1 简单几何体 学案(含答案)
2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2

布置作业:
根据本节课学习的简单几何体的内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
- 《几何原本》是古希腊数学家欧几里得的代表作,其中包含了关于立体几何的详细论述,对于理解立体几何的概念和定理非常有帮助。
举例:可以用坐标系表示几何体的顶点或中心点的位置,用向量表示几何体的尺寸和方向。
(3)几何体的表面积和体积计算:如何计算简单几何体的表面积和体积。
举例:正方体的表面积公式为6a²,其中a为边长;正方体的体积公式为a³。
2.教学难点
(1)理解并应用几何体的特征:学生可能对几何体的特征和性质理解不深,难以运用到实际问题中。
互动探究:
设计小组讨论环节,让学生围绕简单几何体的问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
技能训练:
设计实践活动或实验,让学生在实践中体验几何体的应用,提高实践能力。
在新课呈现结束后,对简单几何体的知识点进行梳理和总结。
强调重点和难点,帮助学生形成完整的知识体系。
- 学习如何表示和描述简单几何体的尺寸和位置;
- 掌握如何计算简单几何体的表面积和体积。
2.教学目标:
- 学生能准确识别和描述常见简单几何体的特征;
- 学生能运用数学语言和符号表示简单几何体的尺寸和位置;
- 学生能计算简单几何体的表面积和体积,并能解决相关实际问题。
三、教学步骤
1.导入(5分钟):通过展示一些实际生活中的几何体模型,引导学生思考和讨论这些模型的特征和数学关系。
《1.1 简单几何体》教学案

《1.1 简单几何体》同步练习●三维目标1.知识与技能(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)掌握简单几何体的分类.2.过程与方法通过对简单几何体结构的描述和判断,培养学生的观察能力和空间想象能力.3.情感、态度与价值观通过对简单几何体的学习,体会数学的应用价值,增加学生学习数学的兴趣.●重点难点重点:简单几何体的结构特征.难点:简单几何体的分类.教学时要从生活空间里各式各样的几何体的特点入手,引导学生观察、归纳出几何体的结构特征,进而认识旋转体与多面体,找准彼此的分类特征.●教学建议本节内容是学习立体几何的第一节,是对简单几何体的初步认识,为以后学习立体几何内容作好图形基础.本节课宜采用观察总结式教学模式,即在教学过程中,让学生观察现实生活的几何体,在老师的引导下,去认识简单的旋转体和简单的多面体,让学生观察、讨论、总结出各几何体的特征,让学生学会把具体生活空间几何体抽象到数学中的立体几何体.●教学流程创设问题情景,引出问题,旋转体与多面体的特征是什么?⇒引导学生结合现实空间几何体来认识圆柱、圆锥、圆台、球与棱柱、棱锥、棱台⇒通过例1及其互动探究,使学生掌握平面图形的旋转问题⇒通过例2及其变式训练,使学生掌握简单多面体的特征⇒通过例3及变式训练,使学生认识简单组合体的构成⇒归纳整理,进行课堂小结整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈、矫正【问题导思】观察下列图形思考它们有什么共同特点?是怎样形成的?【提示】共同特点:组成它们的面不全是平面图形.可以由平面图形旋转而成.1.旋转体的定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.2.圆柱、圆锥、圆台的概念及比较观察下列图形思考它们有什么共同特征?【提示】 组成几何体的每个面都是平面多边形.1.多面体的定义把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台是简单多面体.2.棱柱、棱锥、棱台的结构特征有两个面互的平面去截棱锥,底面例1以斜边上的高所在的直线为轴旋转180°得到什么图形?旋转360°又得到什么图形?【思路探究】解答本题可先分析各种可能的旋转轴,然后根据旋转体的有关概念及空间想象能力进行判断.【自主解答】图(1)、(2)旋转一周得到的几何体是圆锥;图(3)旋转一周所得几何体是两个圆锥拼接而成的几何体;图(4)旋转180°是两个半圆锥的组合体,旋转360°,旋转轴左侧的直角三角形旋转得到的圆锥隐藏于右侧直角三角形旋转得到的圆锥内.规律方法1.平面图形的旋转问题一方面要观察平面图形的形状,另一方面要注意旋转轴的位置.2.线段绕轴旋转一周后形成图形的意义(1)垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆面;(2)垂直于旋转轴但与旋转轴没有交点的线段旋转所得的图形是圆环面;(3)不垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆锥侧面;(4)不垂直于旋转轴且与旋转轴没有交点的线段旋转所得的图形是圆台侧面;(5)与旋转轴平行的线段旋转所得的图形是圆柱侧面.互动探究若将本例中的三角板绕直线l旋转360°(如图1-1-1,其中三角形斜边上的高与直线l垂直),得到什么图形?图1-1-1【解】旋转360°,得一个圆柱挖去以圆柱上下两个底面为底面的两个圆锥而成的几何体.例2如图1-1-2所示是长方体AB CD—A′B′C′D′,当用平面BCEF把这个长方体分成两部分后,各部分形成的多面体是棱柱吗?若不是,请说明理由;若是,请指出其底面和侧棱.图1-1-2【思路探究】(1)所得的两部分中哪两个面是互相平行的?(2)若用平行平面作为棱柱的底面,各部分是否是棱柱?【自主解答】截面BCEF右方部分是棱柱BB′F—CC′E,其中平面BB′F和平面CC′E 是其底面,BC,B′C′,FE是其侧棱,截面BCEF左方部分是棱柱ABF A′—DCED′,其中四边形ABF A′和DCED′是其底面,AD,BC,FE,A′D′是其侧棱.规律方法1.对于棱柱,不要只认为底面就是上、下位置,如本题,底面可放在前后位置.2.认识、判断一个多面体的结构特征,主要从侧面、侧棱、底面等角度描述,因此只有理解并掌握好各几何体的概念,才能认清其特征.变式训练下列几何体中棱柱的个数为()图1-1-3A.5B.4C.3D.2【解析】①③是棱柱,②④⑤⑥不是棱柱.【答案】 D例3图1-1-4【思路探究】认真分析所给几何体的结构,根据简单几何体的特征来说明其组成.【自主解答】图(1)是由一个四棱柱在它的上、下底面上向内挖去一个三棱柱形成的组合体.图(2)是由一个四棱柱和一个底面与四棱柱上底面重合的四棱锥组合而成的组合体.图(3)是由一个三棱柱和一个下底与三棱柱上底面重合的三棱台组成的组合体.规律方法1.熟练掌握各简单几何体的特征是解决本题的关键.2.组合体的构成,基本上有三类:(1)多面体与多面体的组合体;(2)多面体与旋转体的组合体;(3)旋转体与旋转体的组合体.变式训练试判断下列几何体是由哪些简单几何体组合而成的.【解】图①是由一个圆锥,一个圆柱和一个圆台组合而成的;图②是由一个四棱柱和一个四棱锥组合而成的;图③是由一个三棱台和一个三棱柱组合而成的;图④是由一个球和一个圆柱组合而成的.忽视棱柱的定义致误典例有两个面互相平行,其余各面都是平行四边形,由这些面围成的几何体是棱柱吗?【错解】因为棱柱的两个底面平行,其余各面都是平行四边形,所以所围成的几何体是棱柱.【错因分析】题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.定义都是非常严格的,只要不满足所有的条件就会有特殊的例子出现.这提醒我们必须严格按照定义判定.【防范措施】正确理解简单几何体的特征、定义可以避免错误.【正解】满足题目条件的几何体不一定是棱柱,如图所示.1.棱柱、棱锥、棱台的共性棱柱、棱锥、棱台的各面都是平面多边形,因此可以看作是由平面多边形所围成的几何体,即多面体.多面体还含有除棱柱、棱锥、棱台之外的几何体.2.圆柱、圆锥、圆台、球的共性圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.3.组合体的构成(1)组合体包括简单几何体的拼接和截去(或挖除)两种类型.1.有下列命题,其中正确的是()①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线都是互相平行的.A.①②B.②③C.①③D.②④【解析】圆柱(或圆台)中上、下底面圆周上任意两点的连线,不一定是矩形(或直角梯形)中“不垂直于旋转轴的边”,故①③错误,②④正确.【答案】 D2.如图1-1-5是由图中的哪个平面图形旋转后得到的()【解析】因为简单组合体由一个圆台和一个圆锥所组成的,因此平面图形应由一个直角三角形和一个直角梯形构成,可排除B、D,再由圆台上、下底的大小比例关系可排除C.所以选A.【答案】 A3.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【解析】若是六棱锥,则顶点在底面上,不能构成几何体.【答案】 D4.矩形ABCD中,AB=2,BC=3,矩形ABCD绕AB旋转得圆柱,求其底面半径r及母线长l.【解】因为AB为旋转轴,所以r=BC=3,l=AB=2.一、选择题1.下列命题中正确的是()A.圆锥的底面和侧面都是圆面B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线【解析】A错误,圆锥的侧面应为曲面;B错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时,正确,其他情况则结论就是错误的;D错误,通过圆台侧面上一点,只有一条母线.故选C.【答案】 C2.下列说法中正确的是()A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条【解析】棱柱都有两个底面,A错误;三棱柱的顶点最少,6个;侧棱最少,3条;棱最少,9条.故选B.【答案】 B3.(2013·宿州高一检测)在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个【解析】如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.【答案】 D4.下列命题中,正确的是()①底面是正多边形的棱锥,一定是正棱锥;②所有侧棱相等的棱锥一定是正棱锥;③圆台的所有母线的延长线交于同一点;④侧面是全等的等腰三角形的三棱锥是正三棱锥.A.①④B.②③C.③④D.③【解析】①中棱锥的顶点位置不定,未必能保证侧面为全等的等腰三角形,故①错;②中棱锥,当底面多边形为圆内接多边形,且圆心的正上方为棱锥的顶点时,即可使棱锥的侧棱都相等,但并不一定为正棱锥(以后可证);③正确,④不正确,反例如图:三棱锥S—ABC 中,SB=SC=AB=AC=2,SA=BC=1,显然满足条件,但并非正三棱锥.故选D.【答案】 D图1-1-65.如图1-1-6,将装有水的长方体水槽固定底面一边后倾斜,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱台的组合体D.不确定【解析】水槽倾斜后,水有变动,但是根据棱柱的结构特征,其仍然是个棱柱,上、下两个底面发生变化.【答案】 A二、填空题6.(1)伐木工人将树伐倒后,再将枝杈砍掉,根据需要将其截成不同长度的圆木,圆木可以近似地看成________体;(2)用铁丝做一个三角形,在三个顶点上分别固定一根筷子,把三根筷子的另一端也用铁丝连接成一个三角形,从而获得一个几何体模型,如果筷子的长度相同且所在直线平行,那么这个几何体是________.【解析】 (1)由圆柱的结构特征可知此圆木近似地看作是一个圆柱体;(2)在该模型中已知一面为三角形,含有筷子的三个面为平行四边形,可知另一个铁丝三角形所在面与最先的铁丝三角形所在平面平行,故此几何体是三棱柱.【答案】 (1)圆柱 (2)三棱柱图1-1-77.图中阴影部分绕图示的直线旋转一周,形成的几何体是________.【解析】 三角形旋转后围成一个圆锥,圆面旋转后形成一个球,阴影部分形成的几何体为圆锥中挖去一个球后剩余的几何体.【答案】 圆锥挖去一个球的组合体8.(2013·日照高一检测)圆台两底面半径分别是2 cm 和5 cm ,母线长是310 cm ,则它的轴截面的面积是________.【解析】 画出轴截面,如图,过A 作AM ⊥BC 于M ,则BM =5-2=3(cm),AM =AB 2-BM 2=9(cm),∴S四边形ABCD =+2=63(cm 2).【答案】 63 cm 2三、解答题9.如图1-1-8所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.图1-1-8【解】先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:10.用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台上、下底面半径的比是1∶4,截去的圆锥母线长是3 cm,求圆台的母线长.【解】设圆台的母线长为y cm,圆台上、下底面半径分别是x cm、4x cm,作圆锥的轴截面如图.在Rt△SOA中,O′A′∥OA,所以SA′∶SA=O′A′∶OA.即3∶(y+3)=x∶4x,解得y=9.所以圆台的母线长为9 cm.图1-1-911.如图1-1-9所示,是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.【解】过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.备选例题已知下列说法:①以直角三角形的一边为旋转轴,旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴,旋转一周所得的旋转体是圆台;③用一个平面截圆锥,可得到一个圆锥和一个圆台;④以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面叫作球.其中正确说法的个数是()A.0B.1C.2D.3【思路探究】利用旋转体的定义判断.【自主解答】甲圆锥是以直角三角形的直角边为轴旋转形成的,如果不是直角边,将得到图甲所示的几何体,故①错误.圆台是以直角梯形垂直于底边的腰为轴旋转形成的,故②错误.如图乙(1)所示,如果用来截圆锥的平面平行于圆锥的底面,则可得一圆锥和一圆台,否则将得不到圆锥与圆台(如图乙(2)所示),故③错.乙④是球面的定义,球面所围成的几何体叫作球.如常见的篮球、足球可看作球面而不是球.【答案】 A规律方法1.本题主要考查对圆锥、圆柱、圆台、球的定义的理解.特别注意旋转面与旋转体的差别:旋转体包含旋转面所围成的空间中的部分.2.概念辨析题的判断方法:①利用定义、性质直接判断;②利用常见几何体举反例.备选变式有下列说法:①球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆;④空间中到一定点距离等于定长的点的集合是球.其中正确的序号是________.【解析】球可看作是半圆面绕其直径所在的直线旋转形成的,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离相等的点的集合是一个球面,而不是一个球体,所以④错误.【答案】①。
小学美术《学习简单的几何体》教案

-通过展示各种几何体模型,让学生观察并描述其特征,如正方体的六个面都是正方形,长方体有两个不同的面等。
-引导学生通过实际操作,如折叠、组合几何体,加深对几何体空间形态的理解。
2.教学难点
-空间想象力的培养:学生对几何体的组合和变换需要具备一定的空间想象力,这是难点之一。
-几何特征的准确描述:如何用准确的几何语言描述几何体的面、线、角等特征,对部分学生来说是一个挑战。
-实践操作中的问题解决:在组合创作过程中,学生可能会遇到比例、布局等方面的问题,需要指导他们如何解决。
举例解释:
-通过提供具体的情境和任务,如设计一个小房子,引导学生运用几何体进行创作,逐步培养空间想象力。
-教师提供描述几何特征的词汇表,帮助学生准确表达所观察到的几何体的特点。
-在学生进行组合创作时,教师巡回指导,针对遇到的问题提供及时的反馈和解决方案,如如何调整几何体的大小比例,如何布局才能使作品更平衡等。
在讲授新课的过程中,我尽量用简单的语言解释几何体的概念和特点,并通过案例分析让学生们看到几何体在实际中的应用。我觉得这一点对于帮助他们理解几何体的意义很有帮助。
然而,我也注意到在教学难点方面,尤其是空间想象力方面,部分学生仍然感到困惑。在实践活动和小组讨论中,我意识到需要更多地引导学生去观察、思考和动手操作。在未来的教学中,我打算增加一些更具操作性的环节,如让学生动手制作简单的几何体模型,以提高他们的空间想象力。
小学美术《学习简单的几何体》教案
一、教学内容
本节课选自小学美术教材《快乐美术》三年级上册第七章《奇妙的几何世界》,主要教学内容包括:
1.认识简单的几何体:正方体、长方体、圆柱体、球体等;
2.学会观察几何体的特征,如面、线、角等;
高中高三数学《简单几何体》教案、教学设计

一、教学目标
(一)知识与技能
1.掌握简单几何体的定义、性质和特征,包括立方体、长方体、圆柱、圆锥、球等。
2.学会运用几何体的表面积和体积的计算公式,解决实际问题。
3.能够运用几何体的投影、视图等概念,分析解决空间几何问题。
4.培养学生的空间想象能力和逻辑思维能力,提高解决几何问题的能力。
针对以上情况,本章节教学应注重以下方面:
1.激发学生兴趣:通过引入生活实例和实际问题,让学生感受到简单几何体在生活中的广泛应用,从而提高他们的学习积极性。
2.强化基础:巩固学生对几何体基本概念、性质和公式的掌握,为解决复杂问题奠定基础。
3.培养空间想象能力:设计丰富的教学活动,引导学生观察、思考和动手操作,提高他们的空间想象能力。
-强化练习与反馈:通过针对性的练习,巩固所学知识,并及时给予学生反馈,指导他们改进学习方法。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,全面评估学生的学习过程和结果。
-关注学生在解决问题时的思路和方法,鼓励创新思维,提高解决问题的能力。
-定期进行课堂小结,检验学生对知识点的掌握情况,及时发现并解决学习中的问题。
2.提出问题:这些几何体在我们的生活中无处不在,那么它们有什么特征和性质呢?如何计算它们的表面积和体积呢?
3.引入新课:今天我们将学习简单几何体的性质、表面积和体积的计算方法,以及它们在实际问题中的应用。
(二)讲授新知
1.教学内容:
-简单几何体的定义、性质和分类;
-立方体、长方体、圆柱、圆锥、球的表面积和体积的计算公式;
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们学习数学的积极性。
学案:简单几何体的外接球与内切球2016.5

高三专题——简单几何体的外接球与内切球【基础知识】1. 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: .2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 .3. 球的表面积表面积S = ;球的体积V = .4.两点间的球面距离:通过球面上A 、B 两点的大圆劣弧的长度。
一、与球的截面有关的问题例1(1)一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是( ) A.3π100 cm 3 B.3π208 cm 3C.3π500 cm 3 D.3π34161 cm 3(2)两个平行平面去截半径为5的球,若截面面积分别为9,16ππ,则这两个平行平面间的距离是( ) A. 1 B .7 C . 3或4 D. 1或7(3)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为 。
(4)在北纬60°的纬线上有甲、乙两地,它们在纬线上的弧长为2Rπ,R 是地球半径,则这两个平行平面间的距离是二、组合体的外接球和内切球问题解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.(一)球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOM =;二是与正方体各棱相切的球,截面图为正方形EFGH和其外接圆,则2OF =;三是球为正方体的外接球,截面图为长方形C C AA 11和其外接圆,则OA =.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.图1-1 图1-2 图1-3例2. 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .2B .1C .12+ D【练习】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( )A . 2πB .4πC .8πD .16π1.2球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径2l R ==例3. 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( )A.10π3B.4πC.8π3D.7π3【练习】一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .1.3球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,,,,2h OD AO R AD ===借助直角三角形AOD 的勾股定理,可求R =例4.已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。
简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。
单招考试复习简单几何体学案

济南市体校学案单招考试复习《简单几何体》第1课时柱体和锥体的有关性质和计算【学习目标】1、了解几个常见柱体椎体的性质;2、利用柱体椎体的体积公式解决有关的计算问题.【基础过关】1.棱柱:由两个面互相,其余各面都是,并且每相邻两个四边形的公共边都是互相,有这些面围成的多面体叫做棱柱。
分类:直棱柱:侧棱于底面的棱柱叫做直棱柱正棱柱:底面是正多面型的叫做正棱柱圆柱:以矩形的为旋转轴,其余三边旋转360°形成的面所围成的旋转体叫作圆柱2.柱体的体积公式: .3.棱锥:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的,那么这个多面体叫做棱锥正棱锥:若一个棱锥的底面是正多边形且顶点在底面的射影是底面的,这样的棱锥叫做正棱锥。
圆锥:以直角三角形的为旋转轴,其余两边旋转360°形成的面所围成的旋转体叫作圆锥4.锥体的体积公式:5.棱柱的侧面积,圆柱的侧面积。
6. 圆锥的侧面展开图是,圆锥的侧面积。
7.表面积等于与之和。
8.正四面体:由四个全等的正三角形围成的空间封闭图形,或四面体的各个面都是边长相同的。
9.正四面体需要记忆的知识:正四面体的性质:设正四面体的棱长为a,则这个正四面体的(1)全面积 S全2 a;(2)体积3;(3)各面上的高线是:。
(4)各定点到底面的距离(即四面体的高线):。
(5)各对棱互相。
【真题演练】考点一、基本计算问题1、(2006年15)在三棱锥S-ABC中,已知侧棱SA,SB,SC两两互相垂直,且SA=3,SB=4,SC=5,则三棱锥S-ABC的体积V= 。
2、(2007年6)一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸湿了水桶横截面周长的14,当水桶直立时,水的高度与水桶的高度比值是()A.14B.4πC.114-πD.114-2π3、(2006年18)若圆锥的高H与底面半径R都是1,则该圆锥的内切球的表面积S= .4、(2010年16)已知一个圆锥的母线长为13,高为12,则此圆锥的内切球的表面积= 。
部编版2020学年高中数学第一章1.1简单几何体学案北师大版必修

§1 简单几何体1.1 简单旋转体 1.2 简单多面体1.了解柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.掌握简单几何体的分类.3.理解圆柱、圆锥、圆台及球的概念.(重点、难点)4.理解棱柱、棱锥、棱台等简单几何体的概念.(重点、难点)[基础·初探]教材整理1 两个平面平行及直线与平面垂直的概念 阅读教材P 3“1.1 简单旋转体”以上部分,完成下列问题. 1.两个平面平行:称无公共点的两个平面是平行的.2.直线与平面垂直:直线与平面内的任意一条直线都垂直,称为直线与平面垂直.长方体相对的两个侧面的位置关系是( ) A.平行 B.相交 C.平行或相交D.无法确定【解析】 根据两个平面平行的定义可知长方体相对的两个侧面平行,故选A. 【答案】 A教材整理2 简单的旋转体阅读教材P 3“1.1 简单旋转体”以下至P 4“1.2 简单多面体”以上部分,完成下列问题.1.定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.2.球、圆柱、圆锥、圆台的概念及比较:下列说法正确的是( ) A.直线绕定直线旋转形成柱面 B.半圆绕定直线旋转形成球体C.矩形绕任意一条直线旋转都可以围成圆柱D.圆柱的任意两条母线所在的直线是相互平行的【解析】 直线与定直线平行时,直线绕定直线旋转才形成柱面,故A 错误;半圆面以直径所在直线为轴旋转形成球体,故B 错误;矩形绕对角线所在直线旋转,不能围成圆柱,故C 错误,所以应选D.【答案】 D教材整理3 简单的多面体阅读教材P 4“1.2 简单多面体”以下至P 5部分,完成下列问题. 1.简单多面体的定义把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台是简单多面体. 2.棱柱、棱锥、棱台的结构特征下列几何体中,是棱锥的是( )【解析】 由棱锥的定义可知,选B. 【答案】 B[小组合作型]下列叙述中,正确的个数是( )(1)以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥; (2)以直角梯形的一腰所在直线为轴旋转所得的几何体是圆台; (3)用一个平面去截圆锥,得到一个圆锥和一个圆台; (4)圆面绕它的任一直径所在直线旋转形成的几何体是球. A.0个 B.1个 C.2个D.3个【精彩点拨】 解答时可根据旋转体的概念和性质进行具体分析.【自主解答】 (1)应以直角三角形的一条直角边所在的直线为旋转轴旋转才可得到圆锥,故(1)错;(2)以直角梯形垂直于底边的一腰所在直线为旋转轴旋转可得到圆台,故(2)错;(3)用平行于圆锥底面的平面去截圆锥,可得到一个圆锥和一个圆台,用不平行于圆锥底面的平面不能得到,故(3)错;(4)正确.【答案】 B1.圆柱、圆锥、圆台和球都是一个平面图形绕其特定直线旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求.2.只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误.[再练一题]1.下列说法正确的是________.①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③在空间中,到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错.应为球面.【答案】②(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱柱的侧面一定是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【导学号:39292000】【精彩点拨】根据棱锥、棱台的结构特征判断.【自主解答】 (1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱柱的侧面是对边平行的四边形; (3)正确,由棱锥的定义知棱锥的侧面只能是三角形; (4)正确,由四个面围成的封闭图形只能是三棱锥; (5)错误,如图所示四棱锥被平面截成的两部分都是棱锥. 【答案】(2)(3)(4)判断棱柱、棱锥、棱台形状的两个方法: (1)举反例法:结合棱柱、棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:[再练一题]2.给出下列几个结论:①棱锥的侧面为三角形,且所有侧面都有一个公共顶点; ②多面体至少有四个面;③棱台的侧棱所在直线均相交于同一点. 其中,错误的个数是( ) A.0个 B.1个 C.2个D.3个【解析】 ①正确;对于②,一个图形要成为空间几何体,它至少需有四个顶点,因为三个顶点只围成一个平面图形是三角形,有四个顶点时,易知它可围成四个面,因而一个多面体至少应有四个面,故这样的面必是三角形,所以②是正确的;对于③,棱台的侧棱所在的直线就是原棱锥的侧棱所在的直线,而棱锥的侧棱都有一个公共的点,即棱锥的顶点,于是棱台的侧棱所在的直线均相交于同一点,所以③是正确的.【答案】 A[探究共研型]探究1图111【提示】 (1)可看作由一个四棱柱和一个三棱柱组合而成,(4)可看作由两个四棱柱组合而成.探究2 试描述下列几何体的结构特征.图112【提示】 图①所示的几何体是由两个圆台拼接而成的组合体;图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.如图113所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.图113【精彩点拨】 过圆锥的轴作截面,利用三角形的相似来解决.【自主解答】 设圆台的母线长为l ,由截得圆台上、下底面面积之比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r .过轴SO 作截面,如图所示.则△SO ′A ′∽△SOA ,SA ′=3 cm , ∴SA ′SA =O ′A ′OA ,∴33+l =r 4r =14, 解得l =9(cm), 即圆台的母线长为9 cm.1.识别简单组合体的构成方法:组合体是由简单几何体通过拼接、截去或挖去一部分而形成的,因此,要仔细观察组合体的组成,结合柱、锥、台、球体的几何结构特征,对原组合体进行分割.2.与圆锥有关的截面问题的解决策略:求解有关圆锥的基本量的问题时,一般先画出圆锥的轴截面,得到一等腰三角形,进而可得到直角三角形,将问题转化为有关直角三角形的问题进行求解.通常在求圆锥的高、母线长、底面圆的半径长等问题时,都是通过取其轴截面,化归求解.巧妙之处就是将空间问题转化为平面问题来解决.[再练一题]3.一个正方体内接于高为40 cm ,底面圆的半径为30 cm 的圆锥中,求正方体的棱长. 【解】 如图,过正方体的体对角线作圆锥的轴截面, 设正方体的棱长为x , 则OC =22x ,∴22x 30=40-x40,解得x =120(3-22),∴正方体的棱长为120(3-22)cm.1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线; ④圆柱的任意两条母线所在的直线是互相平行的. 其中正确的是( )A.①②B.②③C.①③D.②④【解析】 依据圆柱、圆锥和圆台的定义及母线的性质可知,②④正确,①③错误. 【答案】 D2.下列说法中正确的是( )【导学号:39292001】A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱的侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.【答案】 A3.下面几何体的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台【解析】无论用怎样的平面去截球,截面一定是圆面,其他三个旋转体截面则不一定是圆面.【答案】 C4.已知圆锥的轴截面是正三角形,它的面积是3,则圆锥的高与母线的长分别为________.【解析】设正三角形的边长为a,则34a2=3,∴a=2.由于圆锥的高即为圆锥的轴截面三角形的高,所以所求的高为32a=3,圆锥的母线即为圆锥的轴截面正三角形的边,所以母线长为2.【答案】3,25.如图114所示为长方体ABCDA′B′C′D′,E、F分别为棱A′B′,C′D′上的点,且B′E=C′F,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由.图114【解】截面BCFE上方部分是棱柱,为棱柱BEB′CFC′,其中△BEB′和△CFC′是底面.截面BCFE下方部分也是棱柱,为棱柱ABEA′DCFD′,其中四边形ABEA′和四边形DCFD′是底面.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 简单几何体学案(含答案)
1简单几何体学习目标
1.理解旋转体与多面体的概念.
2.掌握球.圆柱.圆锥.圆台的结构特征.
3.掌握棱柱.棱锥.棱台的基本性质知识点一旋转体与多面体旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体多面体把若干个平面多边形围成的几何体叫作多面体思考构成空间几何体的基本元素是什么常见的几何体可以分成哪几类答案构成空间几何体的基本元素是点.线.面常见几何体可以分为多面体和旋转体知识点二常见的旋转体及概念名称图形及表示定义相关概念球记作球O球面以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面球体球面所围成的几何体叫作球体,简称球球心半圆的圆心球的半径连接球心和球面上任意一点的线段.球的直径连接球面上两点并且过球心的线段圆柱记作圆柱OO以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆柱高在旋转轴上这条边的长度.底面垂直于旋转轴的边旋转而成的圆面.侧面不垂直于旋转轴的边旋转而成的曲面.母线不垂直于旋转轴的边,无论转到什么位置都叫作侧面的母线圆锥记作圆锥OO以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫作圆锥圆台记作圆台OO以直角梯形垂直于底边的腰所在的直线为旋转轴,
其余各边旋转而形成的曲面所围成的几何体叫作圆台特别提醒1经过旋转体轴的截面称为该几何体的轴截面2圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点思考以直角三角形的一条直角边所在的直线为轴旋转180所得的旋转体是圆锥吗答案不是以直角三角形的一条直角边所在的直线为轴旋转180所得的旋转体是圆锥的一半,不是整个圆锥知识点三常见的多面体及相关概念1棱柱1定义要点两个面互相平行;其余各面都是四边形;每相邻两个四边形的公共边都互相平行2相关概念底面两个互相平行的面侧面除底面外的其余各面侧棱相邻两个侧面的公共边顶点底面多边形与侧面的公共顶点3记法如三棱柱ABCA1B1C
1.4分类及特殊棱柱按底面多边形的边数分,有三棱柱.四棱柱.五棱柱..直棱柱侧棱垂直于底面的棱柱正棱柱底面是正多边形的直棱柱2棱锥1定义要点有一个面是多边形;其余各面是三角形;这些三角形有一个公共顶点2相关概念底面除去棱锥的侧面余下的那个多边形侧面除底面外的其余三角形面侧棱相邻两个侧面的公共边顶点侧面的公共顶点3记法如三棱锥SAB
C.4分类及特殊棱锥按底面多边形的边数分,有三棱锥.四棱锥.五棱锥.,正棱锥底面是正多边形,且各侧面全等的棱锥3棱台1定义要点用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分2相关概念上底面原棱锥的截面下底面原棱锥的底
面侧棱相邻的侧面的公共边顶点侧面与底面的公共顶点3记法如三棱台ABCA1B1C
1.4分类及特殊棱台按底面多边形的边数分,有三棱台.四棱台.五棱台.,正棱台由正棱锥截得的棱台思考观察下列多面体,试指明其类别答案1五棱柱;2四棱锥;3三棱台1棱柱的侧面都是平行四边形2有一个面是多边形,其余各面都是三角形的几何体叫棱锥3直角三角形绕一边所在直线旋转得到的旋转体是圆锥4半圆绕其直径所在直线旋转一周形成球题型一旋转体的概念例1下列说法正确的是________填序号以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;圆柱.圆锥.圆台的底面都是圆;以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的曲面所围成的几何体是圆锥;用一个平面去截球,得到的截面是一个圆面考点简单几何体的结构特征题点简单旋转体的结构特征答案解析以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;它们的底面为圆面;正确反思感悟1
判断简单旋转体结构特征的方法明确由哪个平面图形旋转而成明确旋转轴是哪条直线2简单旋转体的轴截面及其应用简单旋转体的轴截面中有底面半径.母线.高等体现简单旋转体结构特征的关键量在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想跟踪训练1下列说法圆柱的轴截面是过母线的截面中面积最大的一个;用任意一个平面去截圆锥得到的截面一
定是一个圆面;圆台的任意两条母线的延长线,可能相交也可能不相交;球的半径是球心与球面上任意一点的连线段其中正确的个数为A0B1C2D3考点简单几何体的结构特征题点简单旋转体的结构特征答案C解析错误,截面可能是一个三角形;错误,圆台的任意两条母线的延长线必相交于一点;正确故选
C.题型二多面体及其简单应用例21下列关于多面体的说法正确的个数为________所有的面都是平行四边形的几何体为棱柱;棱台的侧面一定不会是平行四边形;底面是正三角形,且侧棱相等的三棱锥是正三棱锥;棱台的各条侧棱延长后一定相交于一点;棱柱的每一个面都不会是三角形考点简单几何体的结构特征题点多面体的结构特征答案3解析中两个四棱柱放在一起,如图所示,能保证每个面都是平行四边形,但并不是棱柱故错;中棱台的侧面一定是梯形,不可能为平行四边形,正确;根据棱锥的概念知,正确;根据棱台的概念知,正确;棱柱的底面可以是三角形,故错正确的个数为
3.2如图所示,长方体ABCDA1B1C1D1,M,N分别为棱A1B1,C1D1的中点这个长方体是棱柱吗如果是,是几棱柱为什么用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗如果是,是几棱柱,并用符号表示;如果不是,说明理由考点简单几何体题点简单几何体结构判断解长方体是棱柱,是四棱柱因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义用平
面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1MCC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1DCND
1.引申探究若用一个平面去截本例2中的四棱柱,能截出三棱锥吗解如图,几何体BA1B1C1就是三棱锥反思感悟1 棱柱的识别方法两个面互相平行其余各面都是四边形每相邻两个四边形的公共边都互相平行2棱锥的识别方法有一个面是多边形其余各面都是有一个公共顶点的三角形棱锥仅有一个顶点,它是各侧面的公共顶点对几类特殊棱锥的认识三棱锥是面数最少的多面体,又称四面体它的每一个面都可以作为底面各棱都相等的三棱锥称为正四面体正棱锥有以下性质侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直3棱台的识别方法上.下底面互相平行各侧棱延长交于一点跟踪训练2下列说法正确的是A有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B两底面平行,并且各侧棱也互相平行的几何体是棱柱C 棱锥的侧面可以是四边形D棱柱中两个互相平行的平面一定是棱柱的底面考点简单几何体题点简单几何体结构应用答案B解析A 中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧
面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D 不正确圆柱侧面展开图的应用典例如图所示,有一个底面半径为1,高为2的圆柱体,在A点处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由A点爬到B点,问蚂蚁爬行的最短距离是多少解把圆柱的侧面沿AB剪开,然后展开成为平面图形矩形,如图所示,连接AB,则AB即为蚂蚁爬行的最短距离AA为底面圆的周长,AA2
12.又ABAB2,AB2,即蚂蚁爬行的最短距离为
2.素养评析1求几何体表面上两点间的最小距离的步骤将几何体沿着某棱母线剪开后展开,画出其侧面展开图;将所求曲线问题转化为平面上的线段问题;结合已知条件求得结果2解决此类问题需要将空间图形转化为平面图形,也就是借助空间形式认识事物的位置关系.形态.变化等,同时,要理解运算对象,探究运算思路,所以本题体现了直观想象与数学运算的数学核心素养.1下列几何体中棱柱有A5个B4个C3个D2个考点简单几何体题点简单几何体结构判断答案D解析由棱柱的定义知,为棱柱2关于下列几何体,说法正确的是A图是圆柱B图和图是圆锥C图和图是圆台D图是圆台考点简单几何体题点简单几何体结构判断答案D解析由旋转体的结构特征知,D正确3下面有关棱台说法中,正确的是A上下两个底面平行且是相似四边形的几何体是四棱台B棱台的所有侧面都是梯形C棱台的侧棱长必相等D棱台的上下底面可能不是相似图形考点棱台的结构特征题点棱台的结构特征的应用答案B解析由棱台的结构特征知,B正确4等腰三角形
ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是A圆台B圆锥C圆柱D球考点简单旋转体的结构特征题点旋转体的结构特征答案B解析中线ADBC,左右两侧对称,旋转体为圆锥5用长和宽分别为3和的矩形纸板卷成圆柱的侧面,则圆柱的底面半径为________答案或解析当以矩形的长或宽分别做底面时,半径分别为或.1圆柱.圆锥.圆台的关系如图所示2棱柱.棱锥.棱台定义的关注点1棱柱的定义有以下两个要点,缺一不可有两个平面底面互相平行;其余各面侧面每相邻两个面的公共边侧棱都互相平行2棱锥的定义有以下两个要点,缺一不可有一个面底面是多边形;其余各面侧面是有一个公共顶点的三角形3用一水平平面截棱锥可得到棱台。