP .
Dw
Fw 2
De
Fe 2
aW
aE
Fe
Fw
➢ 扩散项为零(Γ=0),中心差分格式导致 aP 0
于是方程 aPTP anbTnb 不适用于逐点迭代法求解
x
F u 对流或流动强度,可正、可负,由流动方向定
整理后的离散化方程
apP aEE aWW
其中:
aE
De
Fe 2
aW
Dw
Fw 2
2020-9-23
太原理工大学
7 /70
aP
Dw
Fw 2
De
Fe 2
aW
aE
Fe
Fw
2、对方程的几点说明
Thermal
➢ 由于连续性,Fe=Fw, aP aW aE(只是在流
2020-9-23
太原理工大学
2 /70
Thermal
① 获得流场的方法:可以得知于实验;也可以由一个解
析解给定;或通过流动的数值计算获得;或干脆由猜
测估计得知。
② “扩散”的广义解释:不仅限于表示由浓度梯度引起
的一种化学组分的扩散,由的梯度引起的扩散流是
,即方程中的 二阶导数项为扩散项。
场满足连续性条件时才具有这一性质);
➢ 方程 aPP aEE aWW 隐含着分段线性分布的含 义,也是熟知的中心差分格式(用左右节点值表示 界面上的值以及界面上的导数值);
➢ 方程必须遵守四项基本法则,否则会产生灾难性的 结果。
2020-9-23
太原理工大学
8 /70
Thermal
例如:设 De Dw 1, Fe Fw 4 若E、W给定,即可由离散方程求得P 。
Thermal
e
1 2
E
P
w
1 2
W
P
(e、w位于节点中间)
对于不同的界面位置,则需要采用其它的内插因子。

u e
u w
d
dx
e
d
dx
w
可写成
1 2
u e E
P
1 2
u w W
P
e E P xe
w P W xw
Γe、Γw可以用算术平均法或调和平均法求得。
定义: D 扩散传导性.
在通用微分方程中忽略了对流项,给出了非稳态项、 扩散项及源项的离散化方法,阐述了求解代数方程 组的方法。只要对流项的加入不改变离散化方程的 形式,方程组的求解方法仍然适用。
2、本章任务
在已知流场(V分量及ρ)的情况下,求解分布。对 流项与扩散项之间有不可分割的关系,因此需要把
这两项处理成一个单位,其它项可以作为陪衬.
制方程为:
x j
u j
( ) S
xj xj
d u d ( d )
dx
dx dx
连续方程: d u 0 u const
dx
任务:导出相应方程的离散化形式
2020-9-23
太原理工大学
5 /70
Thermal
§5.2-1 预备性的推导 (中心差分格式)
1、离散化方程的导出 选三点网格群见右图。控制
2020-9-23
太原理工大学
12 /70
② 控制容积积分法定义(第
二类迎风格式)
i-1 w
控制容积界面上值的规定: W
界面上的值等于界面上风侧
了,也不适用于采用其它的迭代解法了。
aE
De
Fe 2
aW
Dw
Fw 2
TP anbTnb aP
aP
Dw
Fw 2
De
Fe 2
aW
aE
Fe
Fw
2020-9-23
太原理工大学
10 /70
§5.2-2 上风方案
Thermal
➢ 为解决中心差分在 F 2D 之后产生解失去物理上 真实性的问题,提出了上风方案。
(x)w
(x)e
容积界面e、w的实际位置 不会影响最终的公式。在此
W w PP
x
eE x
设定其位于节点中间,这样还是比较方便的。
在控制容积内对微分方程积分
u
e
u w
d
dx
e
d
dx
w
d dx
u
d dx
d
dx
对流项及扩散项中的均采用分段线性的函数表示
2020-9-23
太原理工大学
6 /70
相关文档
最新文档