复变函数复习题
复变函数积分变换复习题

复变函数及拉普拉斯变换复习题一、选择题 1.复数z=1625825-i 的辐角为( )02-4 A.arctan 12B.-arctan12 C.π-arctan 12D. π+arctan122.方程Rez 2=1所表示的平面曲线为( ) A.圆 B.直线C.椭圆D.双曲线3.复数z=--355(cossin )ππi 的三角表示式为( ) A.-+34545(cos sin )ππiB.34545(cos sin )ππ-iC. 34545(cos sin )ππ+iD.--34545(cos sin )ππi4.设z=cosi ,则( )A.Imz=0B.Rez=πC.|z|=0D.argz=π 5.复数e 3+i 所对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限6.设w=Ln(1-i),则Imw 等于( ) A.-π4B.2401k k ππ-=±⋅⋅⋅,,, C.π4D.2401k k ππ+=±⋅⋅⋅,,, 7.函数w=z 2把Z 平面上的扇形区域:0<argz<π3,0<|z|<2映射成W 平面上的区域( ) A.0<argw<23π,0<|w|<4 B.0<argw<π3,0<|w|<4 C.0<argw<23π,0<|w|<2D.0<argw<π3,0<|w|<2 8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分f z z a dz n C ()()-+⎰1等于( )A.211πin f a n ()!()()++B.2πi n f a !()C.2πif a n ()()D.2πi n f a n !()()9.设C 为正向圆周|z+1|=2,n 为正整数,则积分dz z i n C()-+⎰1等于( )A.1B.2πiC.0D.12πi10.设C 为正向圆周|z|=1,则积分dzz C ||⎰等于( ) A.0 B.2πi C.2πD.-2π11.设函数f z e d z()=⎰ξξξ0,则f(z)等于( )A.ze z +e z +1B.ze z +e z -1C.-ze z +e z -1D.ze z -e z +112.设积分路线C 是由点z=-1到z=1的上半单位圆周,则z z dz C +⎰12等于( )A.2+πiB.2-πiC.--2πiD.-+2πi13.下列积分中,积分值不为零的是( ) A.()z z dz C323++⎰,其中C 为正向圆周|z -1|=2B.e dz z C ⎰,其中C 为正向圆周|z|=5C.zzdz C sin ⎰,其中C 为正向圆周|z|=1 D.cos zz dz C -⎰1,其中C 为正向圆周|z|=2 14.复数方程z=2+θi e (θ为实参数,0≤θ<2π)所表示的曲线为( )04-4 A .直线 B .圆周 C .椭圆D .抛物线15.已知4z arg 2π=,则argz=( ) A .8πB .4π C .2πD .π16.Re(cosi)= ( ) A .2e e 1-+B .2e e 1--C .2e e 1+--D .2e e 1--17.设f(z)=(1-z)e -z ,则)z (f '=( )A .(1-z)e -zB .(z -1)e -zC .(2-z)e -zD .(z -2)e -z18.设e z =i 31+,则Imz 为( )A .ln2B .32π C .2k π,k=1,0±…D .3π+2k π,k=0, 1±… 19.设C 为正向圆周|z|=1,则⎰=C dz z zcos ( ) A .i πB .2i πC .0D .120.设C 为正向圆周|z -1|=1,则积分dz )1z (2z 3z 5C32⎰-+-等于( )A .5i πB .7i πC .10i πD .20i π21.设C 为正向圆周|ξ|=1.则当|z|>1时,f(z)==-ξ-ξξπ⎰C3)z )(2(d i21( )A .0B .1C .3)2z (2-D .3)2z (2--22.设z=3+4i,,则Re z 2=( )05-4 A .-7B .9C .16D .2523.下列复数中,使等式z1=-z 成立的是( ) A .z=e 2πiB .z=e πiC .z=i2e π-D .z=i 43e π24.设0<t ≤2π,则下列方程中表示圆周的是( ) A .z=(1+i)tB .z=e it +2iC .z=t+tiD .z=2cost+i3sint25.下列区域为有界单连通区域的是( ) A .0<|z-i|<1B .0<Imz<πC .|z-3|+|z+3|<12D .0<argz<43π26.若f(z)=u+iv 是复平面上的解析函数,则f '(z)=( )A .y u i x u ∂∂+∂∂B .x v i y v ∂∂+∂∂C .xv i x u ∂∂-∂∂ D .xvi y v ∂∂-∂∂ 27.设f(z)=⎪⎩⎪⎨⎧≠=-0z ,ze 0z ,A 1z 在整个复平面上解析,则常数A=( )A .0B .e -1C .1D .e28.设f(z)=ax+y+i(bx+y)是解析函数,则实常数a,b 为( ) A .a=-1,b=1 B .a=1, b=1 C .a=-1,b=-1D .a=1,b=-129.设z 为复数,则e -iz =( ) A .cosz+isinzB .sinz+icoszC .cosz-isinzD .sinz-icosz 30.设f(z)和g(z)在有向光滑曲线C 上连续,则下列式子错误..的是( ) A .⎰⎰=zCdz )z (f )z (g dz )z (f )z (gB .⎰⎰--=CC ,dz )z (f dz )z (f 其中C -为C 的反向曲线C .⎰⎰⎰±=±CCCdz )z (g dz )z (f dz ))z (g )z (f (D .⎰⎰=CCdz )z (f 3dz )z (f 331.设C 为从-I 到I 的左半单位圆周,则⎰=Cdz |z |( )A .iB .2iC .-iD .-2i 32. 设C 为正向圆周|z|=2, 则下列积分值不为..0的是( ) A .⎰-C dz 1z zB .⎰C 3zdz cos zC .⎰C dz zz sinD .⎰-C zdz 3z e 33.设D 是单连通区域,C 是D 内的正向简单闭曲线,则对D 内的任意解析函数f(z)恒有( )A .f(z)=⎰ζ-ζζπC d z )(f i 21, z 在C 的外部 B .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 21,z 在C 的内部,n ≥2 C .f (n)(z)=⎰ζ-ζζπC n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 D .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 34.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )08-4 A .等于0 B .等于1 C .小于1D .大于135.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=wC .6arg π-=wD .3arg π-=w36.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +37.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6B .i π4C .i π2D .038.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2πD .i e 22π-39.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( ) A .i e3π B .e6πC .ei π2D .i e 3π 40.设z =1-i ,则Im(21z)=( )09-4 A .-1 B .-21 C .21 D .141.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π 42.设n 为整数,则Ln (-ie )=( )A .1-2πiB .)22(πn π-iC .1+)i π(n π22-D .1+i π(n π)22+43.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =144.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2D .π245.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23- B .i π3- C .i π43 D .i π2346.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i πD .2i π47.拉普拉斯变换()[]()dt e t f t f L st ⎰=+∞-0中的f(t)的自变量的范围是 ( )(A )()+∞,0 (B )[)+∞,0 (C )()+∞∞-, (D )()0,∞-48.拉普拉斯变换()()dt e t f s F st ⎰=+∞-0中的参数s 是 ( )(A ) 实变数 (B )虚变数 (C )复变数 (D )有理数49.若()[]()s F t f L =,那么()[]=-t f e L at ( )(A )()a s F - (B)()a s F + (C)()e s F as - (D)()a s F s+150.若t ≥0时函数f(t)有拉氏变换()[]1=t f L ,则 ( )(A )()()t u t f = (B )()t t f = (C )()()t t f δ= (D )()1=t f 51.若()[]()s F t f L =,那么()[]=+a t f L ( )(A )()s F e as - (B )()s F e as (C )()a s F e as -- (D )()a s F e as +52.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡t f t L 1( )(A )()s F '- (B )()s F s 1(C )()ds s F s ⎰+∞ (D )()ds s F s ⎰053.若()[]()s F t f L =,那么()[]='t f L ( )(A )()s F ' (B )()s sF (C )()s F s ' (D )()()0f s sF -54.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡⎰dt t f L t 0 ( ) (A )()s F s 1(B )()ds s F s ⎰+∞ (C )()ds s F s ⎰0(D )()s F s e -55.若()[]()s F t f L =,当0>a 时,那么()[]=at f L ( )(A )()s F a 1 (B )⎪⎭⎫ ⎝⎛a s F a 1 (C )⎪⎭⎫⎝⎛a s aF (D )()a s F - 56.若()[]()s F t f L =,且()()000='=f f ,那么()[]=''t f L ( )(A )()s F s ' (B )()s F '' (C )()s F s 2 (D )()s F s '2 二、填空题1.复数z=4+48i 的模|z|= .2.设z=(1+i)100,则Imz= .3.设z=e 2+i ,则argz= .4.f(z)=z 2的可导处为 . 5.方程lnz=π3i 的解为 . 6.设C 为正向圆周|z|=1,则()1zz dz C +=⎰. 7.设C 为正向圆周|z -i|=12,则积分e z z i dz z Cπ()-=⎰2.8.设C 为正向圆周|ξ|=2,f(z)=sinπζζζ3-⎰zd C,其中|z|<2,则'=f ()1 . 9.设i z 101103+-=,则=_z ____________.10.方程i z 31ln π+=的解为____________.11.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.12.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C 3_)(____________.13.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.14.复数1i --的指数形式为__________.15.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 16.区域0<arg z<4π在映射w =z 3下的像为__________.17.设C 为正向圆周,2=z 则⎰=-C zdz z e 12__________. 18.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.19.若cosz=0,则z=________.20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.在复数域内,方程cosz=0的全部解为 。
复变函数复习资料

单连通域.
21
(3) 0 z 1 i 2, 以 (1 i) 为圆心, 2为半径 的去心圆盘, 是多连通域. (4) arg( z i) ,
4 以 i 为端点, 斜率为1的半射线 (不包括端点i ), 不是区域.
22
4. 复变函数与自变量之间的关系: 复变函数 w 与自变量 z 之间的关系w f (z) 相当于两个关系式:
当 z 沿直线 y kx 趋于零时,
lim u( x, y) lim x lim
x
x0 ykx
x0 ykx
x2 y2
x0 x2 (kx)2
27
lim
x
1 ,
x0 x2(1 k 2 )
1 k2
随 k 值的变化而变化,
所以 lim u( x, y) 不存在, lim v( x, y) 0,
23
三、典型例题
例1 在映射 w z2 下求下列平面点集在w 平面
上的象:
(1) 线段 0 r 2, π;
4
解 设 z rei ,
y
w ei ,
还是线段.
v
wz2
则 r2, 2 , o
x
o
u
故线段 0 r 2, π 映射为 0 4, π ,
4
2
24
例1 在映射 w z2 下求下列平面点集在w 平面
5
5
显然 r z 1,
sin
5
cos
2
5
cos
3 10
,
cos 5
sin
2
5
sin 3 , 10
故三角表示式为 z cos 3 i sin 3 ,
10
10
指数表示式为
复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。
复变函数与积分变换复习题.

第一章 一、选择题1. 一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位,对应的复数为1-,则原向量对应的复数是(A ) A. 2B. 1C.i D.i +2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i -+ B. 34i + C. 34i - D. 34i -- 3.方程23z i +-= C )A. 中心为23i -的圆周 B. 中心为23i -+,半径为2的圆周 C. 中心为23i -+D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+5. 设z C ∈,且1z =,则函数21()z z f z z-+=的最小值是(A )A. -3B. -2C. -1D. 1 二、填空题1.不等式225z z -++<所表示的区域是曲线_________________的内部。
(椭圆2222153()()22x y +=) 2. 复数22(cos5sin 5)(cos3sin 3)θθθθ+-的指数表示式为_______________.(16ieθ)3. 方程2112(1)z ii z--=--所表示曲线的直角坐标方程为__________________.(221x y +=)4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴为25的椭圆,该图形是否为区域 否 .5.复数()i i z --=1132的模为_________,辐角为____________.(5/12π-)6. 曲线()2z i t =+在映射2w z =下的象曲线为____________.(43v u =)三、对于映射12()w z z=+,求出圆周4z =的像。
(表示平面上的椭圆2222u v +=11715()()22)第二章 一、选择题1.下列函数中,为解析函数的是(C )A. 222x y xyi -- B. 2x xyi + C. 222(1)(2)x y i y x x -+-+ D. 33x iy +2. 若函数2222()2()f z x xy y i y axy x =+-++-在复平面内处处解析,那么实常数a=(C ) A. 0 B. 1 C. 2 D. -23. 函数2()ln()f z z z =在0z =处的导数(A ) A. 0 B. 1 C. -1 D. 不存在 4. 22()f z x iy =+则 (1)f i '+=(A ) A. 2 B. 2i C. 1+I D. 2+2i 5. ii 的主值为(D ) A. 0 B. 1 C. 2e πD. 2eπ-6.设()sin f z z =,则下列命题中,不正确是(C )A. ()f z 在复平面B. ()f z 以为周期C. ()2iz ize ef z --= D. ()f z 是无界7. 设α是复数则(C )A. z α是在复平面上处处解析 B. z α的模为 zαC. z α一般是多值函数 D . z α的幅角为z 的幅角的α倍 二、填空题1.设(0)1, (0)1f f i '==+,0()1lim z f z z→-=______________(1+i)2. 3322()f z x y ix y =++ 则 33 ()22f i '-+=______________(272748i -)3.复数1i 的模为______________(2(0,1)k e k π-=±)4.方程10ze--=的全部解为______________(2(0,1)k i k π=±)5.ii -+1)1(的值为,1,0)],2ln 4sin()2ln 4[cos(224±=-+-+k i e k ππππ;主值为)]2ln 4sin()2ln 4[cos(24-+-πππi e .三、设i y x y x z f 22332)(+-=,问)(z f 在何处可导?何处解析?并在可导处求出导数值.;,0)))0(0,0(0,0(=∂∂+∂∂='xv ixuf)1(1627)4343()43,43()43,43(i xv ixu i f +=∂∂+∂∂=+'四、解方程:sin cos 4z i z i +=一、选择题1. 设C 为从原点沿2y x =至1+i 的弧段,则2()cx iy dz +=⎰()DA.1566i - B. 1566i -+ C. 1566i -- D. 1566i + 2. 设C 为不经过点1与-1的正向简单闭曲线,则(1)(1)c zdz z z -+⎰为()DA.2i π B. 2i π-C. 0D. A,B,C 都有可能二、1..解析函数在圆心处的值等于它在圆周上的________(平均值)2. 积分⎰=1||z zdz z e的值为i π2,⎰==-2||2)2(sin z dz z zπ 0 .3. 设()2sin2f z d zξπξξξ==-⎰,其中2z ≠,则()1f '=_______.(0)三、计算26(1)(2)z R zdz z z =-+⎰,其中0 1 R R >≠,,且2R ≠。
复变函数复习题详细答案

复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。
复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。
2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。
4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。
5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。
6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。
复变函数复习习题

14
2.映射的定义: 如果用z 平面上的点表示自变量z 的值,
而用另一个平面w 平面上的点表示函数w 的 值, 那末函数 w f (z) 在几何上就可以看作 是把 z 平面上的一个点集G (定义集合) 变到 w 平面上的一个点集G * (函数值集合)的映射 (或变换).
放映结束,按Esc退出.
29
作业 :P-28
• 1.4.1,1.4.2,1.4.3,1.4.5
30
4
例2 满足下列条件的点集是什么, 如果是区域,
指出是单连通域还是多连通域?
y
6
解 (1) Im z 3,
5
4
是一条平行于实轴的直线,
3 2
不是区域.
1 -3 -2 -1
x 123
(2) Re z 2, 以 Re z 2 为左界的半平面 (不包括直线Re z 2 ), 单连通域.
5
(3) 0 z 1 i 2, 以 (1 i) 为圆心, 2为半径 的去心圆盘, 是多连通域. (4) arg( z i) ,
15
这个映射通常简称为由函数 w f (z) 所构成的映射.
如果G中的点 z 被映射 w f (z)映射成G * 中的点 w, 那末 w 称为 z 的象 (映象), 而 z 称为 w 的原象.
16
3. 两个特殊的映射:
(1) 函数 w z 构成的映射.
将 z 平面上的点z a ib 映射成 w 平面上
9
2.单(多)值函数的定义: 如果 z 的一个值对应着一个w 的值, 那末
我们称函数 f (z) 是单值的. 如果 z 的一个值对应着两个或两个以上
复变函数考试复习资料

一、单选题1.设f(z)=sin z,则下列命题中,不正确的是( )。
A、f(z)在复平面上处处解析B、f(z)以2T为周期C、D、丨f(z)丨是无界的答案: C2.A、iB、-iC、1D、-1答案: B3.下列命题中,不正确的是()。
A、B、C、若在区域D内有f '(z)=g(z),则在D内g'(z)存在且解析D、答案: D4.设f(z)在区域D内解析,c为D内任一条正向简单闭曲线,它的内部全属于D.如果f(z)在c上的值为2,那么对c内任一点z0,f(z0)( )A、等于0B、等于1C、等于2D、不能确定答案: C5.下列函数中,为解析函数的是()。
A、x²-y²-2xyB、x²+xyiC、2(x-1)y+i(y²-x²+2x)D、x³+iy³答案: C6.下列方程所表示的曲线中,不是圆周的为( ).A、B、C、D、答案: B7.函数f(z)在点z可导是f(z)在点z解析的( )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既非充分条件也非必要条件答案: B8.A、2B、2iC、1+iD、2+2i答案: A9.A、不存在的B、唯一的C、纯虚数D、实数答案: D10.A、有界区域B、无界区域C、有界闭区域D、无界闭区域答案: D11.设v(x,y)在区域D内为u(x,y)的共辄调和函数,则下列函数中为D内解析函数的是()。
A、v(x,y)+iu(x,y)B、v(x,y)-iu(x, y)二、 判断题C 、u(x,y)-iv(x,y)D 、答案: B12.下列数中,为实数的是( )。
A 、B 、cos iC 、In iD 、答案: B1.若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件.A 、正确B 、错误答案: 正确2.若a 是f(z)和g(z)的一个奇点,则a 也是f(z)+g(z)的奇点。
复变函数复习题

第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D. 142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( )A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π- B.4π- C.4π D.43π6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=w D .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( ) A. e 2+2x B. e |2i+2z| C. e 2+2z D. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线 15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________. 21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程.29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线. 30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34) D .ln5+i(π-arctg 34) 4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( )A.xy+xB.2x+2yC.2xy+yD.x+y8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.3 10. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2 D. 2 11.正弦函数sinz=( )A .i e e iz iz 2-- B .2iz iz e e -- C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________.16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值. 19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg x y,x>0,求f ′(z),并将它表示成z 的函数形式.23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v . 24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式. 27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πi D. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C. -i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Cz dz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i 2π D. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πi C.2πi D.6πi9.设C 为正向圆周|z |=1,则⎰=czdz cot ( )A. -2πi B. 2πi C. -2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21iπ 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9 D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .i π2 D .0 14.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2z z i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi i e D .2πi ie -18.设C 为正向圆周⎰=ξ-ξξ=<=ξC3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________.21.设C 为正向圆周|z |=1,则=-⎰dz ie cz 22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C 3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向.36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i2n n e z π=的极限为() A.-1B.0C.1D.不存在 2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .0 5. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z-=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 3 8. f(z)=211z +在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1-D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z -的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z)1z (1 C.∑∞=--0n nn)1z ()1(D.∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n)z ( D.∑∞=---0121n n n )z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n n n z b 中,i b b nn n 43lim1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n n nnz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie -C.4ie D.4e2. 设f(z)=1z z 22-,则Res[f(z),1]=( ) A.0 B.1 C.π D.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( )A .2B .iC .1D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)=+--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z 2i z 4e )z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e z z21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点. (2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0;(2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1; (2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( ) A.-2 B.-1 C.1 D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0, y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0, y ′(0)=0,求L [y ′(t)]、L [y ″(t)]; (3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2iiπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( )A .i π23-B .i π3-C .i π43D .i π237.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程. 18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域. 20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(2dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数复习题
复变函数复习题
复变函数是数学中一个重要的分支,它研究的是定义在复数域上的函数。
复变函数的研究不仅在理论上具有重要意义,而且在实际应用中也有广泛的应用。
在这篇文章中,我将为大家整理一些复变函数的复习题,希望能够帮助大家巩固相关知识。
1. 计算下列复变函数的导数:
a) f(z) = z^3 - 2z^2 + z + 1
b) f(z) = e^z + z^2
c) f(z) = sin(z) + cos(z)
d) f(z) = ln(z) + z^2
2. 计算下列复变函数的积分:
a) ∫(z^2 - 3z) dz,其中积分路径为沿着单位圆逆时针方向
b) ∫(e^z + z) dz,其中积分路径为从0到1的直线段
c) ∫(sin(z) + cos(z)) dz,其中积分路径为沿着单位圆逆时针方向
d) ∫(1/z) dz,其中积分路径为沿着单位圆逆时针方向
3. 判断下列函数是否解析:
a) f(z) = z^2 + 3z + 2
b) f(z) = e^z + sin(z)
c) f(z) = ln(z) + z^2
d) f(z) = 1/z
4. 判断下列函数是否是调和函数:
a) f(z) = x^2 - y^2
b) f(z) = e^x * sin(y)
c) f(z) = ln|z|
d) f(z) = x^3 - 3xy^2
5. 利用柯西-黎曼方程,求下列函数的实部和虚部:
a) f(z) = z^2 + 2z - 1
b) f(z) = e^z + sin(z)
c) f(z) = ln(z) + z^2
d) f(z) = 1/z
在解答这些问题时,我们需要熟练掌握复数的运算规则、复变函数的导数和积
分计算方法,以及判断函数解析性和调和性的条件。
此外,柯西-黎曼方程是判断函数实部和虚部的关键工具,需要灵活运用。
通过复习这些复变函数的问题,我们可以加深对复变函数理论的理解,并提高
解题能力。
掌握复变函数的基本概念和计算方法,对于后续学习更高级的数学
分析、物理学和工程学等学科都具有重要的作用。
在实际应用中,复变函数的研究也有广泛的应用。
例如,复变函数在电力工程
中的应用可以用来分析交流电路中的电流和电压分布,进而优化电力系统的设计。
在信号处理领域,复变函数的变换(如傅里叶变换)可以用来分析信号的
频谱特性,从而实现信号的滤波和压缩等处理。
总之,复变函数是数学中一门重要且有趣的学科。
通过复习相关的问题和解题,我们可以更好地理解和应用复变函数的知识。
希望本文所提供的复习题能够帮
助大家巩固复变函数的知识,为进一步学习和应用打下坚实的基础。