扩展有限元的基本知识1
扩展有限元简介

扩展有限元有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。
1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。
扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。
利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。
扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。
扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。
其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。
整体划分位移函数表示为αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('411式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。
沿裂纹面间断跳跃函数)(x H 表达式为:otherwisen x x if x H 0)(11)(*≥-⎩⎨⎧-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。
各向同性材料的裂纹尖端渐进函数)(x F α表达式为:⎥⎦⎤⎢⎣⎡=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。
扩展有限元法(XFEM)及其应用12

• 1999年,以美国西北大学Belytschko教授为代表 的研究组首先提出了XFEM的思想[21],2000年, 他们正式提出了XFEM术语[22]。XFEM是迄今为 止求解不连续力学问题的最有效的数值方法,它 在标准有限元框架内研究问题,不需要对结构内 存在的几何或物理界面进行剖分,保留了CFEM 的所有优点。XFEM与CFEM的最根本区别在于所 使用的网格与结构内部的几何或物理界面无关, 从而克服了在诸如裂纹尖端等高应力和变形集中 区进行高密度网格剖分所带来的困难,当模拟裂 纹扩展时也无需对网格进行重新剖分。XFEM在 处理裂纹问题包括以下三个方面[23]:
• 2. 单位分解法(PUM) • 2.1 单位分解法的基本概念 • 1996年Melenk和Babuska[24]及Duarte和 Oden[25]先后提出了单位分解法(PUM), 其基本思想是任意函数ψ(x)都可以用域内一 组局部函数NI(x)ψ(x)表示,即 • ,, (1) • 其中,NI(x)为有限单元形状函数, 它形成一 个单位分解。 N ( x) 1 • , (2) • 基于此,可以对有限元形状函数根据需要 进行改进。
• 数值方法,如有限元、边界元、无单元法等,特别是有限 元法(FEM)已被广泛用于处理不连续问题。有限元法具 有其它数值方法无可比拟的优点,如适用于任意几何形状 和边界条件、材料和几何非线性问题、各向异性问题、容 易编程等,是数值分析裂纹问题的主要手段。这方面的工 作很多,无法一一列举。Oritz等[1]及Belytschko等[2]通过 使用多场变分原理,用可以横贯有限单元的“弱”(应变) 间断模拟剪切带。Dvorkin等[3]通过修改虚功原理表达式 考虑了“强”(位移)间断问题;Lotfi和Sheng[4]将HuWashizu变分原理推广至具有内部间断的物体中;通过考 虑软化本构律和界面上的面力-位移关系,Simo及其同 事[5,6]提出了分析强间断问题的统一框架,很多研究者 [7-12]将该法应用到变形局部化分析中。Borja[13]提出了 分析强间断问题的标准Galerkin公式,并证明它与假定改 进应变逼近等价。
有限元基本知识

有限元的基本概念
计算等效节点力 单元特性分析的另一个重要内容是建立单元的外部 "载荷" (包括单元之间的内部 "载荷") 与单元节点物理 量之间的关系。 物体离散化后,假定力是通过节点从一个单元传递 到另一个单元。但是,对于实际的连续体,力可以作用 在单元的任意区域或位置 (体积力、分布面力、集中力 等),也可以在一个单元与相邻单元的公共边 (线、面) 之间进行传递。因而,这种作用在单元上的表面力、体 积力和集中力都需要等效的移到节点上去,也就是用等 效的节点力来代替所有作用在单元上的力。
{u} - 单元中任意点的物理量值,它是坐标的函数: {u} = {u (x,y,z)} [P] - 形状函数,与单元形状、节点坐标和节点自由度等有关 {ue} - 单元节点的物理量值;对于结构位移法可以是位移、转 角或其对坐标的导数。 常用的大型分析软件中基本上是位移+转角。
有限元分析的基本过程
结构分析时一些常用单元的节点自由度 (在单元坐标系中) 杆元:单元形状为线段,变形形式为拉伸和扭转。 在单元坐标系中: 节点自由度为 Tx 和 Rx,其中 x 为杆的轴线。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。 梁元:单元形状为线段,变形形式为拉伸、扭转,以及两个垂 直于轴线方向的弯曲 在单元坐标系中: 节点自由度为 Tx,Ty,Tz,Rx,Ry,Rz。其中 x 为梁的 轴线,Y,z 为梁截面的两个抗弯惯矩主轴方向。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。
有限元分析的基本过程
有限元分析的基本过程
单元形状函数举例 (未必是实际使用的单元):
(1) 一维单元
a. 杆单元 轴向拉伸和扭转:节点位移自由度为 Tx,Rx 对 2 节点单元 (线性单元): Tx = a0 + a1 * x Rx = b0 + b1 * x 各有 2 个未知数,可以由 2 个节点的位移值确定; 对 3 节点单元 (二次单元): Tx = a0 + a1 * x + a2 * x2 Rx = b0 + b1 * x + b2 * x2 各有 3 个未知数,可以法的发展 有限元分析方法最早是从结构化矩阵分析发展而来,逐步推广 到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有 效的数值分析方法。 (1) 有限元方法已发展到流体力学、温度场、电传导、磁场、 渗流和声场等问题的求解计算,目前又发展到求解几个交叉学科的 问题。 例如当气流流过一个很高的铁塔产生变形,而塔的变形又反过 来影响到气流的流动……这就需要用固体力学和流体动力学的有限 元分析结果交叉迭代求解,即所谓"流固耦合"的问题。 (2) 由求解线性工程问题进展到分析非线性问题 线性理论已经远远不能满足设计的要求。 例如:航空航天和动力工程的高温部件存在热变形和热应力, 要考虑材料的非线性 (弹塑性) 问题;诸如塑料、橡胶和复合材料 等各种新材料的出现,也只有采用非线性有限元算法才能解决。
ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。
ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。
目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。
1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。
而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。
然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。
而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。
从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。
但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。
直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。
与之对应的形函数便是和其中H(x)是阶跃函数。
想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。
有限元知识点汇总

有限元知识点汇总有限元知识点汇总第一章1、何为有限元法?其基本思想是什么?》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。
》基本思想:化整为零,化零为整2、为什么说有限元法是近似的方法,体现在哪里?》有限元法的基本思想是几何离散和分片插值;》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用与问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。
3、单元、节点的概念?》单元:把参数单元划分成网格,这些网格就称为单元。
》节点:网格间相互连接的点称为节点。
4、有限元法分析过程可归纳为几个步骤?》3大步骤;——结构离散化;——单元分析;——整体分析。
5、有限元方法分几种?本课程讲授的是哪一种?》有限元方法分3种;——位移法、力法、混合法。
》本课程讲授的:位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移}》几何方程——{描述弹性体应变分量与位移分量之间关系的方程} 》物理方程——{描述应力分量与应变分量之间的关系}》虚功方程——{描述内力和外力的关系的方程}》弹性矩阵特点——{ }7、何为平面应力问题和平面应变问题?》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用}》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力}第二章7、形函数的特点?》1形函数Ni再节点i处等于1,在其他节点上的值等于0,对于Nj、Nm也有同样的性质。
扩展有限元法

扩展有限元法
#### 1.一维稳定性
有限元法可以用来解决一维稳定性问题,利用一维稳定性的基本原理,通过对实际结构的有限元单元网格进行分形集中或分散处理,以及对单元类型和形式进行选择,有效获取和分析各种参数,如材料参数、载荷参数、面宽参数以及梁中无弯度形状参数,从而得出有限元反应的刚度、弯矩、变形和应力的计算结果,进而估计和预测一维结构的承载能力、抗屈曲、变形或塑性扭曲变形。
#### 2.刚构结构
利用有限元法,可以进行刚构结构的力学分析,可以知晓构件在由外力所作用下,构件各点的位移、变形,以及构件各点的应力、应变,同时由于刚构结构个别构件之间也会存在约束关系,故必需考虑构件之间的相互影响,利用约束条件完成构件的组合,以此来估计稳定的系统的性能。
有限元基本知识归纳

有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
扩展有限元方法和裂纹扩展

扩展有限元方法和裂纹扩展1.1 扩展有限元方法(XFEM )基本理论1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。
他们正式应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也成为计算断裂力学的重要分支。
XFEM 在有限元的框架下进行求解,无需对构件内部的物理界面进行网格划分,具有常规有限元方法的所有优点。
它最明显的特点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任意路径,而且计算精度和效率得到了显著的提高[6]。
扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界面独立于有限元网格。
XFEM 主要包括以下三部分内容:首先是不考虑构件的任何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹的扩展。
最后通过引入不连续位移模式来表示不连续几何界面的演化。
因为改进的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法的刚度矩阵特性保持一致。
单元分解法(Partition Of Unity Method)和水平集法(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面位置都可用它的零水平集函数来表示。
(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数()()x x N I ϕ表示,满足如下等式:()()()x x N x II ϕφ∑= (1)其中,它们满足单位分解条件:f I Iåx ()=1 ()x N I 是有限元法中的形函数,根据上述理论,便可以根据需要对有限元的形函数进行改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
i
n { (x)} 覆盖 i 的单位分解函数。 i 1
设函数 Vi (x) 为函数u (x) 在子域i 内的近似函 数,则函数u (x) 在求解域 的全局近似可取为
u (x) i (x) Vi (x)
i 1 n
i 中逼近u (x) 在单位分解法中,任何能够在子域 的函数都可以作为局部近似函数。
扩展有限元的基本知识
制作时间:2014.12.12
有限元在处理间断问Байду номын сангаас的缺陷
有限元采用的是连续性的位移近似函数,对于裂 纹类强间断问题,为获得足够的计算精度,需要 对网格进行足够的细分,计算量极大。 采用拉格朗日法求解裂纹动态扩展、流固耦合、 局部剪切等特大变形问题时,有限元网格可能会 发生严重扭曲,使计算精度急剧下降甚至计算无 法继续,因此,需要不断的进行网格重构、计算 量极大,同时,也为了模拟裂纹的动态扩展过程, 也需要不断的进行网格重构。
扩展有限元的提出
1999年,美国西北大belytschko 研 究组提出的扩展有限元。借助于对 研究问题的已有认识,在满足单位 分解的前提下,在位移近似函数中 增加更能反映实际间断特征的函数 项(称为富集函数)提高了计算精 度。采用水平集法(LSM)或快速 推进法(FMM)描述间断界面,使 间断的描述独立于有限元网格,避 免了计算过程中的重构。
扩展有限元的概念
扩展有限元(XFEM):是在标准有限元方法的 框架下,提出来的一种用于解决裂纹、孔洞、夹 杂等间断问题的数值方法。在有限元的近似函数 中,增加能反映待求问题特性的附加函数项,采 用水平集法(LSM)描述间断面的几何特征及其 移动规律。
扩展有限元的优点
• 计算精度高 • 勿需网格重构
单元分解函数
扩展有限元近似函数的基础是单元分解法。单元分 解法使用一些以节点 xi 为中心的子域 i 来覆盖整 个求解区域即 n
i
i 1
在每个子域 i上定义一个仅在该子域内非 零的函数 i (x) ,并且它们满足单位分解条 件: n 则函数集 {i (x)}in1 称为属于开 (x) 1