信道编码信道编码
《通信原理》信道编码

11.2.2 信道编码的分类
· 按照不同功能分为检错码、纠错码和纠删码。检错码只具备检查码组错误的功能 纠错码还能对部分错误进行纠正。纠删码对超出纠错范围的误码能将其删除。
· 按照纠正错误的类型不同,分为纠正随机错误的码和纠正突发错误的码。随机错 误的误码从统计上是彼此独立的,同一个码组内发生若干个码元错误的概率远远 低于只有一两个码元错误的概率。这意味着信道编码哪怕只纠正每个码组内一两 个码元错误,也可使得整个系统的误码率大幅度下降。但有时信道中出现强度大 持续时间长的脉冲噪声,使连串的码元受到干扰,称为突发错误。例如连续若干 位的0变成1。这时必须用专门针对突发错误信道编码方式。
第11章 信道编码
11.1 信道编码基础知识
11.1.1 信道编码的概述
在信息码元中插入一些冗余码元(监督码元),使得整体码元具有一定规律。 当出现传输错误时,可以通过规律,对错误进行检测乃至纠正。
信道编码译码示意图
11.1.2 信道编码检错纠错的原理
11.1.3 几个相关概念
· 码率:R=k/n=k/(k+r)。 · 编码增益:采用信道编码,对系统信噪比的要求要低一些,这个倍数称为编码增益 · 许用码组和禁用码组:即合法码组和非法码组。一旦接收方出现非法码组,说明传
· 最大似然译码:对于接收到的编码序列y,计算发送方发送哪一种码组x i 时,接 收到y的概率最大。即根据似然函数P ( y / x i )确定。
11.2 信道编码的分类
1.
差错控制方法
· 差错控制方法,分为检错重发(ARQ),前向纠错(FEC)和混合方式三种。
· 检错重发系统(ARQ),又分为停发等候重发,返回重发和选择重发三种。
· 按照信息码元和监督码元之间的制约规则不同,分为分组码和卷积码。分组码是 指在每一组码元(k位信息码元和r 位附加监督码元)中,所有的监督码元取值, 仅仅与这一组的k位信息码元有关,而与其他组的信息码元无关。分组码编码器属 于无记忆的系统。而卷积码则是指r 位附加监督码元不仅与本码组内的k位信息码 元有关,还与之前其他码组的若干位码值有关。卷积码的编码器具有记忆功能
信道编码概念

信道编码概念信道编码是一种在数字通信中使用的技术,它可以提高数据传输的可靠性和效率。
在数字通信中,数据传输过程中会受到各种干扰和噪声的影响,这些干扰和噪声会导致数据传输错误。
信道编码技术可以通过在数据传输过程中添加冗余信息来提高数据传输的可靠性,从而减少数据传输错误的发生。
信道编码技术的基本原理是在发送端对原始数据进行编码,生成一些冗余信息,并将编码后的数据传输到接收端。
接收端通过解码过程来恢复原始数据。
在解码过程中,接收端可以利用冗余信息来检测和纠正数据传输中的错误。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
前向纠错编码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
前向纠错编码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
前向纠错编码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
卷积码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
卷积码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
卷积码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
块码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
块码的基本原理是将原始数据分成若干个块,并对每个块进行编码。
在编码过程中,会添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
块码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
总之,信道编码技术是一种在数字通信中使用的重要技术,它可以提高数据传输的可靠性和效率。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
在实际应用中,需要根据具体的应用场景选择合适的信道编码技术,以提高数据传输的可靠性和效率。
第8章 信道编码

G( 7 , 4 )
1
1
1 1
1 0
0 0
1 0
0 1
0
0
0 1 1 0 0 0 1
1 0 0 1 1 1 0
H(7,4)
0
1
0
0
1
1
1
0 0 1 1 1 0 1
经过变换后为
1 0 0 0 1 0 1
G( 7 , 4 )
0
0
1 0
0 1
0 0
1 1
1 1
1
0
0 0 0 1 0 1 1
例:(7,3)码的生成矩阵和监督矩阵为 1 0 1 1 0 0 0
1 0 0 1 1 1 0
G(7,3)
0
1
0
0
1
1
1
0 0 1 1 1 0 1
H (7,3)
1
1
1 1
1 0
0 0
1 0
0 1
0
0
0 1 1 0 0 0 1
则将两个矩阵的作用对换,得到对偶码(7,4)码的生成矩阵和
监督矩阵为 1 0 1 1 0 0 0
即该错误不能被正确纠正过来
因此只能纠1位错
8.1.2 平均错误译码概率
1
例:二进制对称信道传递矩阵 码
P
4
3
如果译码规则为00、11,则 4
3
4
,先不考虑编
1
4
0和1被正确译码的概率均为1/4,即系统的平均正确译码概率为1/4
0和1被错误译码的概率均为3/4,即系统的平均错误译码概率为3/4
HCT 0T CH T 0
则H称为(n, k)线性码的一致监督矩阵(或校验矩阵)
第七章 信道编码

5.3.2 码距与纠、检错能力
1.
关于随机编码的论述中
当传输无误时,接收到的N重矢量一定是码字,在矢量空间中一定对 应到该子集相应的点上。 当出现差错时,接收的N重矢量有两种可能: a. b. 不再对应到该子集,而是对应到与子集点相邻的另一个空间点上; 仍然对应到该子集,却对应到该子集的另一点上。
增大E(R)的途径
可采取以下措施减小差错概率。
(1) 增大信道容量C ① 扩展带宽。 ② 加大功率。 ③ 降低噪声。
5.3.1 差错控制的途径
①
(2) 减小码率R
q,N不变而减小K,这意味着降低信息源速率,每秒少传一些信息。 q,K不变而增大N,这意味着提高符号速率(波特率),占用更大带宽。 N,K不变而减小q,这意味着减小信道的输入、输出符号集,在发送功率固 定时提高信号间的区分度,从而提高可靠性。
有限域:通常称为伽罗华域,由有限个元素构成的域,用 GF(q)来表示.
ab 1
5.4.1 线性分组码基本概念
例如GF(5)是由元素{0,1,2,3,4}构成的5元域,该域中 的加法和乘法运算举例如下:
3 4 2(mod5),3 2 0(mod5),3 4 2(mod5),3 2 1(mod5)
5.3.1 差错控制的途径
噪声均化的方法 ① 增加码长N 码长越大,具体每个码字中误码元的比例就越接近统计平均值,换言 之,噪声按平均数被均摊到各码字上. ② 卷积 卷积码在一定约束长度内的若干码字之间也加进了相关性,译码时 不是根据单个码字、而是一串码字来作判决。 ③ 交错(或称交织)
带交错器的传输系统 信道噪声造成的符号流中的突发差错,有可能被均化而转换为码流上随 机的、可纠正的差错。
通信原理(第二版)第10章信道编码

信道编码的基本原理
信息比特与冗余比特的映射
信道编码通过将信息比特映射到包含冗余比特的码字,使 得在传输过程中出现错误时,能够被检测并纠正。
错误检测与纠正
信道编码利用各种算法和规则,对接收到的码字进行解码 和校验,检测并纠正其中的错误。
码字的选择与设计
信道编码中码字的选择与设计是关键,不同的码字具有不 同的纠错能力和性能。根据实际需求选择合适的码字,能 够提高通信系统的性能和可靠性。
信道编码
目录
• 信道编码概述 • 常见信道编码方式 • 信道编码性能分析 • 信道编码的应用 • 信道编码的未来发展
01
信道编码概述
信道编码的定义
01
信道编码是一种通过在原始信息 中添加冗余以增加数据传输可靠 性的技术。
02
它通过对信息比特进行一系列的 数学变换,使得在传输过程中出 现错误时,能够被检测并纠正。
编码增益是指采用信道编码技术后相 对于未编码情况下的信噪比改善程度。
编码增益越大,说明信道编码技术的 性能越好,能够更好地提高通信系统 的可靠性。
编码增益计算
编码增益可以通过比较相同误码率下, 采用信道编码技术的系统所需的信噪 比与未采用信道编码的系统所需的信 噪比来计算。
编码效率
编码效率定义
编码效率是指信道编码过程中, 每传输一个比特所需的总的比特
循环码
定义 原理 优点 应用
循环码是一类特殊的线性分组码,其码字具有循环特性。
循环码的编码过程是将信息比特经过有限域运算映射到码字中 ,其中冗余比特由信息比特循环移位和模运算得到。
循环码具有高效的编码算法和良好的错误纠正能力,且易于实 现。
循环码广泛应用于数字通信和数据存储领域,如移动通信、卫 星通信和磁存储器等。
信道编码

信道编码1.信道编码的基本概念1.1 信道编码的概念通信的目的在于传递信息,衡量通信系统性能的主要指标是有效性和可靠性。
在数字通信中,信源编码旨在解决有效性指标,通过各种数据压缩方法尽可能去除信号中的冗余信息,最大限度地降低传输速率和减小传输频带。
信道编码又称为信道纠错编码或差错控制编码,旨在降低误码率,提高通信系统的可靠性。
它产生于20世纪50年代,发展于60年代,70年代趋于成熟。
在数字信号传输过程中,由于信道特性不理想以及加性噪声的影响,使得信号波形失真,产生误码。
为了提高系统的抗干扰性,除了加大发射功率,采用均衡措施,降低接收设备本身的噪声,合理选择调制、解调方式等技术外,采用信道编码技术也是一种有效手段。
信道编码的基本思想是按照某种确定的编码规则,在待发送的信息码元中加入一些多余的码元(监督码元或校验码元),在接收端利用该规则进行解码,以便发现和纠正传输中发生的差错,从而提高码元传输的可靠性。
常用的差错控制编码方式主要有三种:(1)检错重发方式也称为自动请求重发方式(Automatic Repeat Request,ARQ):在发送信息码元序列中加入一些能够发现错误的码元,接收端能够依据这些检错码元发现接收码元序列中存在错码,但不能确定错码的准确位置。
此时,接收端通过反向通道通知发送端重发,直到接收端确认收到正确码元序列为止。
其原理框图如图1(a)所示。
优点是检错码构造简单,不需要复杂的编译码设备,在冗余度一定的条件下,检错码的检错能力比就错码的纠错能力强得多,故整个系统的误码率可以保持在极低的数量级上。
缺点是需要反向信道,为了收发匹配,控制电路较为复杂。
同时当信道干扰频繁时,系统常常处于重发消息的状态,使得实时性变差。
适用于突发差错或信道干扰严重的情况。
(2)前向纠错方式(Forward Error Correction,FEC)又称为自动纠错方式(Automatic Error Correction,AEC):发送端发送能够纠错的信息码元,接收端不仅能够发现错码,而且能够确定错码的准确位置,并予以自动纠正。
第11章信道编码

d0 t e 1
信道编码的基本概念
练习:(7,1)重复码若用于检错,最多 能检出几位错码?若用于纠错,最多纠正 几位错码?若同时用于检错、纠错,他能 检测、纠正几位错码?
信道编码的基本概念
➢ 信道编码的分类: (1)根据信息码元和附加监督码元之间的关系可
由于封闭性,所以(n,k) 线性分组码中两个码组 之间的码距一定等于该分组码中某一非全0码字的 重量。
线性分组码的最小码距必等于码组集中非全0码 组的最小重量。
线性分组码的编码
用矩阵理论来讨论线性分组码的编码过程,得到 两个重要矩阵:
生成矩阵G和监督矩阵H 以(7,3)线性分组码为例。
码组: A [a6a5a4a3a2a1a0 ]
100
6
0000010
010
7
0000001
001
线性分组码的译码
练习:汉明码的监督矩阵为:
1110100 1101010 1011001
问题:检验 0100110和 0000011是否为码 字。若有错,请指 出错误并加以纠正。
循环码
循环码:若线性分组码的任一码字循环移位所得的 码字仍在该码字集中。
信道编码的基本概念
码的最小距离:码组集合中两两码组之间距离的最小值。 “d0”
最小码距决定了一个码的纠、检错能力。
编码效率:信息码元数与码长之比。“ ”
编码效率越高,传信率越高
➢ 3、最小码距d0与码的纠、检错能力之间的关系
(1)检测e个错误,则要求最小码距为 d0 e 1
(2)纠正t个错误,则要求最小码距为 d0 2t 1
信道编码的基本概念
信道编码

简单重复编码(续)
其信道矩阵为: 1
2 3 4 5 6 7 8
P
1
8
p3 3 p
p2 p pp 2
p2 p pp 2
当输入为等概率分布时,译码规则A就是依据最大似 然译码准则而得的。
12
最大似然译码准则-例(续)
输入为等概率分布时,两种译码规则所对应的平均错 误概率分别为:
P P
(A) E
1 1 1 1 1 1 1 1 1 p(y/x) 3 Y, X-x* 3 6 3 3 6 6 3 2 1 1 1 1 1 1 1 1 2 p(y/x) 3 Y, X-x* 3 6 3 3 2 6 2 3
4
信道编译码的基本思想
信道编码的编码对象是信源编码器输出的数字序列M,又称为 信息序列。通常是由二元符号0,1构成的序列,而且符号0和 1是独立等概的。 信道编码,就是按一定的规则给数字序列M增加一些多余的码 元,使不具有规律性的信息序列M变换为具有某种规律性的数 字序列C,又称为码序列。码序列中信息序列的诸码元与多余码 元之间是相关的。 在接收端,信道译码器利用这种预知的编码规则来译码,或者 检错(检验接收到的数字序列R中是否有错),或者纠错(纠正 其中的差错)。 信道编码的基本思想就是根据相关性来检测和纠正传输过程中 产生的差错。
pp 2 p2 p
p2 p pp 2
pp 2 p2 p
pp 2 p2 p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The likelihood function
p(c | y) p(c) p( y | c) p( y)
The a-posteriori prob.
现代数字通信原理、系统及仿真
MAP v.s. ML
• 最大后验概率(MAP)检测或判决是最优的,但需要已 知先验信息
• 先验信息未知时,一般假设先验概率为等概,此时 MAP等效为ML
Output
dk'
2nd constituent encoder
D
D
D
现代数字通信原理、系统及仿真
Output
y 'k
xk
Turbo编码的基本原理
• 采用多个递归系统卷起码经过交织后并联,输出进行打孔获得不同编码 的码字
• 采用系统卷积码:与turbo译码特殊的译码算法有关。译码算法中,子译 码器之间的信息交互用的是所谓的“外部信息”,是对应校验位的部分 所获得的“信息”,而不包含对应系统比特的输出。总之,是为了实现 简单、有效的译码。
现代数字通信原理、系统及仿真
Turbo译码原理
• 上述的故事中关键的是
– 我和我太太在判决时,用到了先验概率。采用MAP – 我开始第1次判决用的先验概率是等概,等效为ML – 每轮中我先看,我太太后看,串行式的译码 – 我门两判决的结果都是软判决,只给出可能性或者说概率 – 我门两个要进行信息交互 – 我门在多轮的观察中,接收信号不变 – 观察几轮后,信息提炼的精度及仿真
软比特表示的例子(BPSK, QPSK)
0 1
LLR (b~(k) (Re( d (k) Im( d (k))
LLR(c0 ) Re(x) LLR(c1) Im(x)
现代数字通信原理、系统及仿真
Turbo译码原理
• 典型的Turbo编码器采用两个RSCC,编码率1/3,第2个RSCC的系 统比特是不发送的
p( A, B) p( A | B) p(B) p( A | C) p(C | B) p(B)
P( A, B,C) P( A, B | C)P(C) P( A | B,C)P(B,C)
现代数字通信原理、系统及仿真
Mathematical Basis
• 先验概率、后验概率与似然函数
The a-priori prob.
• 现代系统中,采用MAP时,可以采用从等概开始,采 用迭代递归法逐步优化先验概率
• MAP二元检测等效为后验概率比检测,ML检测等效为 似然比检测
现代数字通信原理、系统及仿真
软比特(Soft-bit)与软比特解调
• 硬比特用“1”和“0”,或者 “1”和“-1”表示 • 硬比特解调:在接收机的数字解调输出时,由于在传输过程中受
• 采用递归卷积吗:是为了避免输出的码字出现低码重,提高系统误码率 性能
• 采用卷起码产生校验位,在取得相同纠错能力条件下,比采用线性分组 码产生校验位节省校验位的比特数。卷起码编码器输出1个比特是多个输 入比特相互作用的结果,因此1个校验比特等效于线性分组码的多个校验 比特的作用
• 交织后并联的RSCC:使得编码器输出的序列更具有随机性,也能适合译 码器译码采用信息交互
• 接收机在数字解调中,基带获得软比特输出,作为译码器的输入 • 译码器一般包含2个子译码器DEC1和DEC2, 最常用是两个译码
器进行串行结构的译码, DEC2输入的系统比特(软比特)是DEC1 的系统软比特经过交织后输出的 • 需要说明的是,串行结构的译码和并行结构的译码,区别不是在 链接图上,而是在具体译码过程中,信息交互的方式上 • Turbo译码的精髓是:最大后验概率(MAP)译码+信息交互(迭代)
Turbo encoder in LTE Coding rate=1/3 Generator g0(D) = 1 + D2 + D3, g1(D) = 1 + D + D3.
xk
1st constituent encoder
yk
dk
D
D
D
Input
Turbo code internal interleaver
第7章: 信道编码 (Part 2: Turbo 码)
现代数字通信原理、系统及仿真
Turbo Encoder
uk
c
s k
RSCC1
c1,p k
c
2,p k
1
RSCC2
n
RSCCn
c n 1,p k
c
2,p 2
c1,p 2
c
s 2
c12,p
c1,p 1
c
s 1
输出
现代数字通信原理、系统及仿真
Turbo encoder in LTE
现代数字通信原理、系统及仿真
Mathematical Basis
• Baye’s 准则
P( A, B) P( A)P(B | A) P(B)P( A | B)
Joint probability of Event A and Event B
CP of Event B conditioned on A being known
现代数字通信原理、系统及仿真
Turbo译码原理
• 下面用1个故事来说明Turbo译码的原理 • 有1天我请客,请我弟弟家,事先知道我弟弟家一定会有1个人来
,弟弟或我弟妹,到底谁不知道 • 早上看到有客来,我走在前我太太在后,来的人还看不太清楚,
我脑海里先验信息是,是男是女可能性各一半,我看来人的样子 ,更像男的,我得出判决,是弟弟可能性60%,弟妹40% • 我把这个结论告诉后面我太太,让我太太看看。 • 我太太用我的信息作为先验信息,在看来人,她的决定是70%是 弟弟,30是弟妹,她把输出传递给我 • 我进行第2轮观察,脑海里已经有了太太给的信息做这次先验信息 ,我再观察的结果是75%对25%,再告诉我太太 • 。。。
信道畸变、干扰以及噪声的影响,接收机判决对应的一个发射比 特是“1”或“0”可能发射误判。原来是1的比特,如果受影响,跑 到判决为“0”的信号区间,看起来像“0”,接收机在解调后就判 决为0。不能区分错误程度。 • 软比特解调:如果希望解调输出不是直接给出2值判决,而是体现 “是1码或是0码”的可能性,这样以便后续的纠错译码过程中, 多错误度小的比特进行更有效的纠错,则解调器需要输出软比特 。 • 软比特定义为:比特是“1”的概率与比特是0“”的概率的比值再取 对数。一般称为对数似然比(LLR) • 实际中,一般可以根据线性数字调制的星座图来简单获得其表示