新编分数乘法知识点和题型(全面)-分数乘法的知识点

合集下载

六年级第二单元《分数乘法》知识点总结

六年级第二单元《分数乘法》知识点总结

小学《分数乘法》知识点总结知识点一:倒数的认识1. 倒数的意义:乘积是1的两个数互为倒数。

2. 1的倒数是1,0没有倒数。

4. 倒数是两个数之间相互依存的关系,不能单独存在。

1.的倒数是,的倒数是0.35.2. 的倒数是.最小的合数的倒数是.3.的倒数是,最大的两位数的倒数是.4.的倒数是,和互为倒数.知识点二:分数乘法1.分数与整数相乘的意义与整数乘法的意义相同,是求几个相同分数和的简便运算。

2. 分数与整数相乘的计算方法用分数的分子和整数相乘的结果作积的分子,分母不变。

能约分的要先约分,再计算。

3. “求一个数的几分之几是多少”和“求一个数的几倍是多少”的解题方法相同,即用一个数乘几分之几。

4. 解决求比一个数多(少)几分之几的部分是多少的问题,关键是找准单位“1”的量,单位“1”的量×比一个数多(少)的几分之几=比一个数多(少)的几分之几的量。

1. 下面各题写出必要的计算过程.×75×××2. 10的是,8的是.3. 240吨增加后是吨,240吨减少吨后是吨.4. ×18=×8=5. 甲数是120,乙数是甲数的,乙数是6. 同学们打算把10盆鲜花摆成如下的图案.如果这些鲜花中有是菊花,你希望这些菊花摆在图案里的什么位置?在图中涂一涂.7.用颜色涂出每种图形的.并说一说每种图形的的个数一样多吗?为什么?8.妈妈只有60元钱.儿子对妈妈说:“妈妈将你的钱的一半给我买一本字典.”女儿对妈妈说:“将你的钱的给我订一套数学资料”.妈妈听了犯难了?你知道妈妈为什么犯难吗?(计算后回答)9.有四个不同的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数.10.想一想:(1)用加法: + + . (2)图中表示 个 相加,可以用乘法计算,即 ⨯ .(3)计算方法:分数乘整数,用分子乘整数的积作 ,分母2()()315()⨯⨯== (4)计算时,能约分的可以先 ,再计算.11. 看图写算式:()()()()()()⨯=. 12.(2018•海门市校级模拟)先在长方形中涂色表示它的34,再画斜线表示34与25的乘积,并完成填空.3245⨯= .13.15米减少它的35后是米,若再接着增加35米,结果是米.14.m比30m多15,吨比30吨多15吨.15.38的倒数是,1的倒数是,1.3的倒数是,最小的合数的倒数是.16.37的倒数是,2的倒数是,0.4与互为倒数.17.1的倒数是,0.5和互为倒数.18.1(0)3a a⨯≠的倒数是.19.a比0大时,a和它的倒数相比,大.。

小学六年级分数乘法知识点

小学六年级分数乘法知识点

小学六年级分数乘法知识点在小学六年级学习数学的过程中,分数乘法是一个重要的知识点。

通过掌握分数乘法,我们可以解决实际问题,并且提高数学计算的准确性和效率。

本文将介绍小学六年级分数乘法的知识点及其应用。

一、分数乘法的基本概念分数乘法是指两个分数相乘的运算。

在分数乘法中,我们需要掌握以下几个基本概念:1. 分数的乘法法则:分数乘法满足乘法交换律和结合律。

即对于任意的分数a、b和c,都有a×b=b×a和(a×b)×c=a×(b×c)。

2. 分数的乘法运算:分数的乘法运算可以通过将分子相乘、分母相乘得到结果。

例如,1/2 × 3/4 = (1×3) / (2×4) = 3/8。

二、分数乘法的应用分数乘法在生活中有很多应用场景,如购物打折、食谱调配等。

下面列举几个常见的应用案例。

1. 打折问题:商场正在进行打折活动,某商品原价为120元,现打7折出售。

我们可以使用分数乘法来计算打折后的价格,即120 × (7/10) = 84元。

2. 食谱问题:做蛋糕的食谱中需要1/2杯的鸡蛋液。

如果要翻倍的制作蛋糕,我们可以使用分数乘法来计算所需的鸡蛋液的量,即1/2 × 2 = 1杯。

3. 长度问题:某段路程的长度为3/4公里,一共要走5次。

我们可以使用分数乘法来计算总的路程长度,即3/4 ×5 = 15/4公里。

三、常见的分数乘法题型在小学六年级数学课本中,常见的分数乘法题型有:1. 分数与整数的乘法:如1/4 × 3、2 × 2/5等。

解决这类题目时,我们可以将整数转化为分数,然后按照分数乘法的规则进行计算。

2. 分数乘分数:如1/2 × 3/4、2/3 × 4/5等。

对于这类题目,我们需要先进行分子相乘,再进行分母相乘,最后化简结果。

3. 分数与分数的乘除混合运算:如2/3 × 6 ÷ 4/5等。

小学数学分数乘法知识点

小学数学分数乘法知识点

小学数学分数乘法知识点
小学数学分数乘法的知识点主要包括以下几个方面:
1. 分数的乘法规则:分数乘法是指将两个分数相乘的运算。

乘法的规则是分子相乘得到新的分子,分母相乘得到新的分母。

即,a/b * c/d = (a * c)/(b * d)。

2. 约分:在分数乘法时,可以对乘积进行约分,将分子和分母的公约数约掉,使分数变为最简形式。

约分可以使计算过程更简化。

3. 分数乘法的应用:分数乘法在实际生活中有广泛的应用,比如:分数乘法可以用来计算物品的总价、计算比例关系、计算速度、计算百分比等。

4. 分数乘法和整数乘法的关系:整数也可以看作是分母为1的分数,所以整数乘法可以看做是分数乘法的特殊情况。

5. 分数乘法的综合应用:分数乘法在解决问题时常常需要结合其他的数学知识,如加法、减法、比较大小等。

以上就是小学数学分数乘法的主要知识点,希望能对你有所帮助。

如有问题请继续追问。

《分数乘法》知识点整理与典型练习

《分数乘法》知识点整理与典型练习

《分数乘法》知识点整理与典型练习一、知识梳理1、分数和整数相乘,可以表示求几个几分之几相加的和。

2、求一个数的几分之几是多少,可以用乘法计算。

3、分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。

如果整数能与分数的分母约分,要先约分,再计算。

4、根据“实际产量比计划节约了54”,写出一个数量关系式 计划产量 × 54 = 实际产量比计划节约的产量 5、一个数和真分数相乘,所得的积小于这个数;一个数和假分数相乘,所得的积大于这个数。

6、乘积为1的两个数互为倒数,求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

7、1的倒数是1,0没有倒数,真分数的倒数都大于1,自然数的倒数都是分子为1的真分数,假分数的倒数小于或等于1。

二、典型练习【例1】下面的长方形代表1公顷,请你在图中表示出21公顷的32,结果是多少公顷?分析与解:这个题目要分层次思考,一步一步展开。

(1)21公顷是1公顷的21(1公顷的一半); (2)21公顷的32,就是将21公顷部分平均分成3份,表示出2份。

21公顷的3221公顷【例2】一袋大米重25千克,先吃去这袋大米的51,又吃去51千克,两次一共吃去多少千克? 分析与解:求两次共吃去多少千克,要用第一次吃的千克数加上第二次吃的千克数;第一次吃了这袋大米的51,是把这袋大米看作单位“1”,即吃去25千克的51;第二次吃去51千克。

先求出第一次吃去多少千克。

25 ×51 = 5(千克) 5 + 51 = 551(千克) 答:两次一共吃去551千克。

点评:这一题的关键就是正确理解题目中两个51所表示的不同含义,第一个51表示是一个数的几分之几,是分率;而第二个51表示的是51千克,是具体的量。

要先求出第一天的51所对应的量再直接加上第二天吃的51千克就可以了。

在解题过程中,一定要注意区分,并作出正确的判断,再进行解答。

【例3】填空。

( )× 94 = 7 × ( )= ( )× 165 = 0.8 × ( ) 分析与解:这是一道连等式填空。

分数乘法知识点和题型(全面)分数乘法的知识点

分数乘法知识点和题型(全面)分数乘法的知识点

分数乘法知识点和题型(全面)分数乘法的知识点《分数乘法》知识点和题型一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:1、X5表示()O2、++二()X ()二()+ + += ( ) X ()=( )=( )3、24个是多少?吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。

例如:1、X表示的意义是()。

2、吨的是多少吨?3、一根绳子长米,3根这样的绳子共长()米;这根绳子的长()米。

(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)例如:1、X3X6 X9 X5 X122、米二()厘米时二()分千克二()克算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

例如:XX Xx X 3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

例如:XX XX X(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

例如:X2 O 8X08 XI O X O XOX(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a Xb =b X a乘法结合律:(a X b ) Xc 二a X (b Xc )乘法分配律:(a + b ) Xc =a c +bc 例如:1、X X5X X3 X5X18 XX X16X2、(+ ) X(-)X18 X + X X+ X 3、X101 X 7812X +14X- 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位:在分率句中分率的前面;或"占"、"是”、“比"的后面2、先用直线划出单位“1”的量,再把数量关系式补充完整。

分数乘法知识点总结

分数乘法知识点总结

分数乘法知识点总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数乘法知识点总结分数乘法知识点总结一、分数乘法(一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少1/3×5表示求5个1/3的和是多少2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

X|k|B|1.c|O|m| 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

分数乘法知识点总结

分数乘法知识点总结

分数乘法知识点总结分数乘法知识点总结上学期间,是不是经常追着老师要知识点?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

相信很多人都在为知识点发愁,下面是小编为大家收集的分数乘法知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、分数乘法(一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少?(二)、分数乘法的计算法则1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a*c+b*c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

分数的乘除知识点总结

分数的乘除知识点总结

分数的乘除知识点总结一、分数的乘法基本概念1. 分数的乘法是指两个分数相乘的运算。

如:(1/2) × (2/3)2. 分数的乘法还可以与整数相乘。

如:(3/5) × 23. 分数的乘法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。

如:a/b × c/d = (a×c)/(b×d)二、分数的乘法运算规则1. 分数的乘法满足交换律和结合律。

即,对于任意的分数a/b和c/d,有:a/b × c/d = c/d × a/b(a/b × c/d) × e/f = a/b × (c/d × e/f)2. 分数的乘法可以转化为通分的分数相乘。

当两个分数的分母不相同时,可以通过通分的方法将分母转化为相同的数,再进行乘法运算。

3. 分数的乘法还可以化简。

在运算过程中,我们可以化简分数,使分子和分母互质。

三、分数的乘法常见错误分析1. 错误:未进行通分运算就进行分数相乘。

如:(1/3) × (2/5) = 2/15正确的做法是先通分,然后再进行相乘:(1/3) × (2/5) = (1×2)/(3×5) = 2/152. 错误:运算过程中忽略了化简。

如:(5/10) × (3/5) = (5×3)/(10×5) = 15/50正确的做法是先化简,然后再进行相乘:(5/10) × (3/5) = (1/2) × (3/5) = (1×3)/(2×5) = 3/10四、分数的除法基本概念1. 分数的除法是指两个分数相除的运算。

如:(1/2) ÷ (2/3)2. 分数的除法还可以与整数相除。

如:(3/5) ÷ 23. 分数的除法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数乘法知识点和题型(全面)|分数乘法的知识点
《分数乘法》知识点和题型一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:1、×5表示()。

2、++=()×()=()+++=()×()=()=()
3、24个是多少?吨的7倍是多少吨?2、分数乘分数是求一个数的几分之几是多少。

例如:1、×表示的意义是()。

2、吨的是多少吨?
3、一根绳子长米,3根这样的绳子共长()米;这根绳子的长()米。

(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)例如:1、×3×6×9×5×122、米=()厘米时=()分千克=()克算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

例如:×××××3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进
行计算。

例如:×××××(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

例如:×2○8×○8×1○×○×○×(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc例如:1、××5××3×5×18×××16×2、(+)×(-)×18×+××+×3、×101×7812×+14×-二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;
(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;
或“占”、“是”、“比”的后面2、先用直线划出单位“1”的量,再把数量关系式补充完整。

例如:(1)皮球的个数比足球多。

(2)实际用水量比原计划节约。

()的个数×=()的个数()用水量×=()用水量(3)一桶油用去,正好用去12千克。

这桶油重多少千克?()的千克数×=()的千克数(4)学校饲养组养黑兔12只,是白兔只数的。

饲养组养白兔多少只?()的只数×=()的只数3、求一个数的几倍:一个数×几倍;
求一个数的几分之几是多少:一个数×。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量例如:1、育才小学有男生120人。

(1)男生是女生的,女生有多少人?(2)女生是男生的,女生有多少人?(3)女生比男生多,女生有多少人?(4)男生比女生少,女生有多少人?(5)男生占全校的,女生有多少人?(6)女生占总数的,全校有多少人?2、要一条路长100米,已经修了米,还有多少米没修?3、要一条路长100米,已经修了,修了多少米?4、一段长3米的布,第一次剪去它的,第二次又剪去米,两次一共剪去多少米?还剩多少米?5、周大婶收了吨南瓜,收的冬瓜比南瓜多。

收的冬瓜比南瓜多多少吨?6、一本书450页,第一天看了全书的,第
二天看了65页,第三天应该从第几页看起?7、一根铁丝长12米,第一次用去了全长的,第二次用去了全长的,两次一共用去了多少米?8、学校一月份用电800度,二月份比一月份节约了,二月少用电多少度?三、倒数(一)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

(二)求倒数的方法:1、求分数的倒数:交换分子、分母的位置。

2、求整数的倒数:整数分之1。

3、求带分数的倒数:先化成假分数,再求倒数。

4、求小数的倒数:先化成分数再求倒数。

5、1的倒数是它本身,因为1×1=1。

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

6、任意数a(a≠0),它的倒数为;非零整数a的倒数为;分数的倒数是。

7、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

例如:1、()的两个数叫做互为倒数。

2、的倒数是()的倒数是()
3、23的倒数是(),7的倒数是(),4的倒数是(),7的倒数是()
4、()没有倒数,1的倒数是()。

5、89的倒数与56的积是多少?
6、100的倒数的19倍是多少?
7、1.4加上它的倒数,再减去57,结果是多少?
8、有两个不同的质数,它们积的倒数是,求这两个质数是多少?
9、与它的倒数的和是多少?
10、一个数的倒数是,这个数的是多少?分数乘法综合练习题一、填空题:1、15个是多少?列式是;的是多少,列式是;
2、25的是();的是();12个相加的和是();
3、千米=()米;时=()分;
4、10×()=×()=1×()=0.25×()=1
5、2米的和1米的()相等,就是()米。

6、5的倒数与10的倒数比较,()的倒数>()的倒数。

7、当a=()时,a的倒数与a的值相等。

二、判断1、分数乘整数的意义与整数乘法的意义相同。

()2、2千克的和1千克的同样重。

()3、36×和×36结果相等。

()4、一个数乘假分数,积一定大于这个数。

()5、一根长12米的钢管,截去了,就是短了米。

()6、任意一个数都有倒数。

()7、假分数的倒数是真分数。

()8、a是个自然数,它的倒数是1a。

()9、因为13+23=1所以13和23互为倒数。

()10、0.3的倒数是3。

()三、列式计算:(1)120千米的是多少千米?(2)的120倍是多少?(3)25是125的几分之几?(4)125是25的几倍?四、
计算:××120××××(+)×24×101-34×五、应用题。

1、一台碾米机每小时可以碾稻谷吨,5小时可以碾谷多少吨?小时呢?
2、某工厂有男职180人,女职工是男职工的。

女职工有多少人?求女职工有多少人就是求()的()是多少?所以用()方法计算。

(按要求填空,并列式解答)3、一辆汽车每小时行驶45千米,从甲地到乙地行驶了小时,正好到达了两地的中点。

甲乙两地全程多少千米?4、(1)一杯水重千克,杯重多少千克?(2)一杯水重千克,又加了千克,此时杯中水多少千克?5、一块长方形地的面积是15公顷,用这块地的种小麦,种棉花,种小麦和棉花各多少公顷?6、有四个不同的的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数。

7、把5分别与它的倒数相加、相减、相乘、相除,再把所得的和、差、积、商相加,结果是多少?8、的倒数除以10,商是多少?。

相关文档
最新文档