人教版数学六年级上册分数乘法知识点和题型(全面)
人教版六年级数学第一学期分数乘法知识点归类与练习1

分数乘法知识点归类与练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,结果化成最简分数。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c乘法分配率逆运算: a c + b c=( a + b )×c中考考点1:分数的乘法计算此类题在中考中的考查多为基础性题目,一般不单独命题,题型有选择题、填空题和计算题,解决这类问题需牢记分数乘法的运算法则,灵活的运用乘法的运算律进行简便运算。
例1:316967⨯ 练习1:489623⨯➢ 分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:1)1374135⨯⨯ 2)56153⨯⨯ 3)267831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用例题:1)27)27498(⨯+ 2)4)41101(⨯- 3)16)2143(⨯+ 涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
人教版六年级数学上册 知识点归纳

分数乘法知识点一、分数乘以整数1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘以整数的运算:①能约分的先约分。
让分母与整数约分了,再计算。
②用分子乘以整数的积作为分子,分母保持不变。
知识点二、分数乘以分数1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。
2、分数乘以分数的运算:①能约分的先约分。
让分子与分母约分了,再计算。
②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。
温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。
3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。
知识点三、乘法定律1、乘法交换律:a×b=b×a2、乘法结合律:a×b×c=a×(b×c)3、乘法分配律(a+b)×c=a×c+b×c知识点四、乘法规律1、一个正数乘以一个大于1的数,积比原来大。
2、一个正数乘以一个小于1的数,积比原来小。
3、一个正数乘以一个1,积等于它本身。
4、0乘以任何数都等于0 。
知识点五、分数乘法应用题1、要求一个数的几分之几是多少,就可以用乘法。
2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。
位置与方向(二)知识点一、方位角的概念1、要确定物体的位置,先要确定观测点,然后确定方位角和距离。
2、方位角是从观测点起,东南西北的一条方向线与目标方向线的夹角。
例如北偏西20°,南偏东30°都是方位角。
知识点二、画出物体位置的步骤①确定观测点。
②根据方向角,从观测点开始向该方向画一条射线。
③将观测点与目标的距离换算成图上的长度,从而确定目标的位置。
④标上距离、角度、目标的名称。
知识点三、方位角的性质1、如果甲在乙的北偏东...30°方向400m 处;则乙在甲的南偏西...30°方向400m 处2、如果甲在乙的南偏西...20°方向500m 处;则乙在甲的北偏东...20°方向500m 处总结:如果观测点交换了,则方位角的方向相反了,但角度不变,距离也不变知识点四、绘制路线图先确定第一个观测点,然后画出十字方向标,再确定下一个目的地。
六年级上册数学知识点(概念)归纳与整理(人教版)

六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×512 ,表示:27 的512 是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤. (1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
人教版六年级(上册)数学知识点汇总

六年级数学知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
第一单元:分数乘法(讲义)-2024-2025学年人教版六年级数学上册

分数乘法(思维导图+知识梳理+典例分析+高频真题+答案解析)【分数乘法-知识点归纳】1、分数乘法的意义:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.2、乘积是1的两个数叫做互为倒数.3、分数乘法法则:(1)带分数乘法:先把带分数化成假分数,然后再乘.结果是假分数时,要把假分数化成带分数或整数.(2)(2)分数乘以分数:用分子相乘的积作为分子,用分母相乘的积作为分母.为了使计算简便,在计算的过程中,能够约分的,要约分.(3)分数乘以整数或整数乘以分数:由于任何整数(0除外)都可以化成分母是1的假分数,分数乘以整数或整数乘以分数,都可以转化成分数乘以分数的形式.因此,在计算中,是用分数的分子和整数相乘的积作为分子,分母不变.在乘的过程中,如果有可以约分的数,可以先约分,这样,可以使计算的数字缩小,从而使计算变得简便.【分数乘整数-知识点归纳】1、分子乘整数,可以求出一共有多少个这样的分数单位,而分数单位的个数其实就是分子乘整数的积,因此整数乘分子作分子。
求几个分数单位的和,分数单位不变,也就是分母不变。
2、分数乘整数的意义:分数乘整数,也是表示几个相同加数相加,与整数乘法的意义相同。
3、分数乘整数的计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。
其实就是计算分数单位的个数。
【整数乘分数-知识点归纳】1、一个数乘分数的意义就是求一个数的几分之几是多少。
2、“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)3、方法总结;(1)、整数与分数相乘,用分数的分子与整数相乘,分母不变;(2)、计算时能约分的可以先约分再计算出结果。
【分数乘分数-知识点归纳】分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
【典例1】在“世界无烟日”健康知识竞赛中,小星答对了50道题,小铭答对的题数比小星少15。
(暑期预习资料)人教版数学六年级上册全册预习知识点清单

暑期预习资料:人教版数学六年级上册全册预习知识点清单人教版数学六年级上册全册预习知识点清单第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p=""></a(b≠0)。
<>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
人教版小学六年级数学上册知识点总结(完美排版)

乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律:六、分数乘法的解决问题
(已知单位"1"的量,求单位"1"的几分之几是多少(具体量)用乘法)
(3)分数前是"多或少"的意思: 单位"1"的量×(1-分数)=具体量;单位"1"的量×(1+分数)=具体量
(已知具体量求单位"1"的量,用除法)
七、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。1的倒数是1; 0没有倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。
第五单元:百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。
2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。
区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。
3、化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 15∶10 = 15÷10 = 3/2 = 3∶2
4、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
【单元复习指南】第一单元分数乘法-六年级上册数学单元复习精编讲义人教版(含答案)

单元复习指南人教版六年级上册数学单元复习精编讲义第一单元分数乘法单元知识要点理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算;掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用;理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题;理解倒数的意义,掌握求倒数的方法。
知识点归纳总结(2)分数乘分数的运算法则是∶用分子相乘的积做分子,分母相乘的积做①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是∶分子、分母同时除以它们的最大公因数。
下方写出约分后的数。
④分数的基本性质∶分子、分母同时乘或者除以一个相同的数(03.积与因数的关系∶一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数,积小于这个数。
一个数(0除外)乘等于1的数,积等于这个数。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
4.分数乘法混合运算(1)分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先(2)整数乘法运算定律对分数乘法同样适用。
乘法交换律∶a×b=b×a乘法结合律∶(a×b)×c=a×(b×c)乘法分配律∶a×(b±c)=a×b±a×c5.倒数的意义∶乘积为1的两个数互为倒数。
(1)倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不(2)判断两个数是否互为倒数的唯一标准是∶两数相乘的积是否为"1"。
(3)求倒数的方法∶①求分数的倒数∶交换分子、分母的位置。
②求整数的倒数∶整数分之1。
③求带分数的倒数∶先化成假分数,再求倒数。
④求小数的倒数∶先化成分数再求倒数。
(4)1的倒数是它本身,因为1×1=1典型例题例1 一个正方形边长81分米,它的周长是多少分米?【分析】这道题已知了正方形的边长,求它的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年~2021年最新《分数的乘法》一、分数乘法 (一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1.98×5表示( )。
2.83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( ) 3.24个32是多少? 145吨的7倍是多少吨?2.分数乘分数是求一个数的几分之几是多少。
例如: 1.98×43表示的意义是( )。
2.125吨的32是多少吨?3.一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1.72×3 53×6 214×9 103×5 1611×12 2.52米=( )厘米 32时=( )分 107千克=( )克 算式: 2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×281565×25122110×533.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 例如:1.53×61×5 32×41×3 94×5×18 54×97×85 75×16×5212.(924+ 83 )× 124 ( 56 - 59 )×18 47 ×613 +37 ×613 56 ×59 + 59 × 163.10063×101 677 × 78 12×613 + 613 14×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1.画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2.找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3.先用直线划出单位“1”的量,再把数量关系式补充完整。
例如:(1)皮球的个数比足球多52。
(2)实际用水量比原计划节约91。
( )的个数×52=( )的个数 ( )用水量×91=( )用水量(3)一桶油用去53,正好用去12千克。
这桶油重多少千克?( )的千克数×53=( )的千克数(4)学校饲养组养黑兔12只,是白兔只数的32。
饲养组养白兔多少只?( )的只数×32=( )的只数4.求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
5.写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量例如:1.育才小学有男生120人。
(1)男生是女生的35 ,女生有多少人? (2)女生是男生的35,女生有多少人?(3)女生比男生多35 ,女生有多少人?(4)男生比女生少35,女生有多少人?(5)男生占全校的35 ,女生有多少人?(6)女生占总数的35 ,全校有多少人?2.要一条路长100米,已经修了5037米,还有多少米没修? 3、要一条路长100米,已经修了5037,修了多少米?4.一段长3米的布,第一次剪去它的31,第二次又剪去31米,两次一共剪去多少米?还剩多少米?5.周大婶收了532吨南瓜,收的冬瓜比南瓜多815。
收的冬瓜比南瓜多多少吨?6.一本书450页,第一天看了全书的15,第二天看了65页,第三天应该从第几页看起?7.一根铁丝长12米,第一次用去了全长的14,第二次用去了全长的13,两次一共用去了多少米?8.学校一月份用电800度,二月份比一月份节约了15,二月少用电多少度?三、倒数(一)倒数的意义:乘积为1的两个数互为倒数。
1.倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
(二)求倒数的方法:1.求分数的倒数:交换分子、分母的位置。
2.求整数的倒数:整数分之1。
3.求带分数的倒数:先化成假分数,再求倒数。
4.求小数的倒数:先化成分数再求倒数。
5.1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
6.任意数a(a ≠0),它的倒数为 ;非零整数a 的倒数为 ;分数 的倒数是 。
7.真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
例如:1.( )的两个数叫做互为倒数。
2.35 的倒数是( )94的倒数是( )3.23 的倒数是( ),7的倒数是( ),434 的倒数是( ),756 的倒数是( )4.( )没有倒数,1的倒数是( )。
5. 89 的倒数与56 的积是多少?6. 100的倒数的19倍 是多少?7.1.4加上它的倒数,再减去57 ,结果是多少?8.有两个不同的质数,它们积的倒数是110 ,求这两个质数是多少?9. 45 与它的倒数的和是多少? 10. 一个数的倒数是35 ,这个数的45是多少?分数乘法综合练习题一、 填空题:1.15个53是多少?列式是 ;32的53是多少,列式是 ; 2.25的54是( );53的43是( );12个94相加的和是( );3.53千米=( )米;65时=( )分; 4.10×( )=53×( )=173×( )=0.25×( )=15.2米的31和1米的( ) 相等,就是( )米。
6.5的倒数与10的倒数比较,( )的倒数>( )的倒数。
7.当a=( )时,a 的倒数与a 的值相等。
二、判断1.分数乘整数的意义与整数乘法的意义相同。
( )2.2千克的31和1千克的32同样重。
( ) 3.36×94和94×36结果相等。
( ) 4.一个数乘假分数,积一定大于这个数。
( ) 5.一根长12米的钢管,截去了31,就是短了31米。
( ) 6. 任意一个数都有倒数。
( )7. 假分数的倒数是真分数。
( ) 8. a 是个自然数,它的倒数是。
( ) 9.因为13 +23 =1所以13 和23 互为倒数。
( ) 10. 0.3的倒数是3( )三、列式计算: (1)120千米的457是多少千米? (2)457的120倍是多少?(3)25是125的几分之几? (4)125是25的几倍?四、计算:2518×95 275×120 3916×3213 3415×3017514 × 2125 ×75 (124 + 83 )×24 710 ×101- 710 34×3435五、应用题。
1.一台碾米机每小时可以碾稻谷207吨,5小时可以碾谷多少吨?54小时呢?2.某工厂有男职180人,女职工是男职工的95。
女职工有多少人? 求女职工有多少人就是求( )的( )是多少?所以用( )方法计算。
(按要求填空,并列式解答)3.一辆汽车每小时行驶45千米,从甲地到乙地行驶了158小时,正好到达了两地的中点。
甲乙两地全程多少千米?4.(1)一杯水重83千克,32杯重多少千克?(2)一杯水重83千克,又加了32千克,此时杯中水多少千克?5.一块长方形地的面积是15公顷,用这块地的51种小麦,31种棉花,种小麦和棉花各多少公顷?6.有四个不同的的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数。
7.把5分别与它的倒数相加、相减、相乘、相除,再把所得的和、差、积、商相加,结果是多少?8. 110 的倒数除以10,商是多少?。