材料力学复习资料
工程力学材料力学篇复习资料

材料力学1.何谓应力?答:在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
2.何谓正应力与切应力?答:正应力就是垂直于截面的应力,对应的正应变是垂直于截面单位长度的该变量。
切应力时平行于截面的应力,对应的切应变是平行于截面单位长度的改变量。
3.何谓轴力?答:一根杆左右两端分别受一个F的力,那么它是是平衡的,那么它的任何一个部位都是平衡的,假设将一根杆用截面法切开,必有一个内力让切开的部分保持平衡,这个轴向的内力就是轴力,用FN表示,轴力或为拉力,或为压力,规定拉力为正,压力为负,这里的压力和拉力都是以研究对象为参考系的,具体情况需要具体分析,如图所示:4.何谓扭转?答:构件为直杆,并在垂直于杆件轴线的平面内作用有力偶,杆件各横截面绕轴线作相对旋转,这种以横截面绕轴线做相对旋转的变形形式称为扭转。
(说白了就是拧)5.什么是扭矩?答:一根杆受到一对力偶作用产生了扭转,如果用截面法将杆件切开,那么在截面处必将产生一个扭力偶使杆件保持原先的状态,这个扭力偶就叫做扭矩,用T表示。
6.何谓剪力?:梁在受垂直向上或者向下的外力的情况下,如果利用截面法将梁切开,截面上会产生一个竖直方向的力,使切开的部分保持平衡,这个竖直方向的力就叫做剪力,用Fs表示。
7.何谓弯矩?:弯矩是受力构件截面上的内力矩的一种,即垂直于横截面的内力系的合力偶矩。
其大小为该截面截取的构件部分上所有外力对该截面形心矩的代数和。
8.作用力与反作用力中的两个力和二力平衡原理中的两个力有何异同?两种情况共同点:两力等值、反向、共线。
不同点:前者,作用于不同物体。
后者,两力作用于同一物体。
9.理想约束有哪几种?理想约束主要包括:柔索约束、光滑接触面约束、光滑圆柱铰链约束、辊轴铰链约束、光滑球形铰链约束、轴承约束等。
10.什么是二力构件?其上的力有何特点?二力构件指两点受力,不计自重,处于平衡状态的构件。
材料力学总复习

一、基本变形
外力
拉伸与压缩
扭转
弯曲
内力
FN F
应力 强度条件
变形
FN
A
max [ ]
l FNl EA
刚度条件
T Me
T
IP
max [ ]
Mnl
GI P
FS 外力
M 外力对形心之矩
My
,
FS
S
* z
Iz
bI z
, max [ ] max [ ]
1、积分法
2、叠加法
∑Fix= 0, FN1 cos30°+FN2=0 (1)
(2)画节点A的位移图(见图c) (3)建立变形方程
△L1=△L2cos30°
(4)建立补充方程
△L1=△LN1+△LT,
即杆①的伸长△l1由两部份组成,△l N1表示由轴力FN1引起的变形, △lT表示温度升高引起的变形,因为△T 升温,故△lT 是正值。
因为AB 杆受的是拉力,所以沿AB 延
长线量取BB1等于△L1;同理,CB 杆受
的也是拉力,所以沿杆CB 的延长线量取
BB2 等于△L。
分别在点B1 和B2 处作BB1 和BB2 的垂
线,两垂线的交点B′为结构变形后节点
B应有的新位置。即结构变形后成为
ABˊC 的形状。图c称为结构的变形图。
为了求节点B的位置,也可以单独作出节点B的位移图。位移图的作 法和结构变形图的作法相似,如图d所示。
C1 5、求应力并校核强度:
A1
1
FN 1 A
66 .7 MPa ,
2
FN 2 A
133 .2MPa ,
剪切
F AB A1
F BC A2
材料力学考试复习资料

材料力学1. 材料与构件的许用应力值有关。
2. 切应力互等定理是由单元体静力平衡关系导出的。
3.弯曲梁的变形情况通过梁上的外载荷来衡量。
4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。
5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。
7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。
杆件上的最大正应力为127.3MPa。
8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。
直线公式σcr=461-2.568λ。
其临界压力为478kN。
9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。
10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。
11. 材料力学中求内力的普遍方法是截面法。
12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。
13. 图形对于其对称轴静矩和惯性矩均不为零。
14. 梁横截面上可能同时存在切应力和正应力。
15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。
16. 存在均布载荷的梁段上弯矩图为抛物线。
17. 矩形的对角线的交点属于形心点。
18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。
为保证此轴的扭转刚度,应增加轴的直径。
19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。
20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。
21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。
22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。
23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。
材料力学复习

第一章 绪论1. 承载能力:强度:构件在外力作用下抵抗破坏的能力刚度:构件在外力作用下抵抗变形的能力稳定性:构件在外力作用下保持其原有平衡状态的能力2. 变形体的基本假设:连续性假设、均匀性假设、各向同性假设3. 求内力的方法:截面法4. 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲第二章 拉伸、压缩1. 轴力图必须会画:轴力N F 拉为正、压为负2. 横截面上应力:均匀分布 AF N =σ 3. 斜截面上既有正应力,又有切应力,且应力为均匀分布。
ασσα2cos =αστα2sin 21=σ为横截面上的应力。
横截面上的正应力为杆内正应力的最大值,而切应力为零。
与杆件成45°的斜截面上切应力达到最大值,而正应力不为零。
纵截面上的应力为零,因此在纵截面不会破坏。
4. 低碳钢、灰铸铁拉伸时的力学性能、压缩时的力学性能低碳钢拉伸在应力应变图:图的形状、四个极限、四个阶段、各阶段的特点、伸长率(脆性材料、塑性材料如何区分)5. 强度计算脆性材料、塑性材料的极限应力分别是 拉压时的强度条件:][max max σσ≤=AF N 强度条件可以解决三类问题:强度校核、确定许可载荷、确定截面尺寸 6.杆件轴向变形量的计算 EA l F l N =∆ EA :抗拉压刚度 7. 剪切和挤压:剪切面,挤压面的判断第三章 扭转1.外力偶矩的计算公式: 2.扭矩图T 必须会画:扭矩正负的规定3.切应力互等定理、剪切胡克定律4.圆轴扭转横截面的应力分布规律:切应力的大小、作用线、方向的确定sb σσ,min /::)(9549r n kW P m N n P M ⋅=5.横截面上任一点切应力的求解公式:ρI ρT τP ρ=——点到圆心的距离6. 扭转时的强度条件:][max max ττ≤=tW T 7.实心圆截面、空心圆截面的极惯性矩、抗扭截面模量的计算公式 实心圆截面:极惯性矩432D πI p =,抗扭截面模量316D πW t = 空心圆截面:极惯性矩)1(3244αD πI P -=,抗扭截面模量)1(1643αD πW t -==, 8.圆轴扭转时扭转角:pI G l T =ϕ p I G :抗扭刚度 第四章 弯曲内力1.纵向对称面、对称弯曲的概念2. 剪力图和弯矩图必须会画:剪力、弯矩正负的规定3.载荷集度、剪力和弯矩间的关系4. 平面曲杆的弯矩方程5.平面刚架的弯矩方程、弯矩图第五章 弯曲应力1. 纯弯曲、中性层、中性轴的概念2.弯曲时横截面上正应力的分布规律:正应力的大小、方向的确定3. 横截面上任一点正应力的计算公式:zI My =σ 4. 弯曲正应力的强度校核][max max σσ≤=zW M 或][max max max σI y M σz ≤= 对于抗拉压强度不同的材料,最大拉压应力都要校核5. 矩形截面、圆截面的惯性矩和抗弯截面模量的计算 矩形截面:惯性矩,1213bh I z =抗弯截面模量:261bh W z = 实心圆截面:惯性矩464D πI z =,抗弯截面模量:332D πW z = 空心圆截面:惯性矩)1(6444αD πI z -=,抗弯截面模量:)1(3243αD πW z -=, 第七章 应力和应变分析、强度理论1. 主应力、主平面、应力状态的概念及应力状态的分类2. 二向应力状态分析的解析法:应力正负的规定:正应力以拉应力为正,压应力为负;切应力对单元体内任意点的矩顺时针转向为正;α角以逆时针转向为正D d α=D d α=任意斜截面上的应力计算最大最小正应力的计算公式最大最小正应力平面位置的确定 最大切应力的计算公式主应力、主平面的确定3. 了解应力圆的做法,辅助判断主平面4. 广义胡克定律5.四种强度理论内容及适用范围第八章 组合变形1. 组合变形的判断2. 圆截面轴弯扭组合变形强度条件 第三强度理论:[]σσ≤+=WT M r 223 第四强度理论:[]σσ≤+=W T M r 22375.0 W ——抗弯截面模量323d W π=第九章 压杆稳定1. 压杆稳定校核的计算步骤(1)计算λ1和λ2(2)计算柔度λ,根据λ 选择公式计算临界应(压)力(3)根据稳定性条件,判断压杆的稳定性2. P 1σπλE = ba s 2σλ-= ⎪⎪⎩⎪⎪⎨⎧+-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 22min max 22xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫y x xy σστα--=22tan 0231max σστ-=柔度i lμλ= AI i = I ——惯性矩 μ——长度系数;两端铰支μ=1;一端铰支,一段固定μ=0.7;两端固定μ=0.5; 一端固定,一端自由μ=23. 大柔度杆1λλ≥ 22cr λπσE = 中柔度杆12λλλ<≤ λσb a -=cr小柔度杆 2λλ< s cr σσ=4. 稳定校核条件st cr n n FF ≥= F ——工作压力 cr F =cr σ A 第十章 动载荷1. 冲击动荷因数冲击物做自由落体 冲击开始瞬间冲击物与被冲击物接触时的速度为 v水平冲击时 Δst 是冲击点的静变形。
材料力学复习资料

12材料力学一、填空1、图所示桁架中,水平杆看作刚性,三根竖杆长度相同,横截面积均为A ,材料相同,屈服极限为σy .当三杆均处于弹性阶段时,各杆轴力之比为N 1: N 2: N 3=5:2:-1.当三杆中有一杆开始屈服时,荷载P 的值为(1.5σy A ).2、一等截面圆直杆,长度为l ,直径为d ,材料的弹性模量为E ,轴向受压力P ,在弹性范围内,其最大切应力为(2P /πd 2),受载后的长度为(l -4lP /πEd 2),受载后的直径为( d +4μP /πEd ),杆件内的应变能为(2P 2l /πE d 2 )。
3、外径 D = 55 mm ,内径 d = 45 mm 的钢管,两端铰支,材料为 Q235钢,承受轴向压力 F 。
则能使用欧拉公式时压杆的最小长度是(1.78m ),当压杆长度为上述最小长度的4/5时,压杆的临界应力为(188.5kN )。
已知:E = 200 GPa ,σ p = 200 MPa ,σs = 240 MPa ,用直线公式时,a = 304 MPa , b =1.12 MPa 。
4、一等直圆杆,直径为d ,长度为l ,两端各作用一扭矩T ,材料的泊松比为μ,弹性模量为E 。
则两端面的相对转角为(64(1+μ)Tl /πEd 4),杆件内储存的应变能为(32(1+μ)T 2l /πEd 4 );又若两端各作用一弯矩M ,则按第三强度理论时,其危险点的相当应力为(22332M T d+π),按第四强度理论时,其危险点的相当应力为(22375.032M T d +π)。
6、矩形截面梁,材料的抗弯许用应力[σ]=8MPa ,梁内最大弯矩M max =24kNm ,梁截面的高宽比h /b =1.5.则梁宽b 应取( 20cm ).7、圆柱形蒸汽锅炉的外径为D ,内径为d ,壁厚为t ,若材料的许用应力为[σ].则锅炉能承受的最大内压力(工作压力)为(p=2[σ]t/d)。
材料力学总复习

步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度
vε
1
2
应变能
Vε
W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在
。
2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max
《材料力学》复习材料

1、解释:(1)形变(应变)强化:材料经历一定的塑性变形后,其屈服应力升高了,这种现象称为应变强化;(2)弹性变形:材料受外力作用发生尺寸和形状的变形,外力除去后随之消失的变形;(3)刚度:在弹性范围内,构件抵抗变形的能力称为刚度;(4)弹性不完整性:弹性变形时加载线与卸载线并不重合,应变落后于应力,存在着弹性后效、弹性滞后、Bauschinger 效应等,这些现象属于弹性变形中的非弹性问题,称为弹性的不完整性;(5)弹性后效:在应力作用下应变不断随时间而发展的行为,以及应力去除后应变逐渐恢复的现象称为弹性后效;(6)弹性滞后:弹性变形范围内,骤然加载和卸载的开始阶段,应变总要落后于应力,不同步;(7)Bauschinger效应:经过预先加载变形,然后再反向加载变形时的弹性极限(屈服强度)降低的现象;(8)应变时效:经变形和时效处理后,材料塑性、韧性降低,脆性增加的现象;(9)韧性:指材料在断裂前吸收塑性变形功和断裂功的能力;(10)脆性断裂:按断裂前不发生宏观塑性变形;(11)韧性断裂:断裂前表现有宏观塑性变形;(12)平面应力状态:只有两个方向上存在应力的状态;(13)平面应变状态:变形只发生在x-y平面内,板厚方向变形为零;(14)低温脆性:随温度降低金属材料由韧性断裂转变为脆性断裂的现象;(15)高周疲劳:指小型试样在变动载荷(应力)试验时,疲劳断裂寿命≥105 周次的疲劳过程;(16)低周疲劳:循环塑性应变控制下的疲劳;(17)等强温度:晶粒和晶界两者强度相等时的温度;(18)弹性极限:试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力值,用σ表示,超过σel时,认为材料开始屈服;el(19)疲劳极限:在s-n曲线上水平部分所对应的应力值;(20)应力腐蚀开裂:材料或零件在应力和腐蚀的环境的共同作用下引起的开裂;(21)氢脆:在应力和过量的氢共同作用下使金属材料塑性、韧性下降的一种现象;(22)腐蚀疲劳:零构件的破坏是在疲劳和腐蚀联合作用下发生的,这种失效形式称为腐蚀疲劳;(23)蠕变极限:高温长期载荷作用下材料的塑性变形抗力指标;(24)持久强度:在高温长时载荷作用下抵抗断裂的能力;(25)松弛稳定性:金属材料抵抗应力松弛的性能;(26)磨损:物体表面互相摩擦时材料自该表面逐渐损失的过程。
材料力学复习资料

材料力学一、判断题1.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( N)2.平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关。
( N)3.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
( Y)4.单元体上最大切应力作用面上必无正应力。
(N)6.未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题。
( Y)7.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。
( Y )8.主应力是过一点处不同方向截面上正应力的极值。
( Y )10.第四强度理论宜采用于塑性材料的强度计算。
(N )11.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。
( N)12.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。
(Y) 13.细长压杆,若其长度系数增加一倍,临界压力增加到原来的4倍。
(N)14.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。
(Y )15.主应力是过一点处不同方向截面上正应力的极值。
( Y )16.由切应力互等定理可知:相互垂直平面上的切应力总是大小相等。
(N)17.矩形截面梁横截面上最大切应力τmax出现在中性轴各点。
(Y )18.强度是构件抵抗破坏的能力。
(Y)19.均匀性假设认为,材料内部各点的应变相同。
(N)20.稳定性是构件抵抗变形的能力。
(N)21.对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定2.0σ作为名义屈服极限,此时相对应的应变为2.0%=ε。
(N)22.任何情况下材料的弹性模量E都等于应力和应变的比值。
(N)23.求解超静定问题,需要综合考察结构的平衡、变形协调和物理三个方面。
(Y )24.第一强度理论只用于脆性材料的强度计算。
(N)25.有效应力集中因数只与构件外形有关。
(N )26.工程上将延伸率δ≥10%的材料称为塑性材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学复习一一、选择题1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力τ分别为 。
A 、00,στττ==;B 、0,0σττ==;C 、00,στττ=-=;D 、0,0σττ=-=。
2. 构件中危险点的应力状态如图所示,材料为低碳钢,许用应力为[]σ,正确的强度条件是 。
A 、[]σσ≤;B 、[]στσ+≤;C 、[],[][]/2σσττσ≤≤=; D[]σ≤。
3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应力原来的最大切应力是 。
A 、2倍B 、4倍C 、6倍D 、8倍4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 。
A.I 梁和II 梁的最大挠度相同 B.II 梁的最大挠度是I 梁的2倍 C.II 梁的最大挠度是I 梁的4倍 D.II 梁的最大挠度是I 梁的1/2倍P题1-4 图5. 现有两种压杆,一为中长杆,另一为细长杆。
在计算压杆临界载荷时,如中长杆误用细长杆公式,而细长杆误用中长杆公式,其后果是 。
A 、两杆都安全;B 、两杆都不安全;C 、中长杆不安全,细长杆安全;D 、中长杆安全,细长杆不安全。
6. 关于压杆临界力的大小,说法正确的答案是 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关;C 与压杆所承受的轴向压力大小有关;D 与压杆的柔度大小无关。
二、计算题(共5题,共70分)4545题 1-1 图1、如图所示矩形截面梁AB ,在中性层点K 处,沿着与x 轴成45o方向上贴有一电阻应变片,在载荷F 作用下测得此处的应变值为6451025.3-︒⨯-=ε。
已知200E GPa =,0.3μ=,求梁上的载荷F 的值。
2.(16分)圆杆AB 受力如图所示,已知直径40d mm =,112F kN =,20.8F kN =,屈服应力240s MPa σ=,安全系数2n =。
求:(1)绘制危险点处微单元体的应力状态;(2)利用第三强度理论进行强度校核。
700500F 1F 2Bxyz AF 2yz C题3-4图3、已知构件上危险点的应力状态,计算第一强度理论相当应力;第二强度理论相当应力;第三强度理论相当应力;第四强度理论相当应力。
泊松比3.0=μ。
(本题15分)4、等截面直杆受力如图,已知杆的横截面积为A=400mm 2, P =20kN 。
试作直杆的轴力图;计算杆内的最大正应力;材料的弹性模量E =200Gpa ,计算杆的轴向总变形。
(本题15分)题 3-3 图2003004030FK 45ABx5、一圆木柱高l =6米,直径D =200mm ,两端铰支,承受轴向载荷F =50kN ,校核柱子的稳定性。
已知木材的许用应力[]MPa 10=σ,折减系数与柔度的关系为:23000λϕ=。
(本题15分)材料力学复习二一、选择题(每题2分,共 10分)1、两端受到外扭力偶作用的实心圆轴,若将轴的横截面面积增加一倍,则其抗扭刚度变为原来 的 倍。
A 、16;B 、8;C 、4;D 、2。
2、以下说法正确的是 。
A 、集中力作用处,剪力和弯矩值都有突变;B 、集中力作用处,剪力有突变,弯矩图不光滑;C 、集中力偶作用处,剪力和弯矩值都有突变;D 、集中力偶作用处,剪力图不光滑,弯矩值有突变。
3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案: A 、/2,0AC AC ττσ==; B 、/2,3/2AC AC ττστ==; C 、/2,3/2AC AC ττστ==-; D 、/2,3/2AC AC ττστ=-=。
4、图示为围绕危险点a 、b 所取微单元体的应力状态,其中στ=。
按第四强度理论比较两点处的危险程度,则 。
A 、a 点较危险;B 、两点处的危险程度相同;C 、b 点较危险;D 、无法判断。
5、若用cr σ表示细长压杆的临界应力,则下列结论中正确的是 。
A 、cr σ与压杆的长度、压杆的横截面面积有关,而与压杆的材料无关;B 、cr σ与压杆的柔度λ、材料有关;C 、cr σ与压杆的材料和横截面的形状尺寸有关,而与其他因素无关;D 、cr σ的值大于压杆材料的比例极限p σ。
二、、作图题1.试绘图示杆件的轴力图(6分)题 1-4 图στστCBττ30题 1-3 图2.如图所示,绘出剪力图和弯矩图。
(14分)四、计算题1、(12分)用积分法求梁B点的挠度和转角,梁的EI,L已知。
2、(16分)试确定图示轴心压杆的临界力。
已知杆长ml4=,直径为mmd90=,临界柔度为100=pλ,弹性模量MPaE200=,(经验公式为λσ74.3577-=cr)(15分)3、(16分)如图所示结构,圆截面杆AC和BC的直径分别为16ACd mm=,14BCd mm=。
材料均为Q235钢,弹性模量200E GPa=,比例极限200pMPaσ=,屈服极限235sMPaσ=。
若设计要求稳定安全系数 2.4stn=,中柔度杆临界应力可按310 1.12()crMPaσλ=-计算。
求:(1)绘制Q235钢的临界应力总图;(2)当10P kN=时,试对图示结构进行稳定性校核。
题3-4 图6030l=1mPCA Bqaqa a a材料力学复习题三一、选择题(每题2分,共10分)1.一等直拉杆在两端受到拉力作用,若拉杆的一半为钢,另一半为铝,则两段的 。
A .应力相同,变形相同B .应力相同,变形不同C .应力不同,变形相同D .应力不同,变形不同 2.图示梁AB ,若材料为铸铁时,应选 截面比较合理。
3.图示简支梁上作用有集中力F 和均布载荷q ,则C 截面处 。
A .剪力图有突变,弯矩图光滑连续B .剪力图有尖角,弯矩图光滑连续C .剪力图有尖角,弯矩图有尖角D .剪力图有突变,弯矩图有尖角4.图示梁上a 点的应力状态有下列四种答案,正确的是 。
5. 材料和柔度都相同的两根压杆 。
A .临界应力一定相等,临界载荷不一定相等B .临界应力不一定相等,临界载荷一定相等C .临界应力和载荷都一定相等D .临界应力和临界载荷都不一定相等二、填空题(共15分,将正确答案写在横线上)1.(2分)一受扭圆轴如图示,其截面m-m 上的扭矩T 等于 -Me 。
2.(4分,每空1分)在拉伸试验中,低碳钢材料试件屈服时试件表面会出现与轴线约成 45` 的滑移线,这是因为该面上作用有最大 切 应力;铸铁材料试件将沿着 横截面 被拉断,断裂发生在最大 正 应力作用面。
3.(2分)如图所示结构,梁AB 的抗弯刚度为EI ,杆CD 的拉压刚度为EA 。
则求解该超静定问题的变形协调方程为 。
(简支梁在B 题 1-4 图题 1-2 图跨距中央受集中力P 作用时,力作用处的挠度为EIPl w 483=。
4.(4分,每空1分)梁在发生对称弯曲时,横截面上正应力沿截面高度按 分布;中性轴上点的正应力为 ;矩形截面梁横截面上的切应力沿截面高度按 分布;截面边缘上点的切应力为 ;5.(3分)如图所示等截面组合梁,在确定梁的挠度和转角方程时,光滑连续条件为: 。
三、计算题(共45分)1.已知构件上危险点的应力状态,许用应力[]MPa 60=σ,用第三强度理论校核该点的强度。
2.(10分)绘制AB 梁的剪力图和弯矩图,并给出max ||M 和max S ||F 的表达式。
3. (10分)如图所示圆轴, 已知直径100d mm =,4T kN m =⋅,400F kN =,15e mm =,屈服极限200s MPa σ=,安全系数2n =,试求:(1)指出危险点并画出相应微单元体的应力状态图; (2)按第三强度理论校核轴的强度。
TFed题3-4图ABCDlllF题 2-5 图题 3-2 图Aqlql 2qDBCl l l4.(15分)已知平面应力状态如图所示(单位为MPa ),试用解析法求1、主应力及主平面,并画出正应力单元体。
2、面内最大切应力。
材料力学复习题四一、选择题(每题2分,共10分)1.图示单向均匀拉伸的板条。
若受力前在其表面画上两个正方形a 和b ,则受力后正方形a 、b 分别变为 。
A .正方形、正方形 B .正方形、菱形 C .矩形、菱形 D .矩形、正方形2.梁发生对称弯曲时,中性轴是梁的 的交线。
A .纵向对称面与横截面 B .纵向对称面与中性层 C .横截面与中性层 D .横截面与顶面或底面3.图示三根压杆,横截面面积及材料各不相同,但它们的 相同。
A . 长度因数 B . 相当长度 C . 柔度 D . 临界压力4.若构件内危险点的应力状态为两向等拉,如图1-4所示。
则除强度理论外,A 5.A C .最大拉应力和挤压应力都相等 D .最大拉应力相等和挤压应力都不相等 6. 根据小变形条件,可以认为 。
A 、构件不变形B 、构件不破坏C 、构件只发生弹性变形D 、构件的变形远小于原始尺寸 7. 构件在外力作用下 的能力称为稳定性。
A 、不发生断裂B 、保持原有平衡状态C 、不产生变形D 、保持静止qq8. 圆轴AB 的两端受扭转力偶矩e M 作用,如图所示。
假想将轴在截面C 处截开,对于左右两个分离体,截面C 上的扭矩分别用T 和'T 表示,则下列结论中 是正确的。
A 、T 为正,'T 为负;B 、T 为负,'T 为正;C 、T 和'T 均为负;D 、T 和'T 均为正。
9. 下图中,在用积分法求梁的挠曲线方程时,确定积分常数的四个条件,除00A ==θω,A 外,另外两个条件是 。
;,;,;,;,右左右左右左00.D 00.C 0.B .C B B B ========θωωωωωωθθωωC C C C C C C A10. 低碳钢的拉伸σ-ε曲线如图。
若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是沿 。
A 、 曲线cbaoB 、 曲线cbf (bf ∥ oa)C 、 直线ce (ce ∥ oa)D 、直线cd (cd ∥σo )二、填空题(每空1分,共15分)1.低碳钢试件受扭破坏时,沿着 面被剪断,这是因为该面上作用有最大 应力;铸铁试件受扭破坏时,沿着 面发生断裂,这是因为该面上作用有最大 应力。
2.如果矩形截面梁发生对称弯曲(或平面弯曲)时,弯曲正应力计算公式为zMyI σ=,则z 轴为横截面的 轴,z 轴通过横截面的 。
最大弯曲正应力位于横截面的 ,所在点属于 应力状态;最大切应力位于横截面的 ,所在点属于 应力状态。
FCqBcabde fσo3.现有两根材料、长度及扭矩均相同的受扭实心圆轴,若两者直径之比为3:2,则两者最大扭转切应力之比为 ,抗扭刚度之比为 。