圆锥曲线的统一定义
利用几何画板辅助圆锥曲线曲线的统一定义

利用“几何画板”辅助圆锥曲线曲线的统一定义炎陵一中范林华圆锥曲线曲线的定义统一为:平面内与一个定点的距离和一条定直线的距离之比等于常数e的点的轨迹,当0<e<1时,它是椭圆;当e=1时,它是抛物线;当e>1时,它是双曲线。
利用几何画板这一动态几何工具辅助教学,能更好地揭示圆锥曲线的规律,利于学生的认识和掌握。
下面介绍该课件的制作方法和步骤:一、确定对称轴、焦点、准线。
1.1 打开《几何画板》,新建文件;1.2 画一条水平直线x;1.3 作出直线x对象上的点K、F(焦点);1.4 过K作直线x的垂线l(准线)。
二、设置离心率。
2.1 画一条线段AB;2.2 作出线段AB对象上的点E;2.3 通过度量、计算,求得线段AE与EB的比(离心率);2.4 将比值标签改为e。
三、设置作轨迹所需的动态半径。
3.1 过任一点D作出两条相交直线m、n;3.2 以D为圆心,AE为半径画圆交直线m于M;3.3 以D为圆心,EB为半径画圆交直线n于N;作直线MN;3.4 作直线m上一点G,过G作MN的平行线交n于H;3.5 作出线段DG、DH。
四、作出轨迹。
4.1 以F为圆心,线段DG为半径画圆;4.2 以K为圆心,线段DH为半径画圆交直线x于P、Q两点,分别过P、Q 作x的垂线p 、q;4.3 改变E的位置或改变F的位置使圆F与直线p、q都相交,交点分别为P1、P2、P3、P4;4.4 选取P1(或P2、P3、P4)、点G、直线m,构造轨迹,即可作出所需轨迹。
4.5 添加操作按钮、隐藏不必显示的对象。
(若轨迹失真,可增加图象的采样数量)。
圆锥曲线的统一定义

圆锥曲线的统一定义圆锥曲线的统一定义:1. 什么是圆锥曲线:圆锥曲线是指满足特定条件的曲线,它利用三角函数与立体几何图形结合生成。
简言之,当一条曲线贯穿一个圆孤和一个平面,并在圆上和平面上满足有关关系时,它就是圆锥曲线。
2. 圆锥曲线的数学特征:圆锥曲线是一种曲线,它满足特定的约束关系,可以由方程组表示:r=z/cosθ或r=1/sinθ。
其中,r为曲线上任意点到圆锥的拱顶的距离,z为曲线上任意点到圆锥的中心的距离,θ为曲线上任意点到拱顶的夹角。
3. 圆锥曲线的物理应用:圆锥曲线是多方面用途,在工程应用中有着重要地位,主要是因为圆锥曲线可用来表示周向和纵向的形变,它们也经常用于航空、船舶和汽车的设计。
例如,它可以用来表示飞机机翼的形状。
4. 圆锥曲线的构成:圆锥曲线由一个圆锥和一个平面构成,所以它也常被称为圆锥-平面曲线,是指当一条曲线贯穿一个圆锥和一个平面,并在圆锥上和平面上满足有关关系(且这两个关系上的函数要满足l次可积方程)时,它就称为圆锥曲线。
5. 相关几何定义:圆锥曲线通过以下几何定义确定:它可以由一个圆柱体和一个平面构成,其中圆柱体由一条等流线和一条垂直于它的矢量组成,平面由它的法线矢量和一条曲线组成。
该曲线(椭圆或双曲线)的一条切线扫描等流线,而另一条切线与平面的法线构成的平面垂直;这两条切线将圆柱体分成两个由圆盘和一段圆锥组成的元件。
6. 解析表达式:可以使用两个方程描述圆锥曲线:r=z/cosθ或r=1/sinθ,其中,r为曲线上任意点到圆锥的拱顶的距离;z为曲线上任意点到圆锥的中心的距离;θ为曲线上任意点到拱顶的夹角。
结合几何定义及数学特征,可以更容易地理解两个方程。
圆锥曲线的统一定义焦半径公式PPT课件

a2 cx a x c2 y2
思考1. x c2 y2 a ex , 即为 MF2 a ex ;
若另一种移法可得: MF1 a ex . 这是焦半径公式
思考2.
x c2 y2 c
a2 x
. a
这是椭圆的第二定义.
c
若另一种移法可得:
xB2 3
y B,由2 1
得F1 A 5 F2 B x,A 2 5(xB
xA2 3
yA2
1
2) yA 5yB
,联立方程组可得 xA . 0
x 分析2:(数形结合)如果右准线与 轴的交点为 ,C可以证
明A、B、C三点共线,由定义可以知道 到A 左右准线距离相
等,所以 x。A 0
微课小结 回归课本、高于课本······
一个 背景 二种 结论
一次 探究
二类 思想
椭圆标准方程的推导 圆锥曲线的统一定义、焦半径公式 点坐标
数形结合、消元引参、
移项、两边平方得
x c2 y2 4a2 4a x c2 y2 x c2 y2
a2 cx a x c2 y2
方程形式
两边再平方,得 a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2
整理得 a2 c2 x2 a2 y2 a2 a2 c2
x c2
x a2
y2
c. a
c
1.圆锥曲线的统一定义 2.圆锥曲线的焦半径公式
材料1.
设
F1
,F2分
别
为
椭
圆x2 3
圆锥曲线

圆锥曲线概述圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线的由来两千多年前,古希腊数学家最先开始研究圆锥曲线,并且获得了大量的成果。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。
阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。
定义几何观点用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线。
通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。
具体而言:1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2) 当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3) 当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。
5) 当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点。
6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线)。
7) 当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。
代数观点在笛卡尔平面上,二元二次方程ax^2+bxy+cy^2+dx+ey+f=0的图像是圆锥曲线。
根据判别式的不同,也包含了椭圆,双曲线,抛物线以及各种退化情形。
焦点-准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。
但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质。
第9讲:圆锥曲线的统一定义

第9讲:圆锥曲线的统一定义【知识整合】1. 圆锥曲线的统一定义圆锥曲线可以统一定义为:平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹。
当10<<e 时,它表示椭圆; 当1>e 时,它表示双曲线; 当1=e 时,它表示抛物线。
其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点定直线l 是圆锥曲线的准线。
2. 椭圆的第二定义(1)焦点与准线的对应关系 对于方程)0(12222>>=+b a by ax ,左焦点)0,(1c F -对应的准线为cax 2-=,右焦点)0,(2c F ,对应的准线为cax 2=;对于方程)0(12222>>=+b a bx ay ,上焦点),0(1c F 对应的准线cay 2=,下焦点),0(2c F -对应的准线为cay 2-=。
(2)椭圆上的任一点到焦点的连线段的长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,21,F F 分别是椭圆的左、右焦点,),(00y x P 是椭圆上任一点,则0201,ex a PF ex a PF -=+=;椭圆焦点在y 轴上时焦半径公式为0201,ey a PF ey a PF -=+=。
3. 双曲线第二定义(1)焦点与准线的对应关系左焦点对应左准线,右焦点对应右准线,对于方程)0,0(12222>>=-b a by ax ,对应焦点)0,(1c F -的准线方程cax 2-=,对应焦点)0,(2c F 的准线方程cax 2=。
(2)双曲线上任一点和双曲线的焦点的连线段的长称为焦半径。
焦半径公式:对于方程)0,0(12222>>=-b a by ax若),(11y x P 在左支上,1211,ex a PF ex a PF -=--=;若),(11y x P 在右支上,1211,ex a PF ex a PF +-=+=。
圆锥曲线是数学必修几的内容

圆锥曲线是数学必修几的内容
高中圆锥曲线的课程应该会在高中数学课本必修二会进行学习,这个课程难度系数比较难,圆锥曲线在高考中所占的比例比较大,一般来说,圆锥曲线会在高中学生数学课本必修二进行学习,圆锥曲线在高中学生数学课本新教材课程必修二进行学习
圆锥曲线:包括圆、椭圆、双曲线、抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
圆锥曲线几何观点:用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线。
圆锥曲线间的三个统一(统一定义、统一公式、统一方程)
2 12丄2(X ∙ a)a y_ 2b2 2.22b丄 b2・・讨=X — Xa a圆锥曲线间的三个统一内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅世界之美在于和谐,圆锥曲线间也有其内在的和谐与统一,通过对圆锥曲 线图形和已知公式的变换,我们可以得出以下结论。
一、 四种圆锥曲线的统一定义动点P 到定点F 的距离到定直线L 的距离之比等于常数e,则当O ::: e ::: 1时, 动点P 的轨迹是椭圆:当e=1时,动点P 的轨迹是抛物线;当e 1时,动点P 的轨迹是双曲线;若e = O ,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为 焦点,L 为准线。
二、 四种圆锥曲线的统一方程从第1点我们可以知道离心率影响着圆锥曲线的形状。
为了实现统一我们 把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们2的半通径为P ,则P =L 。
a2 2如图1 ,将椭圆罕■笃=1(a b O)按向量(a,O )平移a b二椭圆的方程可写成 y 2 = 2 px ' (e 2 -1) χ2( O ::: e ::: 1 )2 2类似的,如图2,将双曲线 —--^2 -1(a - O, b - O)按向量(-a, O)平移得到a b得到2(X -a)2a2 2bb2…y = X ~ Xaa•••椭圆的半通径 b 2 IF I M I |= p =—,ab 2~ =1 —eT 双曲线的半通径IF 2M 2I = L , b y =e 2 一1a a∙°∙双曲线方程可写成y = 2 px ∙ (e? 一 1)χ2 (e . 1)对于抛物线y 2 =2px(x .0) P 为半通径,离心率e =1,它也可写成2 2 2y 2 px (e -1) X (e =1)对于圆心在(P ,0),半径为P 的圆,其方程为(X- p)2 + y 2 = p2,它也可 写成『=2 px 亠(e T)x?(^= 0)于是在同一坐标下,四种圆锥曲线有统一的方程y 2 =2px (e 2 -1)x 2 ,其中P 是曲线的半通径长,当e=0,0 ::: e ::: 1, e =1,e . 1时分别表示圆、椭圆、 抛物线、双曲线。
圆锥曲线的统一定义(课件)
x2 y2 + 2 =1 2 2 a a −c
b>0,代入上式 , 可得: , 可得:
因2a>2c,即a>c,故a2-c2>0, 令a2-c2=b2,其中 , , ,
x2 y2 + 2 = 1(a > b > 0) 2 a b
这就是所求椭圆的轨迹方程, 这就是所求椭圆的轨迹方程,它表示的椭圆的 焦点在x轴上,焦点是 , 、 , . 焦点在 轴上,焦点是F1(-c,0)、F2(c,0).这 轴上 里c2=a2-b2.
即:
a − cx = a (x − c) + y
2 2
2
两边平方得:a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2 两边平方得:
即:(a2-c2)x2+a2y2=a2(a2-c2) 两边同时除以a 两边同时除以 2(a2-c 2) 得:
F1 (-c,0) o
y
P (x,y) F2 x (c,0)
x = 1 ,在离心率分别取下
列各值时, 列各值时,求圆锥曲线的标准方程:
1 (1) e = ) 2
(2) ) (3)
e 1 3 e = 2
目标达成
1.了解圆锥曲线的统一定义 了解圆锥曲线的统一定义 2.掌握根据圆锥曲线的标准 掌握根据圆锥曲线的标准 方程求准线方程的方法
Y
由两点间的距离公式,可知: 由两点间的距离公式,可知:
P F1
(-c,0)
(x,y)
X
(x + c) + y + (x − c) + y = 2a
2 2 2 2
O
F2
(c,0)
圆锥曲线的统一定义
到右焦点的距离等于
那么点P 那么点 13 ,那么点
到左准线的距离是 __________;
x2 y2 上点P到右焦点的距离为 到右焦点的距离为a, (2) 椭圆 2 + 2 = 1上点 到右焦点的距离为 4a a
则点P到左准线的距离是 则点 到左准线的距离是
.
例3.根据下列的条件求椭圆的标准方程: 根据下列的条件求椭圆的标准方程: (1)两准线间的距离为 (1)两准线间的距离为 18 5 ,焦距为 2 5
5
1 x2 y2 + = 1有共同的准线,且离心率为 (2)与椭圆 有共同的准线, (2)与椭圆 2 24 20
(3)已知P点在以坐标轴为对称轴的椭圆上,点P到 (3)已知P点在以坐标轴为对称轴的椭圆上, 已知
2 4 5 ,过P作长轴的垂 两焦点的距离为 5 和 3 3
线恰好过椭圆的一个焦点. 线恰好过椭圆的一个焦点.
求下列曲线的焦点坐标和准线方程: 例1.求下列曲线的焦点坐标和准线方程 求下列曲线的焦点坐标和准线方程 (1) 25 x 2 + 16 y 2 = 400 (2) x 2 + 2 y 2 = 4 (3) x 2 − 2 y 2 = 1 (4) 2 y − x = 4
2 2
x2 y2 例2 (1) 如果双曲线 上一点P − = 1上一点 13 12
圆 锥 曲 线 的 统一定义
引例: 引例:
已知点P(x,y)到定点F(c,0)的距离与它到 已知点P(x,y)到定点F(c,0)的距离与它到 P(x,y)到定点F(c,0)
a 2 的距离的比是常数 c 定直线 l : x = ( a > c > 0 ), a c
求点P的轨迹. 求点P的轨迹.
圆锥曲线的统一定义解读
圆锥曲线的统一定义解读江苏王冬琴圆锥曲线的统一定义揭示了椭圆、双曲线、抛物线三种曲线的内在关系,使我们充分感受数学的内在的、和谐的美,有了发现美、欣赏美的意识;统一定义的推导需要娴熟的代数恒等变形的技能,整个推导过程渗透了特殊到一般,具体到抽象的数学思想.一、圆锥曲线的统一定义1.定义平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数e 的点的轨迹叫圆锥曲线.①当 0< e <1 时, 点的轨迹是椭圆;②当e= 1 时, 点的轨迹是抛物线;③当e>1 时, 点的轨迹是双曲线,其中常数e叫做圆锥曲线的离心率,定点F叫做圆锥曲线的焦点, 定直线l就是该圆锥曲线的准线.2.焦半径:圆锥曲线上的点与焦点的连线段叫做焦半径.运用圆锥曲线的统一定义,可以推导出曲线上一点到焦点的距离就是焦半径,一般用点的坐标和离心率表示.3.注意事项(1)统一定义是充分必要条件,即满足条件的点一定在圆锥曲线上,反之,圆锥曲线上的任意一点也满足条件.(2)焦点与准线要对应,对于椭圆或双曲线,其上的一点到一个焦点的距离与它到相应准线的距离的比等于它的离心率。
这里的“相应”指的是:“左焦点对应左准线”、“右焦点对应右准线”;特别地,对于焦点在x 轴上的双曲线来说,右支上任意一点到左焦点的距离与这点到左准线的距离之比也等于离心率.(3)准线与圆锥曲线一定没公共点.(4)当点F在直线l上时,设平面内动点M到直线l的距离是d,且MFed=,若1e>,则动点M的轨迹是过F点与直线l成等锐角的两条相交直线;若1e=,则动点M的轨迹是过F点与直线l成等直角的一条直线;若1e<,则动点M的轨迹不存在.二、圆锥曲线的几何性质说明:通径是过圆锥曲线的一个焦点与对称轴垂直的弦叫做通径,焦准距是焦点到对应准线的距离.三、直线与圆锥曲线的位置关系利用直线与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题转化为一元二次方程有几个根的问题,结合根与系数的关系及判别式解决问题;能够利用数形结合法,迅速判断某直线与圆锥曲线的位置关系;涉及弦长问题时,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦的问题,利用点差法较为简便.1.直线:l y kx b =+与圆锥曲线C :(,)0f x y =交于点111(,)P x y ,222(,)P x y , 由20(0)(,)0y kx bAx Bx C A f x y =+⎧⇒++=≠⎨=⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y 1上一点P到其右准线的距 2.椭圆 100 36
课堂练习
5x 2 4 y 2 20 的准线方程是----( 1.双曲线
5 A.x 3
4 B. x 3
)
4 C.y 3
5 y D. 3
2.椭圆
32 5
x2 y2 1 上一点P到其左焦点的距离 25 9
当 e=1 即( 点M 到点F的距离与到l 的距离相等 M的轨迹是
l M F · F
),
抛物线
l M
.
l
·
e>1
·
M
· F
0<e <1
e=1
布置作业
1.若抛物线顶点在原点,准线与椭圆 的左准线重合,则抛物线方程是 2.若双曲线的一条准线与两条渐近线的交点 确定的线段长,恰好等于双曲线的实半轴长, 则双曲线的离心率e为 .
x2 y2 1 8 4
;ቤተ መጻሕፍቲ ባይዱ
高二数学组 冯彩
问题一:曲线上的点M(x,y)到
定点F(2,0)与定直线x=-2的距离 之比为1,求曲线方程
复习:抛物线定义
平面内到一个定点 F的距离和到一条定 直线 L ( F不在L上) 的距离相等的点的轨 迹叫做抛物线 L M F
思考交流: 当这个比值是一个不等于1的常数时, 动点P的轨迹又是什么曲线呢?
问题二:曲线上的点M(x,y)到定点F(2, 0)的距离和它到定直线L:x=8的距离之比 是常数1/2,求曲线方程 由此,我们可以看到,椭圆也是到定 点的距离与到定直线的距离之比为常数的 点所组成的曲线,这样就与抛物线有了类 似的特征
问题三:
曲线上的点M(x,y)到定点F(5,0) 的距离和它到定直线L:x=16/5的距离之比 是常数5/4. (1)求曲线方程 (2)指出与问题一的相同之处和不同之 处,与同学交流
圆锥曲线统一定义:
平面内到一个定点F和它到一条定直线L (F不在L上)的距离的比是常数 e 的点的轨迹; 1、当 0<e<1时,它表示椭圆; 2、当 e > 1时,它表示双曲线; 3、当 e = 1时,它表示抛物线. 其中e是圆锥曲线的离心率, 定点F是圆锥曲线的焦点,
定直线L是圆锥曲线的准线。
y
M
F1 o F2
d
x
a2 准线方程: x = c a2 x= c
x=
-
a2 c
a2 x= c
M F1 F2
a2 准线方程: x = c a2 x= c
a2 a x= - 2 x= c c
应用举例
x2 y2 1.如果双曲线 1 上一点P到右焦点 13 12
的距离等于 13 ,那么点P到右准线的距离是 5 13 C. 5 D. A. B. 13 13 5 2 2 离为10,则该点到其左焦点的距离是
为8,则P点到左准线的距离是--------( A. B. 10 C.
24 5 40 D. 3
)
3.若椭圆的两个焦点恰好把两条准线间的距离 三等分,则椭圆的离心率是-------------( )
A.
6 6
B.
3 3
C.
6 3
D.
2 2
课堂小结
1.平面内动点M到定点F的距离与到定直线l 的距离的比为 e,则 当 0<e<1 时,点M的轨迹是椭圆; 当 e>1 时,点M的轨迹是双曲线;