简单几何体
简单几何体 教案

简单几何体教案教案标题:探索简单几何体教学目标:1. 了解什么是简单几何体,并能够辨认和描述它们;2. 掌握简单几何体的基本属性,例如边数、面数和顶点数;3. 能够通过观察和实践,发现简单几何体之间的关系和特征;4. 培养学生的观察力、思维能力和合作精神。
教学资源:1. 简单几何体的模型或图片;2. 黑板/白板和彩色粉笔/马克笔;3. 学生练习册。
教学步骤:引入活动:1. 利用实物或图片展示简单几何体,例如立方体、圆柱体、圆锥体和球体。
2. 引导学生观察这些几何体的形状、边数、面数和顶点数,并鼓励他们提出自己的观察结果。
探索活动:3. 将学生分成小组,每个小组分配一种简单几何体的模型或图片。
4. 要求学生观察并描述他们手中的几何体,包括边数、面数和顶点数。
5. 引导学生讨论他们观察到的相似和不同之处,并记录在黑板/白板上。
知识巩固:6. 教师向学生介绍简单几何体的基本属性,包括:- 立方体:六个面、八个顶点和十二条边;- 圆柱体:三个面、两个圆形底面、一个侧面、两个顶点和零条边;- 圆锥体:两个面、一个圆形底面、一个侧面、一个顶点和零条边;- 球体:一个面、零个顶点和零条边。
7. 教师提供更多的简单几何体示例,并要求学生根据所学知识进行分类。
拓展活动:8. 将学生分成新的小组,每个小组分配一种简单几何体的模型或图片。
9. 要求学生设计一个小游戏或活动,让其他小组通过观察和描述来猜测他们手中的几何体是什么。
总结与评价:10. 教师与学生共同回顾所学内容,并提醒学生简单几何体的基本属性和分类方法。
11. 鼓励学生互相评价他们在小组活动中的表现,并提供积极的反馈和建议。
作业:12. 要求学生完成练习册中与简单几何体相关的练习题,巩固所学知识。
教学延伸:- 引导学生进一步探索简单几何体的应用,例如建筑设计、工程制图和艺术创作等领域。
- 鼓励学生使用不同材料和工具制作简单几何体的模型,以加深对其属性的理解。
立体几何-简单几何体

简单几何体
基本思想:利用空间图形,培养空间想象能力,分析图形及其结构特征
1,简单旋转体:圆柱、圆锥、圆台、球
分析截面:横截面(中截面)、竖截面(轴截面)
2,简单多面体:棱柱(直、正)、棱锥(正)--高与斜高、棱台(正)---高与斜高
分析截面:横截面、竖截面
3,组合体
4,折叠与展开
位于同一面上的诸元素间的位置关系不变,而涉及两个面之间的图形之间则发生量的变化。
立体图形的展开或平面图形的折叠是培养空间立体感的好方法
1,已知某圆柱的底面半径为1cm,高为2cm,求该圆柱的侧面积,表面积和体积。
2,已知用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长。
3,圆台的两底面的半径分别为2和5
,母线长为
4,已知半径为5的球的两个平行截面的周长分别为6π和8π,求这两个截面圆心之间的距离。
5,已知某正三棱柱的底面边长为1,高为2,求该正三棱柱的侧面积,表面积和体积。
6,已知正四棱锥V A B C D
-,底面面积为16
,侧棱长为,计算它的高和斜高。
7,设正三棱台的上、下底面的边长分别为2cm和5cm,侧棱长为5cm,求这个棱台的高。
8,在以O为顶点的三棱锥中,过O的三条棱两两的交角都是30︒,在一条棱上取A、B两
点,OA=4cm,OB=3cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面摩擦),求此绳在A、B之间的最短绳长。
国赛中职数学简单几何体教案

国赛中职数学简单几何体教案教案标题:国赛中职数学简单几何体教案教案目标:1. 通过本课的学习,学生将能够理解简单几何体的概念和特征。
2. 学生将能够运用所学知识解决与简单几何体相关的问题。
3. 学生将能够在国赛中应用所学知识,提高解题能力和竞赛成绩。
教学重点:1. 理解简单几何体的定义和特征。
2. 运用所学知识解决简单几何体相关的问题。
教学难点:1. 运用所学知识解决与简单几何体相关的复杂问题。
2. 在国赛中应用所学知识,提高解题能力和竞赛成绩。
教学准备:1. 教师准备:教学课件、教学素材、国赛相关试题。
2. 学生准备:教材、练习册、计算器、尺子、铅笔等。
教学过程:Step 1:导入(5分钟)教师通过展示一些简单几何体的图片,引发学生对几何体的兴趣,并与学生讨论几何体的特点和应用。
Step 2:概念讲解(10分钟)教师通过教学课件或黑板,向学生介绍简单几何体的定义和特征,如球体、立方体、圆柱体等,并给出相关的示例。
Step 3:知识巩固(15分钟)教师组织学生进行小组讨论,让学生运用所学知识解决一些简单几何体相关的问题,并在讨论中指导学生思考和解决问题的方法。
Step 4:拓展应用(15分钟)教师提供一些国赛相关的试题,让学生运用所学知识解决问题,并进行个人或小组竞赛,以提高学生的解题能力和竞赛成绩。
Step 5:总结归纳(5分钟)教师对本节课的内容进行总结,并强调学生在国赛中应用所学知识的重要性和技巧。
Step 6:作业布置(5分钟)教师布置相关的练习题,要求学生独立完成,并鼓励学生参加国赛前的模拟考试,以检验学习效果。
教学延伸:1. 鼓励学生参加数学竞赛,提高解题能力和竞赛成绩。
2. 提供更多的国赛相关试题,让学生进行针对性的练习和讨论。
教学评估:1. 教师通过课堂讨论和练习题的批改,评估学生对简单几何体的理解和应用能力。
2. 参加国赛前的模拟考试,评估学生在竞赛中的解题能力和竞赛成绩。
教学反思:1. 针对学生在解题过程中的困难和错误,及时给予指导和纠正。
立体几何初步——第一章:简单几何体

A.是梯形,不一定是等腰梯形
B.一定是等腰梯形
C) A.圆台是直角梯形绕它的一腰旋转后而成的几何体 B.用平行于圆锥底面的平面去截此圆锥得到一个圆锥和一个圆台 C.用过圆锥的轴的平面截圆锥得到的一定是等边三角形 D.一平面截圆锥,截口形状是圆
球的截面
用平面去截一个球,
C
截面都是圆面;
球面被经过球心的 平面截得的圆叫做 球的大圆;
其它截面圆叫做球的小圆;
请大家想一想怎样用集合的观点去定义球?
把到定点O的距离等于或小于定长的点 的集合叫作球体,简称球。(包括球面)
其中: 1.把定点O叫作球心,定长叫作球的半径 2.到定点O的距离等于定长的点的集合叫作球 面。
二、填空题: (1)用一张6×8的矩形纸卷成一个圆柱,其轴
截面的面积为___4_8____.
(2)圆台的上、下底面的直径分别为2 cm,10cm,高为3cm,则圆台母线长为 5cm _______.
O
A
2、圆锥的表示:
用表示它的轴的字母表示, 如圆锥SO。
旋转轴叫做圆锥的轴。
S
垂直于轴的边旋转而成的曲 面叫做圆锥的底面。
不垂直于轴的边旋转
而成的曲面叫做圆锥
的侧面。
BO
无论旋转到什么位置不 垂直于轴的边都叫做圆 锥的母线。
轴 母线
A 底面
六、圆台的结构特征
1、定义:用一个平行于圆锥底面的平 面去截圆锥,底面与截面之间的部分,这 样的几何体叫做圆台。
球面距离 在球面上,两点之间
最短连线的长度,是经过这两点的
大圆在两点间的劣弧的长度,称这
段劣弧的长度为这
两点的球面距离; 举例:
P O
①飞机的飞行航线;
几类简单的几何体

A.棱柱
B.棱锥
C.棱台
D.可能是棱台,也
可能不是棱台,但一定不是棱柱和棱锥
4/4/2020
在正方体上任意选择4个顶点,它们可能是 如下各种几何体的4个顶点,① 这③些④几何体是-
----
矩形;不是矩形的平行四边形;有三
个三面角为形等的腰四直面D1角 体三 ;角 ④形 每, 个C有 面1 一 都个 是面等为边等三边角
三棱锥
四棱锥
五棱锥
1.如果棱锥的底面是正多边形, 且各侧面全等, 就称作正棱锥.
2.各侧面是等边三角形的正三棱锥是正四面体.
S
S
正六棱锥
正四面体
FE
A
D
BC
A
C
B
(三)棱台 (1)用一个平行于棱锥底面的平面去
截棱锥, 底面与截面之间的部分叫作棱台.
棱锥
棱台
(2)棱台的表示
棱台ABCD-A1B1C1D1
几类简单的几何体
三维空间是人类生存的现实空间,生活 中蕴涵着丰富的几何体,请大家欣赏下 列各式各样的几何体。
(一)多面体
这些几何体是由平面多边形围成的
多面体:由平面多边形围成的几何体称为多面体. 这些多边形称为多面体的面,两个相邻的面的公 共边,称为多面体的棱.每个多边形的顶点也就 是每条棱的端点,称为多面体的顶点.
棱台A1C
侧
(3)棱台的分类
棱
按底面多边形的边数分类可分为
A
三棱台、四棱台、五棱台等.
用正棱锥截得的棱台叫作正棱台.
上底面
D1
C1
A1
B1
侧面
D
C
B
下底面
例1 判断下列说法的真假
简单几何体

5、棱柱
❖ 棱柱 有两面平行,其余面都是四边形,相邻四边形都平行。
❖ 底面:平行的两面。其余面叫侧面。面都是平行四边形。两
面的公共边叫棱。两侧面的公共边叫侧棱。侧面、底面的
公共顶点叫顶点。夹在两底间的垂直于底的直线段长叫高。
❖ 斜棱柱 侧棱不垂直于底的棱柱。直棱柱 侧棱垂直于底 的棱柱。正棱柱 侧棱垂直于底且底面是正多边形的棱柱。
2、旋转面与旋转体
❖一条平面曲线绕其所在平 面上的一定直线旋转形成 的曲面叫旋转面。
❖封闭的旋转面围成的几何 体叫旋转体。
3、圆柱 圆锥 圆台
❖ 以矩形的一边所在直线为旋转轴,其余边旋转形成 的曲面围成的几何体叫圆柱。
❖ 以直角三角形的一直角边所在直线为旋转轴,其余 边旋转形成的曲面围成的几何体叫圆锥。
1、球的认识
❖ 球面:半圆绕其直径旋转一周形成的曲面。半圆的 圆心叫球心,球心与球面上任一点的连线段叫球的 半径,连接球面上两点且过球心的线段叫球的直径。
❖ 球体:球面围成的几何体叫球。 ❖ 探究思考:a.球与球面有什么区别?
一个平面去截球面得到什么图形? 其大小有无变化?
c.地球仪上的经线纬线是什么图形? d.球面上两点间的最短连线是线段吗?
❖ 按底面边数又可称为三棱柱,四棱柱,五棱柱…。
❖ 以直角梯形的垂直于底边的腰所在直线为旋转轴, 其余边旋转形成的曲面围成的几何体叫圆台。在轴 上的这边长度叫高,垂直于轴的边形成底面,不垂 直于轴的边形成侧面且无论转到何处,这边都叫侧 面的母线。
❖ 探究思考:圆柱 圆锥 圆台有何关系?
4、简单多面体
❖若干个平面多边形围成的 几何体叫简单多面体。
《简单几何体》课件

角度
几何体的角度属性描述了它 们的形状和倾斜程度,对于 计算和分类非常重要。
周长、面积、体积
周长是封闭曲线的长度,面 积是平面上的面积,体积是 三维几何体的容积。
实践演习
1
判断几何体
给出几何体特征,让学生判断是哪种
计算属性
2
几何体,提高他们的观察和辨别能力。
给出几何体的一些属性,让学生计算
周长、面积、体积等,培养他们的计
几何体的种类
点
点是最简单的几何体,没有长度、宽度和高 度,只有位置。
面
面由无数相连的线组成,具有长度和宽度, 但没有高度。
线
线由无数相连的点组成,具有长度但没有宽 度。
三角形
三个线段相连而成的面,具有三条边和三个 角。
几何体的属性ຫໍສະໝຸດ 长度、宽度、高度几何体的尺寸属性描述了它 们在空间中的大小,可以用 数值来表示。
《简单几何体》PPT课件
本PPT课件将介绍简单几何体的种类、属性以及学习的重要性,通过实践演习 锻炼学生的认知和计算能力。
介绍
1 什么是简单几何体?
2 为什么学习简单几何体?
简单几何体是由基本要素构成的二维或三 维图形,包括点、线、面和不规则形状等。
学习简单几何体有助于培养学生的空间想 象能力、逻辑思维和问题解决能力,并为 未来的数学学习奠定基础。
算和推理能力。
3
拓展应用
通过实际问题和场景,让学生应用几 何体的知识,培养他们的解决问题的 能力。
总结
简单几何体的重要性
简单几何体是数学学习的基石,培养学生的几何 思维和抽象能力,对日常生活和职业发展有积极 影响。
下一步学习的方向
了解简单几何体后,学生可以进一步学习复杂几 何体、立体几何和几何运动等更高级的几何概念。
几何体的三种分类方法

几何体的三种分类方法几何体是指具有一定形状和空间特征的物体,它们可以根据不同的特征和属性进行分类。
在几何学中,常用的三种分类方法是按形状、按结构和按特征。
下面将分别对这三种分类方法进行详细介绍。
一、按形状分类按形状分类是最常用的几何体分类方法之一,它根据几何体的外形特征将其划分为不同的类别。
常见的按形状分类的几何体有球体、圆柱体、正方体、长方体、圆锥体等。
1. 球体:球体是由所有与一个固定点距离相等的点组成的几何体,它具有无限个面、边和顶点,并且所有的面都是等圆面。
球体在日常生活中广泛应用,如篮球、足球等都属于球体。
2. 圆柱体:圆柱体是由一个圆形的底面和一个平行于底面的圆形顶面连同这两个圆面之间的所有点组成的几何体。
圆柱体具有两个平行的底面、一个侧面和两个顶点。
常见的圆柱体有水杯、筒灯等。
3. 正方体:正方体是由六个相等的正方形面组成的几何体,它具有六个正方形面、八个顶点和十二条边。
正方体在建筑、家具等领域中被广泛应用,如盒子、骰子等。
4. 长方体:长方体是由六个矩形面组成的几何体,它具有六个矩形面、八个顶点和十二条边。
长方体在日常生活中随处可见,如电视机、书桌等。
5. 圆锥体:圆锥体是由一个圆形的底面和一个顶点连同这两个面之间的所有点组成的几何体。
圆锥体具有一个圆形底面、一个尖顶和一个侧面。
常见的圆锥体有冰淇淋蛋筒、路灯等。
二、按结构分类按结构分类是根据几何体的内部结构将其分类。
常见的按结构分类的几何体有简单几何体和复杂几何体。
1. 简单几何体:简单几何体是指由基本几何图形组成的几何体,它们可以用简单的公式计算其面积和体积。
如球体、正方体、圆柱体等都属于简单几何体。
2. 复杂几何体:复杂几何体是指由多个基本几何图形组合而成的几何体,它们的面积和体积计算比较复杂。
如椎体、棱柱体、棱锥体等都属于复杂几何体。
三、按特征分类按特征分类是根据几何体的特征和属性将其分类。
常见的按特征分类的几何体有对称几何体和非对称几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
10
四、圆柱的结构特征
1、定义:以矩形的一边所在直线为 O1 旋转轴,把它在空间中旋转一周后,其余 三边旋转形成的曲面所围成的几何体叫做 圆柱。
矩形
O
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 成的曲面叫做圆柱的侧面。
(4)无论旋转到什么位置不 11 垂直于轴的边都叫做圆柱的母线。
直角三角形
(1)旋转轴叫做圆锥的轴。
O
A
(2) 垂直于轴的边旋转而成 的圆面叫做圆锥的底面。
(3)不垂直于轴的边旋转而 成的曲面叫做圆锥的侧面。 (4)无论旋转到什么位置不 14 垂直于轴的边都叫做圆锥的母线。
2、圆锥的表示: 用表示它的轴的 端点的两个字母 表示,如所示, 记为:圆锥SO
B
S
轴
侧面 母线
问题3如果把一个半圆面绕着其直径所在的 直线在空间旋转一周,则半圆面在旋转的 过程中所形成的图形会是什么呢?(球体)
6
七、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转轴,将 半圆旋转一周后所形成的曲面叫作球面。
把球面所围成的几何体叫作球体,简称球。
其中:把半圆的圆心叫做球心。 连结球心与球面上的任意一点的线段叫作球 的半径。
侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底 面
25
一、 观察下列几何体并思考:棱柱(1), (3)与棱柱(2)的不同之处?
(1)
(2)
(3)
26
两个特殊的棱柱:直棱柱与正棱柱 把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱; 直棱柱的性质:直棱柱的侧面都是矩形;
面去截它们,那么所得的截面是什么图形?
性质1:平行于圆柱,圆锥,圆台底面的截面都是 圆。
2.过圆柱,圆锥,圆台的旋转轴的截面是什么图形?
性质2:过轴的截面(轴截面)分别是全等的矩形,等 腰三角形,等腰梯形。
3.用一个平面去截球体得到的截面是什么图形? 性质3:用一个平面去截球体得到的截面是一个圆。
38
正棱柱的性质:正棱柱的侧面是全等的矩
形;
27
2、棱柱的分类:棱柱的底面可以是三角形、四 边形、五边形、 …… 我们把棱柱按照底面多边 形边数的多少,可分三棱柱、四棱柱、五棱 柱、……
三棱柱
四棱柱
五棱柱
28
3、棱柱的表示法(下图)
棱柱用表示两底面多边形的顶点的字母表 示棱柱,如:棱柱ABCDE-A1B1C1D1E1 。
判断题:
(1)在圆柱的上下底面上各取一点,这两点的连
线是圆柱的母线.
(
)
(2)圆台所有的轴截面是全等的等腰梯形.( )
(3)与圆锥的轴平行的截面是等腰三角形.(
)
39
棱台的性质:棱台的上下底面平行,侧棱的延长线交于一点
36
2、棱台的分类:由三棱锥、四棱锥、五棱 锥…截得的棱台,分别叫做三棱台,四棱台, 五棱台…
3、棱台的表示法:棱台用表示上、下底面各 顶点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1 B1 C
1
37
思考题:1.用平行于圆柱,圆锥,圆台的底面的平
2、表示:用表示它的轴的端点的两个字 母表示,如圆柱OO1。 O
O1
侧面 轴 底面
母线
12
问题5: 如图所示:把直角三角形ABC绕着其一 边AB所在的直线在空间中旋转一周,则直角 三角形ABC的其它两条边在旋转的过程中所 形成的曲面围成的几何体会是什么呢?
B
A
C
13
五、圆锥的结构特征
S
1、定义:以直角三角形的一条直角 边所在直线为旋转轴,其余两边旋转而成 的曲面所围成的几何体叫做圆锥。
21
棱
面
面 棱 顶点
面
22
一、 观察下列几何体并思考: 它们具有哪些性质?
23
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 两个互相平行的平面叫做棱柱的底面,其 余各面叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。
O
A 底面
15
问题6: 如图所示: 直角梯形ABCD绕着它的垂直 于底边的腰AB所在的直线在空间中旋转一周, 则直角梯形ABCD的其它三条边在旋转的过程 中所形成的曲面围成的几何体会是什么呢? B A C D
16
六、圆台的结构特征: 圆台的定义1:把直角梯形绕着它的垂直于底边
的腰所在的直线在空间中旋转一周,则直角梯形 的其它三条边在旋转的过程中所形成的曲面围成 的几何体会叫作圆台。
29
二、观察下列几何体,有什么相同点?
30
1、棱锥的概念
有一个面是多边形,其余各面是有一个 公共顶点的三角形, 由这些面所围成的几何 体叫做棱锥。
这个多边形面叫做棱锥的底面。 有公共顶点的各个三角形叫做棱锥 的侧面。 各侧面的公共顶点叫做棱锥的顶点。 相邻侧面的公共边叫做棱锥的侧棱。
31
S
棱锥的顶点 棱锥的侧棱
17
圆台的定义2:用一个平行于圆锥底面 的平面去截圆锥,底面与截面之间的部分, 这样的几何体叫做圆台。
18
2、圆台的表示: 用表示它的轴的字母表示,如圆台OO′
O'
底面 轴 侧面 母线 底面
19
O
总结:由于球体、圆柱、圆锥、圆台分别由平 面图形半圆、矩形、直角三角形、直角梯形通பைடு நூலகம்过绕着一条轴旋转而生成的,所以把它们都叫 旋转体。
8
大圆:球被经过球心的平面截得的圆面叫大 圆。 大圆:球被不经过球心的平面截得的圆面叫 大圆。 球面距离:在球面上,两点之间最短连线的 长度,称为这两点间的球面距离。 问:球面距离指的是大圆的圆弧长还是小圆的 圆弧长?
9
问题4: 如图所示:把矩形ABCD绕着其一边 AB所在的直线在空间中旋转一周,则矩形的 其它三条边在旋转的过程中所形成的曲面围 成的几何体会是什么呢?
34
思考题:用一个平行于棱锥底面的平面 去截棱锥,那么所得截面与棱锥底面 之间的几何体会是怎样的一个几何体 呢?
A1
D1
B1
C1
A1
D1 B1
C1
35
三、棱台的结构特征 1、棱台的概念:用一个平行于棱锥底面 的平面去截棱锥,底面和截面之间的部分 叫做棱台。
A1 D1 B1 C1 上底面 侧面 侧棱 下底面 顶点
连结球面上的任意两点且过球心的线段叫做球的直 径(图中AB)。
A O
半径
2、球的表示:用表示球心的字 母表示,如球O
B
球心
7
请大家想一想怎样用集合的观点去定义球? 把到定点O的距离等于或小定长的点的集 合叫作球体,简称球。 其中:把定点O叫作球心,定长叫作球的 半径 到定点O的距离等于定长的点的集合叫作 球面。
20
§1.2:简单的多面体
1.多面体的定义:把由若干个平面多边形围成的空间图
形叫做多面体。 自然界有很多的物体都呈多面体的形状,如图所示: 其中:把围成多面体的各个多边形叫作多面体的面;两个 面的公共边叫作多面体的棱,棱与棱的公共点叫作多面 体的顶点; 连结不在同一个面内的两个顶点的线段叫作多面体的对 角线。例如: 多面体按照它的面数的多少,可以分为:四面体、五面 体、六面体、、、、、
1
§1.简单几何体
导入:三维空间是人类生存的现实空间,生活
中蕴涵着丰富的几何体,请大家欣赏下列各式 各样的几何体。
2
3
§1.1:简单的旋转体
问题1:如图所示:已知线段AB垂直于直线L 于A点,如果把线段AB绕着点A旋转一周, 且在线段AB在旋转的过程中始终与直线L垂 直,那么线段AB在旋转的过程中所形成的图 形会是什么呢?
D
E A B
棱锥的侧面 C 棱锥的底面
32
一个特殊的棱锥:正棱锥
把底面为正多形,侧面是全等的三角形的棱锥叫作
正棱锥
正棱锥的性质:正棱锥的侧棱长相等;侧面是全等
的等腰三角形;
33
S A
B
D C
2、棱锥的分类:按底面多边形的边数,可 以分为三棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面的 字母表示。如四棱锥S-ABCD。
AA B
L
4
问题2:如图所示:已知直线AB垂直于直线L于O点,如 果把直线AB绕着点O点旋转一周,且直线AB在旋转的 过程中始终与直线L垂直,那么直线AB在旋转的过程中 所形成的图形会是什么呢?
A
O
B
L
5
问题3:如图所示:把半圆O绕着其直径AB所 在的直线在空间旋转一周,则半圆O在旋转 的过程中所形成的图形会是什么呢?(球面)