鲁教版数学八年级下册第六章《证明(二)》 整章水平测试题(C)

合集下载

鲁教版八年级数学下册第六章达标检测卷附答案附答案

鲁教版八年级数学下册第六章达标检测卷附答案附答案

鲁教版八年级数学下册第六章达标检测卷一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于() A.20 B.15 C.10 D.53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的()A.15 B.14 C.13 D.3104.如图,正方形ABCD的边长为4,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.4 2 B.6 2 C.2 10 D.4 105.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3B.2 2C. 6D.3 36.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于()A.75°B.45°C.60°D.30°9.如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论有()A.1个B.2个C.3个D.4个10.如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA3A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2 024的值为()A.122 024B.22 022C.22 022+12D.1 012二、填空题(每题3分,共24分)11.矩形ABCD中,对角线AC,BD交于点O,若AB=6,BC=8,则BD=________.12.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC =8,BD=6,则OE的长为________.13.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF 的周长为________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.15.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为________.16.如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是________.17.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.18.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=6 2,则另一直角边BC的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分)19.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.20.如图,点O是菱形ABCD对角线的交点,过点C作CE∥OD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形OCED是矩形;(2)若AB=4,∠ABC=60°,求矩形OCED的面积.21.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F 不与B,C,D重合.(1)求证:BE=CF;(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD的外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并给出证明.答案一、1.D 2.B 3.B 4.C 5.D 6.D7.D 8.C9.D 提示:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC .∴∠DAN =∠BCM .∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°.在△DNA 和△BMC 中,⎩⎨⎧∠DAN =∠BCM ,∠DNA =∠BMC ,AD =BC ,∴△DNA ≌△BMC ,∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,⎩⎨⎧∠ADE =∠CBF ,AD =BC ,∠DAE =∠BCF ,∴△ADE ≌△CBF ,∴AE =FC ,DE =BF ,故③正确;∴DE -DN =BF -BM ,即NE =MF .又∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF .又∵BE ∥DF ,∴四边形DEBF 是平行四边形.当AO =AD 时,AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°-∠ADO =30°.∵DE ⊥AC ,∴∠ADN =∠ODN =30°,∴∠ODN =∠ABD ,∴DE =BE ,∴四边形DEBF 是菱形,故④正确.正确结论有4个.10.B 提示:∵四边形OAA 1B 1是正方形,∴OA =AA 1=A 1B 1=1,∴S 1=12×1×1=12.∵∠OAA 1=90°,∴OA 12=12+12=2,∴OA 2=A 2A 3=2,∴S 2=12×2×1=1.同理可求S 3=12×2×2=2,S 4=4,…,S n =2n -2,∴S 2 024=22 022.二、11.10 12.12513.16 14.2.5 15.2 13 提示:设正方形的边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36,∴a 2=36.∵a >0,∴a =6.在Rt △BCE 中,∵BC =6,CE =4,∠C =90°,∴BE =BC 2+CE 2=62+42=2 13. 16.2-1 提示:方法一:易知EF =CE =BC =1,∴CF =2,∴BF =2-1.∵∠BFE =45°,∴阴影部分的面积=12×1×1-12×(2-1)2=2-1.方法二:如图,过E 点作MN ∥BC 交AB ,CD 于M ,N 点,设AB 与EF 交于点P ,连接CP .∵点B 在对角线CF 上,∴∠DCE =∠ECF =45°,∴△ENC 为等腰直角三角形,∴MB =CN =22EC =22.又∵BC =AD =CD =CE ,且CP =CP ,△PEC 和△PBC 均为直角三角形, ∴Rt △PEC ≌Rt △PBC ,∴PB =PE .又∠PFB =45°,∴∠FPB =45°=∠MPE ,∴△MPE 为等腰直角三角形.设MP =x ,则EP =BP =2x .∵MP +BP =MB ,∴x +2x =22,解得x =2-22,∴BP =2x =2-1,∴阴影部分的面积=2S △PBC =2×12×BC ×BP =1×(2-1)=2-1.17.16提示:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4,∴CF=4-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16.∴x2+(y-4)2=16.18.7提示:如图,过点O作OM⊥CA,交CA的延长线于点M,过点O作ON⊥BC于点N,易证△OMA≌△ONB,∴OM=ON,MA=NB.又∵∠ACB=90°,∠OMA=∠ONB=90°,OM=ON,∴四边形OMCN是正方形.∴△OCM为等腰直角三角形,CN=OM.∵OC=6 2,∴CM=OM=6.∴MA=CM-AC=6-5=1.∴BC=CN+NB=OM+MA=6+1=7.故答案为7.三、19.证明:连接DB.∵四边形ABCD是菱形,∴BD平分∠ABC.又∵DE⊥AB,DF⊥BC,∴DE=DF.20.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.∵四边形ABCD 为菱形,∴AC ⊥BD ,∴∠COD =90°,∴四边形OCED 为矩形.(2)解:∵四边形ABCD 为菱形,∴AB =BC =4.又∵∠ABC =60°,∴△ABC 为等边三角形.∴OC =12AC =2,∴OD =42-22=2 3,∴S 矩形OCED =2 3×2=4 3.21.(1)证明:∵在矩形ABCD 中,O 为对角线AC 的中点,∴AD ∥BC ,AO =CO ,∴∠OAM =∠OCN ,∠OMA =∠ONC ,在△AOM 和△CON 中,⎩⎨⎧∠OAM =∠OCN ,∠AMO =∠CNO ,AO =CO ,∴△AOM ≌△CON ,∴AM =CN .又∵AM ∥CN ,∴四边形ANCM 为平行四边形.(2)解:∵在矩形ABCD 中,AD =BC ,由(1)知AM =CN ,∴DM =BN .∵四边形ANCM 为平行四边形,MN ⊥AC ,∴平行四边形ANCM 为菱形,∴AM =AN =NC =AD -DM ,∴在Rt △ABN 中,根据勾股定理,得AN 2=AB 2+BN 2,即(4-DM )2=22+DM 2,解得DM =32.22.(1)证明:∵在矩形ABCD 中,AD ∥BC ,∠A =∠C =90°,∴∠ADB =∠DBC .根据折叠的性质得∠ADB =∠BDF ,∠F =∠A =90°, ∴∠DBC =∠BDF ,∠C =∠F .∴BE =DE .在△DCE 和△BFE 中,⎩⎨⎧∠DEC =∠BEF ,∠C =∠F ,DE =BE ,∴△DCE ≌△BFE .(2)解:在Rt △BCD 中,∵CD =2,∠DBC =∠ADB =30°,∴BD =4.∴BC =2 3.在Rt △ECD 中,易得∠EDC =30°.∴DE =2EC .∴(2EC )2-EC 2=CD 2.又∵CD =2,∴EC =2 33.∴BE =BC -EC =4 33.23.(1)证明:如图,连接AC .∵四边形ABCD 为菱形,∠BAD =120°,∴AB =BC =CD =DA ,∠BAC =∠DAC =60°,∴△ABC 和△ADC 都是等边三角形,∴∠ABE =∠ACF =60°,∠1+∠2=60°.∵∠3+∠2=∠EAF =60°,∴∠1=∠3.∵△ABC 为等边三角形,∴AB =AC .∴△ABE ≌△ACF .∴BE =CF .(2)解:四边形AECF 的面积不变.由(1)知△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △A BC .如图,过点A 作AM ⊥BC 于点M ,则BM =MC =2, ∴AM =AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ·AM =12×4×2 3=4 3.故S 四边形AECF =4 3.24.解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点,∴∠P AE =∠P AB =20°,AE =AB .∵四边形ABCD 是正方形,∴AE =AB =AD ,∠BAD =90°.∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠P AE =130°.∴∠ADF =180°-130°2=25°. (3)EF 2+FD 2=2AB 2.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF=BF,AE=AB=AD,易得∠ABF=∠AEF=∠ADF.∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2. 在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。

鲁教版数学八年级下册第八章《证明(三)》 整章水平测试题(C)

鲁教版数学八年级下册第八章《证明(三)》 整章水平测试题(C)

鲁教版数学八年级下册第八章《证明(三)》整章水平测试题(C)一、试试你的身手(每小题3分,共24分)1.在平行四边形ABCD中,∠A=100°,则∠B=.2.平行四边形ABCD的周长为60cm,对角线交于O点,△AOB与△BOC的周长差为8cm,则平行四边形的一组邻边分别长.3.在菱形ABCD中,对角线AC、BD交于O点,AC=12cm,BD=9cm,则菱形的面积是cm2.4.等腰梯形两底差为8,高为4,则等腰梯形的锐角为.5.已知梯形ABCD中,AD∥BC,AC⊥BD,AC与BD交于点O,AC=4,BD=6,则梯形ABCD的面积是.6.三角形的三条中位线围成的三角形的周长是4cm,则原三角形的周长是cm.7.如图1,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的结论是.8.如图2,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于.二、相信你的选择(每小题3分,共24分)1.在等腰梯形中,下列结论:①两腰相等;②两底平行;③对角线相等;④同一底上两底角相等.其中正确的有()A.1个B.2个C.3个D.4个2.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形3.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a的取值范围为()A.4<a<16 B.14<a<26 C.12<a<20 D.以上答案都不正确4.下列命题中,假命题的是()A.菱形的对角线相等B.平行四边形对角线互相平分C.等腰梯形对角线相等D.矩形对角线相等5.已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A.AB=CD B.AC=BDC.当AC⊥BD时,它是菱形D.当∠ABC=90°时,它是矩形A.70°B.72.5°C.75°D.77.5°7.菱形的周长等于高的8倍,则此菱形较大内角是()A.60°B.90°C.120°D.150°8.矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对三、挑战你的技能(本大题共44分)1.(本题10分)我们知道,顺次连接任意四边形各边中点所得四边形是平行四边形,那么顺次连接等腰梯形各边中点所得四边形是什么特殊四边形呢?探索并证明你的结论.2.(本题10分)已知,如图3,DE为△ABC的中位线,AE与BD相交于O点,F、G分别为OA、OB的中点.求证:四边形DFGE为平行四边形.3.(本题12分)如图4,铁路路基横断面为等腰梯形ABCD,斜坡BC的坡度34BFi iCF⎛⎫==⎪⎝⎭,路基高BF=3米,底CD宽为18米,求路基顶AB的宽.4.(本题12分)已知,如图5,在四边形ABCD中,AD与BC不平行,AD=4,BC=6,E、F分别为AC、BD的中点,求EF的取值范围.四、超越你的极限(本大题共28分)1.(本题14分)(1)如图6,等腰梯形ABCD中,AD∥BC,E是底BC的中点,EF∥CD 交BD于F,EG∥AB交AC于G,求证:EF+EG=AB.(2)如图6,若E为BC上任一点(中点除外)其他条件不变,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.2.(本题14分)如图7,在四边形ABCD中,对角线AC⊥BD,垂足为P.求证:S四边形ABCD=12 AC·BD.证明:AC⊥BD→1212ACDACBS AC PD S AC BP ⎧=⎪⎪⎨⎪=⎪⎩△△∴S四边形ABCD=S△ACD+S△ACB=12AC·PD+12AC·BP=12AC(PD+PB)=12 AC·BD.解答问题:(1)上述证明得到的性质可叙述为:;(2)已知,如图8,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.参考答案一、1.80°2.11cm,19cm3.544.45°5.126.87.①②③8.30°二、1.D2.B3.B4.A5.B6.C7.D8.B三、1.是菱形,证明略.2.证明略.3.AB=EF=10(米).4.1<EF<5.四、1.解:(1)略;(2)成立.理由略.2.(1)对角线互相垂直的四边形的面积等于对角线乘积的一半;(2)S梯形=12AC·BD=12BD2=25(cm2).。

八年级数学下册 第六章证明(二)单元检测(无答案)鲁教版

八年级数学下册 第六章证明(二)单元检测(无答案)鲁教版

八年级第六章证明(二)单元检测题(满分:100分 时间:60分钟)一.选择题:(每小题3分,共45分)1.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) (A )60° (B )120° (C )60°或150° (D )60°或1202.已知等腰三角形的两边长分别为2和5,则它的周长为( ) (A )12或9 (B )12 (C )9 (D )73.如图,等腰三角形ABC 中,AB =AC ,∠A =44°,CD ⊥AB 于D ,则∠DCB 等于( ) (A )44° (B )68° (C )46° (D )22°4.如图(1),已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD =BC ,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )(A )1 (B )2 (C )3 (D )45.如图,电线杆AB 的中点C 处有一标志物,在地面D 处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为a ,则电线杆AB 的长可以表示为( )(A )a (B )2a (C )23a (D )25a6.如图,△ABC 中,AB =AC ,D 为BC 中点,E 为AD 上任意一点,过C 作CF ∥AB 交BE 的延长线于F ,交AC 于G ,连接CE ,下列结论中正确的有( )①AD 平分∠BAC ②BE =CF③BE =CE ④若BE =5,GE =4,则G F =49(A )1个 (B )2个 (C )3个 (D )4个 7.下列命题中的假命题是( )AD (第3题)图(1) 图(2)A(第4题) BC(第5题)ABC EDG(第6题)(A )有一个角为60°的等腰三角形一定是等边三角形 (B )有一个角为45°的等腰三角形一定是等腰直角三角形 (C )等腰三角形一腰上的高与底边夹角等于顶角的一半 (D )等腰直角三角形底边上的高等于底边的一半8.如图,在Rt △ABC 中,∠A =90°,∠B =60°,AD ⊥BC 于D ,若BD =a ,则CD 等于( )(A )2a (B )a 23 (C )3a (D )a 439.不能使两个直角三角形全等的条件是( )(A )一条直角边及其对角对应相等 (B )斜边和一条直角边对应相等 (C )斜边和一锐角对应相等 (D )两个锐角对应相等10.如图,在△ABC 中,∠C =90°,DE ⊥AB ,BC =BD ,如果AC =3cm ,那么AE +DE 等于( ) (A )2cm (B )3cm (C )4cm (D )5cm 11.具备下列条件的两个三角形,可以证明它们全等的是( )(A )一边和这边上的高对应相等 (B )两边和第三边上的中线对应相等 (C )两边和其中一边的对角对应相等 (D )直角三角形的斜边对应相等 12.下列命题中,假命题是( )(A )两个全等三角形的对应高相等 (B )三个角对应相等的两个三角形全等 (C )顶角和一腰对应相等的两个等腰三角形全等 (D )一条直角边和斜边对应相等的两个直角三角形全等13.如图,△ABC 是等边三角形,AD 是高,并且AB 恰好是DE 的垂直平分线,则下列结论正确的是( )(A )△ABC ≌△AED (B )△AED 是等边三角形 (C )∠EAB =60° (D )AD >DE14.如图,△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE =CD ,则下列结论正确的是( ) (A )△CDE 是等边三角形 (B )DE =AB(C )点D 在线段BE 的垂直平分线上 (D )点D 在AB 的垂直平分线上15.如图,在Rt △ABC 中,过直角边AC 上的一点P ,作直线交AB 于点M ,交BC 的延长线于点N ,B(第8题)ACD(第10题)且∠APM =∠A ,则下列说法正确的是( )(A )点M 在BN 的垂直平分线上 (B )∠A =∠N(C )PN =AP (D )点N 在BM 的垂直平分线上二.填空题:(每小题3分,共36分)1.已知等腰三角形的一个内角是100°,则其余两个角的度数分别是 .2.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= .3.等腰三角形的两边长分别为5cm 和2cm ,则它的周长是 cm .4.如图,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD = .5.等腰直角三角形的斜边长为22,则此三角形的腰长为 .6.如图,BD =AD =AE ,且∠B =∠C =36°,则图中有等腰三角形 个.7.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥AB ,则图中有等腰三角形 个.8.如图,在△ABC 中,∠A =90°,∠ABC =60°,BD 平分∠ABC ,AC =12cm ,则CD = . 9.如图,在△ABC 中,∠ABC =2∠ACB ,BD 平分∠ABC ,AD ∥BC ,则图中等腰三角形共有 个. 10.如图所示,AB =AC ,AC 上一点D 在AB 的垂直平分线上,若△ABC 的周长为16cm ,△BCD 的周长为10cm ,则AB 的长为 .11.如图,在△ABC 中,∠C =90°,∠A =30°,BD 平分∠ABC ,若AD =6cm ,则AC = .AEBD(第13题)ADE(第14题)A P(第15题)M1 2(第2题) (第4题) ABABC(第6题)AD(第7题)ADAECD12.等腰三角形的一腰长为10cm,底角为15°,则一腰上的高等于.三.解答题:(共31分)1.(本题8分)如图,已知AB=AC,∠A=40°,AB的垂直平分线交AC于D,求∠DBC的度数.2.(本题11分)如图,在Rt△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,求证:点A在∠CDE的平分线上.3.(本题12分)如图,AC=DB,∠A=∠D,AB、CD交于点P求证:(1)PA=PD;(2)点P到OA、OD的距离相等;(3)点P在∠AOD的平分线上.BDEAEBDAPC。

鲁教版数学八年级下第六章特殊平行四边形单元测试卷含答案

鲁教版数学八年级下第六章特殊平行四边形单元测试卷含答案

第六章特殊平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12B.9C.6D.3A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的( )A.15 B.14C.13D.3105.如图,已知正方形ABCD的对角线长为√2,将正方形ABCD沿直线EF 折叠,则图中阴影部分的周长为( )A.2B.4C.8D.66.已知四边形ABCD是平行四边形,下列结论中错误的有( )①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个7.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16B.17C.18D.198.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是( )A.(4,5)B.(5,3)C.(5,4)D.(4,3)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AEB.△ABE≌△AGFC.BE=DFD.BE=EF10.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为___________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为___________.13.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=___________.14.如图是根据四边形的不稳定性制作的边长为15 cm的可活动菱形衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=___________.15.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为___________.16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE= .17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.18.如图,在边长为2的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,……,按此规律所作的第n个菱形的边长是.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.求证:BD=CE.20.如图所示,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH.求证:∠DHO=∠DCO.21.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.22.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.23.如图所示,把一张矩形纸片ABCD沿对角线BD折叠,使点C落在点E 处,BE与AD交于点F.(1)线段BF与DF相等吗?请说明理由.(2)若将折叠的图形恢复原状,点F与BC边上的点G正好重合,连接DG,试判断四边形BGDF的形状,并说明理由.(3)若AB=4,AD=8,在(2)的条件下,求线段DG的长.24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并加以证明.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE__________是菱形(填“可能”或“不可能”).请说明理由.参考答案一、1.【答案】D 2.【答案】A3.【答案】D解:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.【答案】B5.【答案】B6.【答案】A解:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.7.【答案】B 8.【答案】C 9.【答案】D10.【答案】D解:∵四边形ABCD是正方形,∴∠PAE=∠MAE=45°.∵PM⊥AC,∴∠PEA=∠MEA.又∵AE=AE,∴根据“ASA”可得△APE≌△AME.故①正确;由①得PE=ME,∴PM=2PE.同理PN=2PF,又易知PF=BF,四边形PEOF是矩形,∴PN=2BF,PM=2FO.∴PM+PN=2FO+2BF=2BO=BD.故②正确;在Rt△PFO中,∵FO2+PF2=PO2,而PE=FO,∴PE2+PF2=PO2.故③正确.二、11.【答案】90°解:对角线相等的平行四边形是矩形.12.【答案】12解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.13.【答案】22.5°解:如图,由四边形ABCD 是正方形,可知∠BAD=∠D=90°,∠CAD=12∠BAD=45°.由FE ⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE=AD,AF=AF,∴Rt △AEF ≌Rt △ADF(HL). ∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.14.【答案】120° 15.【答案】4.8 16.【答案】√2-1 17.【答案】20解:点N 是BC 的中点,点E,F 分别是BM,CM 的中点,由三角形的中位线定理可证EN ∥MC,NF ∥ME,EN=12MC,FN=12MB.又易知MB=MC,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD=12得AM=6.在Rt △ABM 中,由勾股定理得BM=10.因为点E 是BM 的中点,所以EM=5,所以四边形ENFM 的周长为20.18.【答案】(2√3)n-1三、19.证明:∵四边形ABCD 是菱形, ∴AB=CD,AB ∥CD.又∵BE=AB,∴BE=CD.∴四边形BECD 是平行四边形.∴BD=CE.20.证明:∵四边形ABCD 是菱形,∴AB ∥CD,OD=OB,AC ⊥BD.∵DH ⊥AB,∴∠AHD=∠BHD=90°.∴∠BDH+∠ODC=90°.∵∠DCO+∠ODC=90°,∴∠BDH=∠DCO.在Rt △BHD 中,OB=OD,∴OH=OD.∴∠DHO=∠BDH.∴∠DHO=∠DCO.21.(1)证明:∵DE ∥AC,CE ∥BD,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD=OC.∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形,∴BO=DO=12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.22.(1)证明:在△BCE 与△DCF 中,{BC =DC ,CE =CF ,∠BCE =∠DCF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC,∴∠CEF=45°.∴∠BEF=105°.23.解:(1)相等.理由:∵在△ABF 和△EDF 中,∠A=∠E=∠C=90°,∠AFB=∠EFD, AB=ED=CD,∴△ABF ≌△EDF.∴BF=DF.(2)四边形BGDF 是菱形.理由:由四边形ABCD 是矩形,易得AD ∥BC,则BG ∥DF.∵△BCD 沿BD 折叠之后得到△BED,∴BC=BE.而恢复原状后,点F 与点G 重合,则BG=BF,而由(1)得BF=DF,∴BG=DF.∴四边形BGDF 为平行四边形.又∵BF=DF,∴四边形BGDF 为菱形.(3)由(2)知DG=BG,∴CG=8-DG.又∵CD 2+GC 2=DG 2,即42+(8-DG)2=DG 2,解得DG=5.24.解:(1)OE=OF.证明如下:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE.又∵MN ∥BC,∴∠NEC=∠ECB.∴∠NEC=∠ACE.∴OE=OC.∵CF 是∠ACD 的平分线,∴∠OCF=∠FCD.又∵MN ∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O 运动到AC 的中点,且△ABC 满足∠ACB 为直角时,四边形AECF 是正方形.理由如下:∵当点O 运动到AC 的中点时,AO=CO,又∵EO=FO,∴四边形AECF 是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF 是矩形.已知MN ∥BC,当∠ACB=90°时,∠AOE=90°,∴AC ⊥EF.∴四边形AECF 是正方形.(3)不可能.理由如下:连接BF,∵CE 平分∠ACB,CF 平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE 是菱形,则BF ⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE 不可能为菱形.。

鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节测评试题(含答案及详细解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节测评试题(含答案及详细解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知锐角∠AOB,如图.(1)在射线OA上取一点C,以点O为圆心,OC长为半径画弧,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中错误的是()A.四边形OCPD是菱形B.CP=2QCC.∠AOP=∠BOP D.CD⊥OP2、如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE,若△ABC的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16 cm 3、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是13.B.若AC、BD为菱形ABCD的对角线,则AC BD⊥的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.4、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.6.5B.8 C.10D.125、如图已知:四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90︒时,它是矩形6、菱形周长为20,其中一条对角线长为6,则菱形面积是( )A .48B .40C .24D .127、如图,菱形ABCD 的对角线AC 、BD 相交于点O ,6AC =,8BD =,EF 为过点O 的一条直线,则图中阴影部分的面积为( )A .4B .6C .8D .128、如图.在长方形纸片ABCD 中,AB =12,AD =20,所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.点P ,Q 分别在边AB 、AD 上移动,则点A ′在BC 边上可移动的最大距离为( )A .8B .10C .12D .169、如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为( )A B C .4.5 D .4.310、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )A .20B .40C .60D .80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.2、如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,连接EB ,ED ,当126BED ∠=︒时,EDA ∠的度数为______.3、如图,在矩形ABCD 中,AB =6,BC =8.如果E、F 分别是AD 、BC 上的点,且EF 经过AC 中点O ,G ,H 是对角线AC 上的点.下列判断正确的有______.①在AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;②在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;③在AC 上存在无数组G 、H ,使得四边形EGFH 是菱形;④当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形.4、如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是___.5、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .三、解答题(5小题,每小题10分,共计50分)1、已知:线段m .求作:矩形ABCD ,使矩形宽AB =12m ,对角线AC =m .2、如图,四边形ABCD 是平行四边形,O 是对角线AC 的中点,过点O 的直线分别交边BC ,AD 于点E ,F ,连结AE ,CF .(1)求证:△AOF ≌△COE ;(2)当∠OAF =∠OFA 时,求证:四边形AECF 是矩形.3、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD'于点E.AB=6cm,BC=8cm.(1)求证AE=EC;(2)求阴影部分的面积.4、已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE的中点,12CD AB=,求证:DF⊥CE.5、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH 的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.-参考答案-一、单选题1、A【解析】【分析】根据作图信息可以判断出OP 平分AOB ∠,由此可以逐一判断即可.【详解】解:由作图可知,,,OC OD PC PD OP ==平分AOB ∠∴OP 垂直平分线段CD∴∠AOP =∠BOP ,CD ⊥OP故选项C ,D 正确;由作图可知,CD CP PD ==∴PCD ∆是等边三角形,∴60CPD ∠=︒∵OP 垂直平分线段CD∴30CPQ ∠=︒∴CP =2QC故选项B 正确,不符合题意;由作图可知,,OC OD PC PD ==,不能确定四边形OCPD 是菱形,故选项A 符合题意,故选:A【点睛】本题考查了基本作图,解题的关键是熟练掌握作图的依据.2、A【解析】【分析】根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【详解】解:∵点E为AC的中点,∴AE=CE,∵BD=CD,∴DE=1AB,2∵△ABC的周长为20,即AB+BC+AC=20cm,∴△CDE的周长=DE+CD+CE=1(AB+BC+AC)=10cm,2故选:A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3、B【解析】【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是16,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.4、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD,又∵E是边AD的中点,∴OE=12AD=12×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.5、C【解析】【分析】根据矩形、菱形、正方形的判定逐个判断即可.【详解】解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC =BD ,∴四边形ABCD 是矩形,故本选项符合题意;D 、∵四边形ABCD 是平行四边形,又∵∠ABC =90°,∴四边形ABCD 是矩形,故本选不项符合题意;故选:C .【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.6、C【解析】【分析】由菱形对角线互相垂直且平分的性质、结合勾股定理解得4OA =,继而解得AC 的长,最后根据菱形的面积公式解题.【详解】解:如图,6BD =,菱形的周长为20,5AB ∴=,四边形ABCD 是菱形,132OB DB ∴==,OA OC =,AC BD ⊥,由勾股定理得4OA =,则8AC =, 所以菱形的面积11682422AC BD =⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.7、B【解析】【分析】根据菱形的性质可证出ΔΔCFO AEO ≅,可将阴影部分面积转化为BOC ∆的面积,根据菱形的面积公式计算即可.【详解】 解:四边形ADCB 为菱形, OC OA ∴=,//AB CD ,FCO OAE ∠=∠,FOC AOE ∠=∠,()CFO AEO ASA ≅,∴CFO AOE S S =,∴CFO BOF BOC S S S +=, ∴1111··6864242BOC S AC BD =⨯=⨯⨯⨯= 故选:B .【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为BOC ∆的面积为解题关键.8、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.9、A【解析】【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE +∠DCH =90°,∴∠CDF +∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE === ∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.10、B【解析】【分析】根据菱形的面积公式求解即可.【详解】×10×8=40.解:这个菱形的面积=12故选:B.【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.二、填空题1、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∴CEF ∠=90°,故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键. 2、18°##18度【解析】【分析】由“SAS ”可证△DCE ≌△BCE ,可得∠CED =∠CEB =12∠BED =63°,由三角形的外角的性质可求解.【详解】证明:∵四边形ABCD 是正方形,∴AD =CD =BC =AB ,∠DAE =∠BAE =∠DCA =∠BCA =45°,在△DCE 和△BCE 中,CD BC BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ),∴∠CED =∠CEB =12∠BED =63°,∵∠CED =∠CAD +∠ADE ,∴∠ADE =63°-45°=18°,故答案为:18°.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE ≌△BCE 是本题的关键.3、①②④【解析】【分析】如图,矩形ABCD ,O 为对角线的交点,由中心对称性证明:,OE OF = 所以当OG OH =时,四边形EGFH 是平行四边形,当OE OG OF OH 时,四边形EGFH 是矩形,当,,OG OH EF AC 四边形EGFH 是菱形,再利用正方形的性质求解,AG 从而可得答案.【详解】解:如图,矩形ABCD ,O 为对角线的交点,由中心对称性可得:,OE OF =所以当OG OH =时,四边形EGFH 是平行四边形,所以AC 上存在无数组G 、H ,使得四边形EGFH 是平行四边形;故①符合题意;当OE OG OF OH 时,四边形EGFH 是矩形,而OE 不是定值,所以在AC 上存在无数组G 、H ,使得四边形EGFH 是矩形;故②符合题意;当,,OG OH EF AC四边形EGFH 是菱形,而AC 位置确定,所以EF 唯一,所以在AC 上不存在无数组G 、H ,使得四边形EGFH 是菱形,故③不符合题意;如图,当四边形EGFH 是正方形时,,,,EG GF FH EH OE OF OG OH EF GH,FA FC由矩形ABCD 可得:90,6,8,,ABC AB DC AD BC OA OC 226810,,5,ACAG CH OA OC 2226+8,AF AF 25,4AF 2225155,44OF OG 1555,44AG 所以当AG =54时,存在E 、F 、G ,H ,使得四边形EGFH 是正方形,故④符合题意; 故答案为:①②④【点睛】本题考查的是平行四边形的判定与性质,矩形的判定与性质,菱形的判定,正方形的性质,掌握“特殊四边形的判定与性质”是解本题的关键.4、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,5OC,=∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.5、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.三、解答题1、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,利用作一个角等于已知角,过A作BC的平行线AD,过C作AB的平行线CD,两线交于D即可.【详解】解:先作m的垂直平分线,取m的一半为AB,以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,连结AC,过A作BC的平行线,与过C作AB的平行线交于D,则四边形ABCD为所求作矩形;∵AD∥BC,CD∥AB,∴四边形ABCD为平行四边形,∵BC⊥AB,∴∠ABC=90°,∴四边形ABCD为矩形,∵AB=12m,AC=m,∴矩形的宽与对角线满足条件,∴四边形ABCD为所求作矩形.【点睛】本题考查矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法,掌握矩形作图,线段垂直平分线,作线段等于已知线段,平行线作法是解题关键.2、 (1)见解析;(2)见解析【解析】【分析】(1)根据四边形ABCD 为平行四边形形,可得//AD BC ,所以FAC ECA ∠=∠,∠=∠AFE CEF ,再根据O 是对角线AC 的中点,可得OA OC =,进而证明AOF COE ∆≅∆;(2)根据矩形的判定可得出答案.(1) 解:证明:四边形ABCD 为平行四边形,//AD BC ∴,FAC ECA ∴∠=∠,∠=∠AFE CEF , O 是对角线AC 的中点,OA OC ∴=,在AOF ∆和COE ∆中,FAC ECA AFE CEF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOF COE AAS ∴∆≅∆;(2)解:证明:OAF OFA ∠=∠,OA OF ∴=,AOF COE ∆≅∆,OE OF ∴=,OA OC =,∴四边形AECF 为平行四边形,AC EF =,∴四边形AECF 为矩形.【点睛】本题考查了矩形的性质、全等三角形的判定与性质,解题的关键是综合运用三角形和四边形的知识.3、 (1)证明见解析 (2)275cm 4【解析】【分析】(1)先根据折叠的性质可得EAC DAC ∠=∠,再根据矩形的性质、平行线的性质可得DAC ACB ∠=∠,从而可得EAC ACB ∠=∠,然后根据等腰三角形的判定即可得证;(2)设cm AE EC x ==,从而可得(8)cm BE x =-,先在Rt ABE △中,利用勾股定理可得x 的值,再利用三角形的面积公式即可得.(1)证明:由折叠的性质得:EAC DAC ∠=∠,四边形ABCD 是长方形,AD BC ∴,DAC ACB ∴∠=∠,EAC ACB ∴∠=∠,AE EC ∴=.(2) 解:四边形ABCD 是长方形,90B ∴∠=︒,设cm AE EC x ==,则(8)cm BE BC EC x =-=-,在Rt ABE △中,222AB BE AE +=,即2226(8)x x +-=, 解得254x =,即25cm 4EC =, 则阴影部分的面积为21125756(cm )2244EC AB ⋅=⨯⨯=. 【点睛】本题考查了矩形与折叠问题、等腰三角形的判定、勾股定理等知识,熟练掌握矩形与折叠的性质是解题关键.4、见解析【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得DE =12AB ,再求出DE =CD ,然后根据等腰三角形三线合一的性质证明即可.【详解】证明: 在△ACB 中,CE 是中线,∴点E 为AB 边的中点∵AD 是BC 边上的高, ∴△ADB 是直角三角形∴DE =12AB ,∵CD =12AB ,∴DC =DE ,∵F 是CE 中点,∴DF ⊥CE .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.5、 (1)见解析(2)AE 2+ GF 2=EG 2,证明见解析【解析】【分析】(1)根据“SAS ”证明△ADE ≌△CDE 即可;(2)连接CG ,可得CG =GF =GH =12FH ,再证明∠ECG =90°,然后在Rt △CEG 中,可得CE 2+CG 2=EG 2,进而可得线段AE ,EG 和GF 之间的数量关系.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE ,在△ADE 和△CDE 中AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△CDE ,∴AE =CE ;(2)AE 2+ GF 2=EG 2,理由:连接CG∵△ADE ≌△CDE ,∴∠1=∠2.∵G为FH的中点,FH,∴CG=GF=GH=12∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+ GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.。

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C(附答案)

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C(附答案)

鲁教版2019-2020八年级数学下册第六章特殊的平行四边形自主学习能力达标测试题C (附答案)1.如图,30EOF ∠=︒,A ,B 为射线OE 上两点,点P 为射线OF 上一点,且10OP =,90APB ∠=︒,则线段AB 的最小值为( ).A .10B .52C .53D .82.如图,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连结AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,△ACD 与△A 1C 1D 1重叠部分的面积为s ,则下列结论:①△A 1AD 1≌△CC 1B ②当x =1时,四边形ABC 1D 1是菱形 ③当x =2时,△BDD 1为等边三角形 ④s =32(x ﹣2)2(0<x <2),其中正确的有( )A .1 个B .2 个C .3 个D .4 个3.如图,四边形ABCD 是正方形,AB =1,点F 是对角线AC 延长线上一点,以BC 、CF 为邻边作菱形BEFC ,连接DE ,则DE 的长是( ).A .2B .21+C .3D .24.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将DEQ ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则PF PC +的最小值为( )A .622-B .8C .10D .822-5.下列命题是真命题的是( )A .对角线互相平分且相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .对角线互相平分的四边形是平行四边形6.矩形、菱形、正方形都具有的性质是( )A .一组邻边相等,对角线互相垂直平分B .一组邻角相等,对角线也相等C .一组对边平行且相等,对角线互相平分D .对角线相等,且互相垂直平分 7.如图,已知某菱形花坛ABCD 的周长是24m ,120BAD ∠=o ,则花坛对角线AC 的长是( )A .63mB .6mC .33mD .3m8.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连结AE ,如果∠ABD =60°,那么∠BAE 的度数是( )A .40°B .55°C .75°D .80°9.如图,下列结论:①四边形ABCD 是平行四边形,且AB BC ⊥;②四边形ABCD是平行四边形,且AC BD ⊥;③四边形ABCD 是矩形,且AC BD ⊥;④四边形ABCD 是菱形,且AC BD =.其中能推出四边形ABCD 为正方形的有( )A .①②B .②③C .③④D .①②③④10.在四边形ABCD 中,两对角线交于点O ,若OA =OB =OC =OD ,则这个四边形( )A .可能不是平行四边形 B .一定是菱形C .一定是正方形D .一定是矩形11.如图,点O是菱形ABCD两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为8和10时,则阴影部分的面积为_____.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=2cm,BC=16cm,则EF=_________cm.13.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC 于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.14.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=_____.15.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为___ .16.如图,等边△BCP在正方形ABCD内,则∠APD=_____度.17.有一个角是直角的平行四边形是_______;有一组邻边相等的平行四边形是______________;四条边都相等,四个角都是直角的四边形是___________.18.如图,菱形ABCD 的一个内角是60∘,将它绕对角线的交点O 顺时针旋转90∘后得到菱形A′B′C′D′.旋转前后两菱形重叠部分多边形的周长为2431=+S S ,则菱形ABCD 的边长为_________.19.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到点O 的距离_______(填 不变.变小 或变大 ).20.如图,矩形ABCD 中,6AB =,8BC =,E 是BC 边上一点,将ABE △沿AE 翻折,点B 恰好落在对角线AC 上的点F 处,则BE 的长为________.21.如图,正方形ABCD 的对角线AC ,BD 交于点O ,DE 平分ODA ∠交OA 于点E ,若2AB =,则线段OE 的长为________.22.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.23.如图,在四边形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分别为AC、CD的中点,连接BM、MN、BN.(1)求证:BM=MA;(2)若∠BAD=60°,求BN的长;(3)当∠BAD=°时,BN=1.(直接填空)24.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图2中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的项点上.25.如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点。

鲁教版八年级数学下册第6章 特殊的平行四边形 期末综合提升训练(含答案)

鲁教版八年级数学下册第6章 特殊的平行四边形 期末综合提升训练(含答案)

鲁教版八年级数学下册《第6章特殊的平行四边形》章末综合提升训练1.在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定这个四边形是菱形的是.(填序号)①.AD∥BC,∠A=∠C②.AC=BD,AB∥CD,AB=CD③.AB∥CD,AC=BD,AC⊥BD④.AO=CO,BO=DO,AB=BC2.正方形的边长与它的对角线的长度的比值为.3.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD于点F,如果∠E=15°,那么∠AFB的度数为.4.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10cm,AC=12cm.那么这个菱形的面积为cm2.5.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.6.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E 的坐标为.7.已知正方形ABCD的边长等于4cm,那么边AB的中点E到对角线BD的距离等于cm.8.如图,等边三角形AEF的顶点E,F分别落在矩形ABCD的两邻边BC、CD上,若BE=1,CE=2,则△AEF 边长为.9.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是.10.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=11.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.12.已知矩形的两条对角线的夹角为60°,如果一条对角线长为6,那么矩形的面积为.13.已知正方形ABCD的边长为6,点E是边BC的中点.联接AC、DE相交于点F,M、N分别是AC、DE的中点,则MN的长是.14.已知四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添加的这个条件可以是.15.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE⊥AB,垂足为E,如果AC=8,BD=6,那么DE 的长为.16.如图,在直角坐标平面内,矩形ABCD的对角线AC、BD交于原点O,且点A、C都在x轴上,点D的坐标为(4,3),那么点C的坐标为.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,点P在边长为1的正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+1,则△P AB的面积为.19.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF于点F.若AB=5,AD =4,则EF=.20.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=4,H是AF的中点,那么CH的长是.21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.22.如图,△ABC中,AB=AC,AD平分∠BAC交BC于点D,AE平分∠BAC的外角,且∠AEB=90°.求证:四边形ADBE是矩形.23.如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(I)若△PCD是等腰三角形时,求AP的长;(Ⅱ)判断CF与AC有怎样的位置关系并说明理由.26.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.27.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF∥BC,交DE的延长线于点F,连接BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.28.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.29.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.30.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.31.如图,点E是矩形ABCD的边AD的中点,点P是边BC上的动点,PM⊥BE,PN⊥CE,垂足分别是M、N.求:当AB和AD应满足怎样的数量关系时,四边形PMEN是矩形?请说明理由.32.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:DE=BF;(2)若DF=BF,求证:四边形DEBF为菱形.33.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG.(1)求证:BE=DF;(2)求证:四边形AEGF是菱形.34.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.35.已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF=CD,过点F作FG⊥FC交AD于点G.(1)求证:GF=GD;(2)联结AF,求证:AF⊥DE.36.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.37.已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD 的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)38.我们知道正方形是四条边相等,四个内角都等于90°的四边形.如图1,已知正方形ABCD,点E是边CD上一点,延长CB到点F,使得BF=DE,作∠EAF的平分线交边BC 于点G.求证:BG+DE=EG.参考答案1.解:①A、∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选项①不符合题意;②、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;选项②不符合题意;③、∵AB∥CD,AC=BD,AC⊥BD,∴四边形ABCD不一定是平行四边形,∴四边形ABCD不一定是菱形;选项③不符合题意;④、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;选项④符合题意;故选:④.2.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∴AC===AB,∴=;故答案为:.3.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.4.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.5.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.6.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).7.解:∵四边形ABCD是正方形,∴AB=BC=4cm,∠EBF=45°,∵EF⊥BD,∴△EBF是等腰直角三角形,∵E是AB的中点,∴EB=2cm,∴EF=cm,故答案为:.8.解:设DF=x,CF=y,∵四边形ABCD是矩形,∴∠D=∠C=∠B=90°,DC=AB=x+y,AD=BC=BE+CE=1+2=3,∵△AEF是等边三角形,∴AE=EF=AF,∴12+(x+y)2=22+y2=x2+32,由12+(x+y)2=22+y2得:y=,代入22+y2=x2+32,整理得:3x4+26x2﹣9=0,解得:x2=,∴AF2=x2+32=,∴AF=;故答案为:.∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.10.解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或11.解:如图,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.12.解:矩形的两条对角线的夹角为:∠1=60°,∵矩形对角线相等且互相平分,∴△AOB为等边三角形,∴AB=AO=AC=3,在直角△ABC中,AC=6,AB=3,∴BC=,故矩形的面积为:3×3=9.故答案为:9.13.解:连接BD,∵E是边BC的中点,∴BE=BC=3,∵四边形ABCD是正方形,∴M是BD的中点,又N是DE的中点,∴MN=BE=1.5,故答案为:1.5.14.解:当AD=BC或AB∥CD时,四边形ABCD是矩形.理由:∵AD∥BC,∴当AD=BC或AB∥CD时,四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.15.解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB==5.又∵AC•BD=AB•DE.∴DE=4.8.故答案为:4.8.16.解:过点D,作DE⊥OC于点E,∵点D的坐标为(4,3),∴OE=4,DE=3,∴OD==5,∵四边形ABCD是矩形,∴OD=OC=AC=BD,∴点C的坐标为(5,0),故答案为:(5,0).17.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.解:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△P AB和Rt△QCB中,,∴△P AB≌△QCB(ASA),∴QC=P A,设正方形的边长AB=a,P A=x,则QC=x,∴DQ=DC+QC=a+x,PD=AD﹣P A=a﹣x,在Rt△P AB中,PB2=P A2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△P AB的面积S=P A•PB=ax=×=.故答案为:.19.解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:20.解:过H作HM⊥BE于M,则∠HMC=90°,∵正方形ABCD和正方形CEFG,∴AB=BC=1,EF=CE=4,∠B=∠E=90°,∴HM∥AB∥FE,∵H为AF大的中点,∴M为BE的中点,∴HM=(AB+EF)=(1+4)=,∵BC=1,CE=2,∴BM=2.5,∴CM=1.5,在Rt△HMC中,由勾股定理得:CH==,故答案为:.21.(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.22.证明:∵AD是∠BAC的平分线,∴∠1=∠2,∵AE是∠BAF的平分线,∴∠3=∠4,∵∠1+∠2+∠3+4=180°,∴∠2+∠3=90°,即∠DAE=90°,∵AB=AC,∠1=∠2,∴AD⊥BC,即∠ADB=90°,∵∠AEB=90°,∴四边形ADBE是矩形.23.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.25.解:(I)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP的长为4或5或;(Ⅱ)CF⊥AC,理由如下:如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴CF⊥AC.26.证明:(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连接BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∠ABC=90°,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.27.(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.28.解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.29.(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.30.(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.31.解:当AD=2AB时.四边形PMEN为矩形;理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵点E是矩形ABCD的边AD的中点.∴AE=DE,在△ABE和△CDE中,,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵四边形PMEN为矩形,∴∠BEC=90°,∴∠AEB=∠DEC=45°∴AE=DE=DC,即AD=2AB.∴当AD=2AB时;四边形PMEN为矩形.32.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF,∴DE=BF;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形.∵DF=BF,∴平行四边形DEBF是菱形.33.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴EB=DF;(2)∵四边形ABCD是正方形,∴BC=DC,∵EB=DF,∴EC=FC,∴AC垂直平分EF,∵AO=GO,∴四边形AEGF是菱形.34.证明:取BC的中点F,连接AF,过点F作FH⊥AE于H,连接EF.∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠C=90°,∵M是CD的中点,∴BF=DM,在△ABF和△ADM中,,∴△ABF≌△ADM(SAS),∴∠BAF=∠DAM,∵∠BAE=2∠DAM,∴∠BAF=∠HAF,∵∠AHF=∠B=90°,∴∠AFB=∠AFH,BF=FH,∴AB=AH,∴FH=FC,∵∠FHE=∠C=90°,在Rt△CFE和Rt△HFE中,,∴Rt△CFE≌Rt△HFE(HL),∴EH=CE,∴AE=AH+HE=AB+CE=BC+CE.35.证明:(1)∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,∵CF=CD,∴∠CDF=∠CFD,∴∠GFC﹣∠CFD=∠ADC﹣∠CDE,即∠GFD=∠GDF,∴GF=GD.(2)联结CG.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴GC⊥DE,∴∠CDF+∠DCG=90°,∵∠CDF+∠ADE=90°,∴∠DCG=∠ADE.∵四边形ABCD是正方形,∴AD=DC,∠DAE=∠CDG=90°,∴△DAE≌△CDG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AG=GD=GF,∴∠DAF=∠AFG,∠GDF=∠GFD,∵∠DAF+∠AFG+∠GFD+∠GDF=180°,∴2∠AFG+2∠GFD=180°,∴∠AFD=90°,即AF⊥DE.法2:(1)联结CG交ED于点H.∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG,∴GF=GD.(2)∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,∵∠ADE=∠DCH,AD=DC,∠EAD=∠GDC.∴△ADE≌△DCG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE.36.证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.37.解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.38.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∴∠ABF=∠D=90°,在△ABF与△ADE中,,∴△ABF≌△ADE,∴AE=AF,∵AG平分∠EAF,∴∠F AG=∠EAG,∵AG=AG,∴△EAG≌△F AG,∴EG=FG=BF+BG=DE+BG;。

综合解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形单元测试试题(含详细解析)

综合解析鲁教版(五四制)八年级数学下册第六章特殊平行四边形单元测试试题(含详细解析)

鲁教版(五四制)八年级数学下册第六章特殊平行四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图已知:四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90 时,它是矩形2、下列命题中是真命题的选项是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直且相等的四边形是正方形C.对角线相等的平行四边形是矩形D.三条边都相等的四边形是菱形3、下列说法错误的是()A.平行四边形对边平行且相等B.菱形的对角线平分一组对角C .矩形的对角线互相垂直D .正方形有四条对称轴4、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),则下列四个说法:①x 2+y 2=49,②x ﹣y =2,③2xy +4=49,④x +y =9.其中说法正确的是( )A .②③B .①②③C .②④D .①②④5、如图,在正方形ABCD 中,3AB =,E 是AD 上的一点,且1AE =,F ,G 是AB ,CD 上的动点,且BE FG =,BE FG ⊥,连接EF ,FG ,BG ,当EF FG BG ++的值最小时,CG 的长为( )A .32BC .125D .656、矩形、菱形都具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线互相垂直且相等7、如图,E 、F 分别是正方形ABCD 的边CD 、BC 上的点,且CE BF =,AF 、BE 相交于点G ,下列结论中正确的是( )①AF BE =;②AF BE ⊥;③AG GE =;④ABG CEGF S S =四边形△.A .①②③B .①②④C .①③④D .②③④8、如图,在Rt ABC 中,ACB ∠是直角,点D 是AB 边上的中点,下列成立的有( )①90A B ∠+∠=︒ ②222AC BC AB += ③2CD AB = ④30B ∠=︒A .①②④B .①③C .②④D .①②③9、如图,菱形ABCD 的对角线AC 和BD 相交于点O ,8AC =,12BD =,E 是OB 的中点,P 是CD 的中点,连接PE ,则线段PE 的长为( )A .BC .D 10、如图,正方形ABCD 的对角线相交于点O ,以点O 为顶点的正方形OEGF 的两边OE ,OF 分别交正方形ABCD 的两边AB ,BC 于点M ,N ,记AOM 的面积为1S ,CON 的面积为2S ,若正方形的边长10AB =,116S =,则2S 的大小为( )A .6B .7C .8D .9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个直角三角形的两直角边长分别为 5cm 和 12 cm ,则斜边上中线的长度是________cm .2、如图,在菱形ABCD 中,∠A =60°,E 为AD 边上的一个动点,连接BE ,将AB 沿着BE 折叠得到A 'B ,A 的对应点为A ',连接A 'D ,当A ′B ⊥AD 时,∠A 'DE 的度数为 ______.3、一边长为5cm 平行四边形的两条对角线的长分别为24cm 和26cm ,那么这个平行四边形的面积是____________.4、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).5、如图,矩形纸片ABCD,AD=4,AB=2,点F在线段AD上,将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,点M,N分别是线段AD与线段BC上的点,将四边形CDMN沿MN向上翻折,点C 恰好落在线段BF的中点C'处,则线段MN的长为 __________________.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.2、如图1.在平面直角坐标系中,四边形OBCD是正方形,D(0,3),点E是OB延长线上一点,M是线段OB上一动点(不包括O、B),作MN⊥DM,交∠CBE的平分线于点N.(1)求证:MD =MN ;(2)如图2,若M (2,0),在OD 上找一点P ,使四边形MNCP 是平行四边形,求点P 的坐标;(3)如图,连接DN 交BC 于F ,连接FM ,求证:∠DFC =∠DFM .3、如图,在菱形ABDE 中,120ABD ∠=︒,点C 是边AB 的中点,点P 是对角线AD 上的动点(可与点A ,D 重合),连接PC ,PB .已知6cm AD =,若要PC PB ≤,求AP 的取值范围.丞泽同学所在的学习小组根据学习函数的经验,设AP 长为x cm ,PC 长为1cm y ,PB 长为2cm y .分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究,下面是丞泽同学所在学习小组的探究过程,请补充完整:(1)按照表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,表格中的=a ______;(2)在同一平面直角坐标系xOy中,请在图中描出补全后的表中各组数值所对应的点()1,x y,并画出函数1y的图象;≤时,估计AP的长度的取值范围是____________;(3)结合函数图象,解决问题:当PC PB请根据图象估计当AP=______时,PC取到最小值.(请保留点后两位)4、如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.5、如图,在正方形ABCD中,E、F、G分别是AB、BC、CD边上的点,AF和EG交于点H.现在提供三个关系:①AF⊥EG;②AH=HF;③AF=EG.(1)从三个关系中选择一个作为条件,一个作为结论,形成一个真命题.写出该命题并证明;(2)若AB=3,EG垂直平分AF,设BF=n.①求EH:HG的值(含n的代数式表示);②连接FG,点P在FG上,当四边形CPHF是菱形时,求n的值.-参考答案-一、单选题1、C【解析】【分析】根据矩形、菱形、正方形的判定逐个判断即可.【详解】解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选不项符合题意;故选:C.本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.CD=2、∴OM=12故选:C.【点睛】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.3.C【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断后,即可确定正确的选项.【详解】解:A.一组对边平行且相等的四边形是平行四边形,原命题是假命题,不符合题意;B.对角线互相平分、垂直且相等的四边形是正方形,原命题是假命题,不符合题意;C.对角线相等的平行四边形是矩形,是真命题,符合题意;D.四条边都相等的四边形是菱形,原命题是假命题,不符合题意;故答案选:C.【点睛】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定方法,难度不大.3、C【解析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.4、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=, 即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.5、A【解析】【分析】先推出AE =FT ,可得GF =BE EF +BG 的值最小时,EF +FG +BG 的值最小,设CG =BT =x ,则EF +BG x 轴上 寻找一点P(x ,0),使得点P 到M (0,3),N (2,1)的距离和最小.【详解】如图,过点G 作GT ⊥AB 于T ,设BE 交FG 于R .∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠ABC =∠C =90°,∵GT ⊥AB ,∴∠GTB =90°,∴四边形BCGT 是矩形,∴BC =GT ,∴AB =GT ,∵GF ⊥BE ,∴∠BRF =90°,∵∠ABE +∠BFR =90°,∠TGF +∠BFR =90°,∴∠ABE =∠TGF ,在△BAE 和△GTF 中,A GTF AB GTABE TGF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAE≌△GTF(ASA),∴AE=FT=1,∵AB=3,AE=1,∴BE∴GF=BE在Rt△FGT中,FG∴EF+FG的值最小时,EF+FG+BG的值最小,设CG=BT=x,则EF+BGx轴上寻找一点P(x,0),使得点P到M(0,3),N (2,1)的距离和最小.如图,作点M关于x轴的对称点M′(0,-3),连接NM′交x轴于P,连接PM,此时PM+PN的值最小.∵N(2,1),M′(0,-3),∴直线M′N的解析式为y=2x-3,∴P(32,0),∴x=3 2故选:A.【点睛】本题考查轴对称最短问题,正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.6、B【解析】【分析】由矩形的性质和菱形的性质可直接求解.【详解】解:菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,∴矩形、菱形都具有的性质是对角线互相平分,故选:B.【点睛】本题考查了矩形的性质,菱形的性质,灵活运用这些性质解决问题是解题的关键.7、B【解析】【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得.【详解】解:∵四边形ABCD是正方形,∴AB BC CD AD ===,90ABC BCD ∠=∠=︒,在ABF 与BCE 中,AB BC ABC BCD BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴ABF BCE ≅,∴AF BE =,①正确;∵90BAF BFA ∠+∠=︒,BAF EBC ∠=∠,∴90EBC BFA ∠+∠=︒,∴90BGF ∠=︒,∴AF BE ⊥,②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,③错误;∵ABF BCE ≅,∴ABF BCE S S =,∴ABF BGF BCE BGF S S S S -=-,即ABG CEGF S S =四边形,④正确;综上可得:①②④正确,故选:B .【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,垂直的判定等,理解题意,综合运用全等三角形全等的判定和性质是解题关键.8、D【解析】【分析】利用直角三角形的性质直接进行判断即可.【详解】解:∵在Rt△ABC中,∠ACB是直角,∴∠A+∠B=90°,①正确;根据勾股定理得AC2+BC2=AB2②正确;∵点D是AB边上的中点,∴2CD=AB,故③正确;不能得到∠B=30°,④错误,故选:D.【点睛】本题考查了直角三角形的性质及勾股定理的知识,解题的关键是了解直角三角形的两瑞角互余、斜边上的中线等于斜边的一半等性质,难度不大.9、A【解析】【分析】取OD的中点H,连接HP,由菱形的性质可得AC⊥BD,AO=CO=4,OB=OD=6,由三角形中位线定理可得122HP OC==,HP AC∥,可得EH=6,90EHP∠=︒,由勾股定理可求PE的长.【详解】解:如图,取OD的中点H,连接HP∵四边形ABCD 是菱形∴AC ⊥BD ,AO =CO =4,OB =OD =6∵点H 是OD 中点,点E 是OB 的中点,点P 是CD 的中点∴OH =3,OE =3,122HP OC ==,HP AC ∥ ∴EH =6,90EHP ∠=︒在Rt HPE △中,由勾股定理可得:∴PE =故选:A【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,添加恰当辅助线构造直角三角形是解题的关键.10、D【解析】【分析】由题意依据全等三角形的判定得出△BOM ≌△CON ,进而根据正方形的性质即可得出2S 的大小.【详解】解:∵正方形ABCD 的对角线AC ,BD 交于点O ,∴OC =OD =BO =AO ,∠ABO =∠ACB =45°,AC ⊥BD .∵∠MOB +∠BON =90°,∠BON +∠CON =90°∴∠BOM =∠CON ,且OC =OB ,∠ABO =∠ACB =45°,∴△BOM ≌△CON (ASA ),2S =S △BOM ,∴121BOM AOB S S S S S ==++,∵AOB S =14S 正方形ABCD ,正方形的边长10AB =,116S =, ∴2S =14S 正方形ABCD -1S =110101694⨯⨯-=. 故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.二、填空题1、132【解析】【分析】直角三角形中,勾股定理求斜边长,根据斜边上的中线长为斜边的一半求解即可.【详解】13cm = 由直角三角形中斜边的中线等于斜边的一半可知斜边上中线的长度为13cm 2 故答案为:132. 【点睛】本题考查了勾股定理与直角三角形的中线.解题的关键在于理解直角三角形中线与斜边长的关系. 2、15°##15度【解析】【分析】由菱形的性质可得AB AD =,可证ABD ∆是等边三角形,由等边三角形的性质可得A B '垂直平分AD ,30ABA '∠=︒,由折叠的性质可得AB A B '=,可得75BAA '∠=︒,即可求解.【详解】解:如图,连接AA ',BD ,四边形ABCD 是菱形,AB AD ∴=,60A ∠=︒,ABD ∴∆是等边三角形,A B AD '⊥,A B '∴垂直平分AD ,30ABA '∠=︒,AA A D ''∴=,A AD A DA ''∴∠=∠,将AB 沿着BE 折叠得到A B ',AB A B '∴=,75BAA '∴∠=︒,15A AD A DA ''∴∠=∠=︒.故答案为:15︒.【点睛】本题考查了菱形的性质,折叠的性质,等边三角形的判定和性质,证明ABD ∆是等边三角形是解题的关键.3、312cm 2【解析】略4、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.5【解析】【分析】先判断出四边形ABEF 是正方形,进而求出BF =BC ',过点C '作C 'H ⊥BC 于H ,CC '与MN 的交点记作点K ,进而求出BH =1,再用勾股定理求出CC 'CK股定理求出CN =53 ,最后用面积建立方程求出MN 即可.【详解】解:如图,∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB,BC=AD=4,∵2AB=4,∴AB=2,∴CD=2,∵将△ABF沿BF向下翻折,点A的对应点E落在线段BC上,∴∠BEF=∠A=90°,AB=BE,∴四边形ABEF是正方形,∴BF是正方形ABEF的对角线,∴∠EBF=45°,BF=∵C'是BF的中点,BF,∴BC'=12过点C'作C'H⊥BC于H,CC'与MN的交点记作点K,在Rt△BHC'中,BH=C'H'=1,∴CH=BC﹣BH=3,在Rt△CHC'中,CC',由折叠知,CK=12CC'设CN=x,则HN=3﹣x,∵将四边形CDMN沿MN向上翻折,∴CC'⊥MN,C'N=CN=x,在Rt△C'HN中,根据勾股定理得,C'H2+HN2=C'N2,∴12+(3﹣x)2=x2,∴x=53,∴CN=53,连接CM,∵S△CMN=12CN•CD=12MN•CK,∴MN=CN CDCK⋅52⨯,.【点睛】此题主要考查了折叠的性质,矩形的性质,勾股定理和面积法解题,作出辅助线构造直角三角形求出CC'是解题的关键所在.三、解答题1、 (1)见解析(2)当∠FGC=2∠EFB时,四边形AEFG是矩形,理由见解析【解析】【分析】(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,则∠B=∠GFC,得到AE∥FG.(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,添加∠FGC=2∠EFB,可得到∠BFE+GFC=90°.则∠EFG=90°.(1)证明:在四边形ABCD中,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形;∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.【点睛】本题考查了平行四边形的判定,矩形的判定,熟练掌握矩形的判定是解题的关键.2、 (1)见解析(2)(0,1)(3)见解析【解析】【分析】(1)在OD上截取OF,使得OF=OM,证明△FDM≌△BMN即可.(2)在OD上截取DP,使得DP=OM,连接CP,交DM于点Q,证明PC=MN,且PC∥MN.(3)将△DCF绕点D顺时针旋转90°,得到△DOG,证明△DGM≌△DFM.(1)如图1,在OD上截取OF,使得OF=OM,则∠OFM=∠OMF=45°,∴∠DFM=135°,∵四边形OBCD是正方形,∴OD=OB,∠OBC=90°,∴DF=MB,∵BN平分∠CBE,∠CBE=90°,∴∠MBN=135°,∴∠DFM=∠MBN,∵MN⊥DM,∠DOM=90°,∴∠FDM=∠BMN,∴△FDM≌△BMN,∴DM=MN.(2)如图2,在OD上截取DP,使得DP=OM,连接CP,交DM于点Q,∵四边形OBCD是正方形,∴OD=DC,∠PDC=∠MOD=90°,∴△PDC≌△MOD,∴DM=CP,∠PCD=∠MDO,∵∠MDC+∠MDP=90°,∴∠MDC+∠PCD=90°,∴∠MQC=90°,∵MN⊥DM,∴PC∥MN,∵DM=MN,∴PC=MN,∴四边形MNCP是平行四边形,∵M(2,0),D(0,3),∴P(0,1).(3)如图3,将△DCF绕点D顺时针旋转90°,得到△DOG,则B、O、G三点共线,且DF=DG,∠CDF=∠ODG,∠DFC=∠DGO,∵DM=MN,MN⊥DM,∴∠MDF=45°,∴∠CDF+∠MDO=45°,∴∠ODG+∠MDO=45°,∴∠MDF=∠GDM,∵DM=DM,∴△DGM≌△DFM,∴∠DFM=∠DGO,∴∠DFM=∠DFC.【点睛】本题考查了正方形的性质,三角形全等的判定和性质,平行四边形的判定和性质,准确找出并证明三角形全等是解题的关键.3、 (1)1.73(2)见解析(3)0≤AP ≤3,1.50【解析】【分析】(1)证明△PAB 为直角三角形,再根据勾股定理得出AB =C 是线段AB 的中点,即可求解;(2)描点绘出函数图象即可;(3)观察分析函数图象即可求解.(1)解:在菱形ABDE 中,AB =BD∵120ABD ∠=︒,∴30BAD ∠=︒,∵AD =6当x =AP =3时,则P 为AD 的中点∴90APB ∠=︒,∴AB =2BP ,3AP ==, ∴AB =∵点C 是边AB 的中点,∴PC 1.73a =≈(2)描点绘出函数图象如下(0≤x ≤6)(3)当PC的长度不大于PB长度时,即y1≤y2,从图象看,此时,0≤x≤3,即0≤AP≤3,从图象看,当x大约为1.50时,y1即PC取到最小值;故答案为:0≤AP≤3;1.50.【点睛】本题考查函数的图象,直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.4、 (1)见解析(2)见解析【解析】【分析】(1)根据题意作出线段BC的垂直平分线即可;(2)根据直角三角形的性质和等边三角形的判定定理即可得到结论.(1)解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB =90°,点E 是边AB 的中点,∴AE =BE =CE =12AB , ∵AC =BE ,∴AC =AE =CE ,∴△ACE 是等边三角形.【点睛】本题考查了作图-基本作图,等边三角形的判定,熟练掌握等边三角形的判定定理是解题的关键.5、 (1)见解析(2)①6n n-【解析】【分析】(1)过点作DP AF ⊥交AB 于点P ,先证四边形DGEP 是平行四边形,得DP EG =,再由ASA 证ABF DAP ∆≅∆,得AF DP =,即可得出结论;(2)①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,则3NQ AD AB ===,::EH HG NH HQ =,证NH 是ABF ∆的中位线,得1122NH BF n ==,则132HQ n =-,即可得出答案;②先由菱形的性质得3HF FC n ==-,再证262AF AH n ==-,在Rt ABF 中,由勾股定理得出方程,解方程即可.(1)解:在正方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 边上的点,AF 和EG 交于点H ,且AF EG ⊥;求证:AF EG =.证明:过点D 作DP AF ⊥交AB 于点P ,如图1所示:则90ADP DAF ∠+∠=︒.AF EG ⊥,//DP EG ∴,四边形ABCD 是正方形,90B BAD BAF DAF ∴∠=∠=∠+∠=︒,AB AD =,//AB CD ,ABF ADP ∴∠=∠,四边形DGEP 是平行四边形,DP EG ∴=,在ABF ∆与DAP ∆中,BAF ADP AB DA B DAP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABF DAP ASA ∴∆≅∆,AF DP ∴=,AF EG ∴=;(2)解:①过点H 作AD 的平行线交AB 于N ,交CD 于Q ,如图2所示:则3NQ AD AB ===,::EH HG NH HQ =, EG 垂直平分AF ,N ∴、H 分别为AB 、AF 的中点,NH ∴是ABF ∆的中位线,1122NH BF n ∴==, 132HQ n ∴=-, 12::1632n n EH HG NH HQ n n ∴===--; ②如图3所示:四边形CPHF是菱形,∴==-,HF FC n3EG垂直平分AF,∴==-,AH HF n3AF AH n∴==-,262在Rt ABF中,由勾股定理得:222+=,AB BF AF即2223(62)+=-,n n解得:4n=,n=4n∴=4【点睛】本题是四边形综合题目,考查了正方形的性质、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理、三角形中位线定理、平行线分线段成比例定理等知识;本题综合性强,解题的关键是熟练掌握正方形的性质和菱形的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版数学八年级下册第六章《证明(二)》整章水平测
试题(C)
一、选择题(24分)
1、已知△ABC的三边长分别是3cm、4cm、5cm,则△ABC的面积是()
A.6cm2
B.7.5cm2
C.10cm2
D.12cm2
2、下列判断正确的是()
A.有两边和其中一边的对角对应相等的两个三角形全等
B.有两边对应相等,且有一角为30°的两个等腰三角形全等
C.有一角和一边对应相等的两个直角三角形全等
D.有两角和一边对应相等的两个三角形全等
3、具有下列条件的两个等腰三角形,不能判断它们全等的是()
A.顶角、一腰对应相等
B.底边、一腰对应相等
C.两腰对应相等
D.一底角、底边对应相等
4、在平面直角坐标系xoy中,已知A(2,–2),在y轴上确定点P,使△AOP为等到腰三角形,则符合条件的点P共有()
A.2个
B.3个
C. 4个
D.5个
5、角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是()
6、一架长2.5m的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯子底端将滑动()
A.0.9m
B.1.5m
C.0.5m
D.0.8m
7、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()
A.30°
B.36°
C.45°
D.70°
(第7题图) (第8题图) (第9题图) (第10题图)
8、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()
A.45°
B.55°
C.60°
D.75°
二、填空题(24分)
9、如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.
10、如图,△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示着三个正方形的面积,S1=81,S3=225,则S2= .
11、等腰三角形的底边长为2,面积等于1,则它的顶角的度数为.
12、如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .
13、如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为 .
14、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是 .
15、如图,在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分DAB ,且AB=AC ,AC=AD ,有如下四个结论:①AC ⊥BD ;②BC=DE ;③∠DBC=21
∠DAB ;
④△ABC 是正三角形。

请写出正确结论的序号 (把你认为正确结论的序号都填上)
16、在Rt △ABC 中,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于______度.
(第12题图) (第13题图) (第15题图) (第16题图)
三、解证题(72分)
17、已知:如图,在等边三角形ABC 的AC 边上
取中点D ,BC 的延长线上取一点E ,使 CE =
CD .求证:BD = DE .
18、如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.
19、《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.
(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.
20、已知,如图,O是⊿ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC 于D,OE∥AC交BC于E,若BC = 10 cm,求⊿
C
21、如图,在Rt△ABC中,∠C=90°,沿过B点的一直线BE折叠这个三角形,使点C与AB边上的一点D重合。

当∠A满足什么条件时,点D恰好为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点.
22、如图,已知,36,AB AC A AB =∠=︒的中垂线M N 交A C 于点D ,交AB 于点M ,有下
面4个结论:①射线BD 是A B C ∠的角平分线;②B C D ∆是等腰三角形;
③ABC ∆∽B C D ∆;④AMD ∆≌B C D ∆。

(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以证明。

23、在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、D 作BE ⊥PA 、DF ⊥PA ,垂足分别为E 、F ,.
(1)如图①,请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系.直接写出结论.
(2)若点P 在DC •的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系,并证明。

(3)若点P 在CD •的延长线上呢(如图③)请分别直接写出结论并简要说明理由。

相关文档
最新文档