有限元基础知识归纳

合集下载

有限元知识点汇总

有限元知识点汇总

有限元知识点汇总第一章1、何为有限元法?其基本思想是什么?》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。

》基本思想:化整为零,化零为整2、为什么说有限元法是近似的方法,体现在哪里?》有限元法的基本思想是几何离散和分片插值;》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用与问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。

3、单元、节点的概念?》单元:把参数单元划分成网格,这些网格就称为单元。

》节点:网格间相互连接的点称为节点。

4、有限元法分析过程可归纳为几个步骤?》3大步骤;——结构离散化;——单元分析;——整体分析。

5、有限元方法分几种?本课程讲授的是哪一种?》有限元方法分3种;——位移法、力法、混合法。

》本课程讲授的:位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移}》几何方程——{描述弹性体应变分量与位移分量之间关系的方程}》物理方程——{描述应力分量与应变分量之间的关系}》虚功方程——{描述内力和外力的关系的方程}》弹性矩阵特点——{ }7、何为平面应力问题和平面应变问题?》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用}》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力}第二章7、形函数的特点?》1形函数Ni再节点i处等于1,在其他节点上的值等于0,对于Nj、Nm也有同样的性质。

有限元基本知识

有限元基本知识

有限元的基本概念
计算等效节点力 单元特性分析的另一个重要内容是建立单元的外部 "载荷" (包括单元之间的内部 "载荷") 与单元节点物理 量之间的关系。 物体离散化后,假定力是通过节点从一个单元传递 到另一个单元。但是,对于实际的连续体,力可以作用 在单元的任意区域或位置 (体积力、分布面力、集中力 等),也可以在一个单元与相邻单元的公共边 (线、面) 之间进行传递。因而,这种作用在单元上的表面力、体 积力和集中力都需要等效的移到节点上去,也就是用等 效的节点力来代替所有作用在单元上的力。
{u} - 单元中任意点的物理量值,它是坐标的函数: {u} = {u (x,y,z)} [P] - 形状函数,与单元形状、节点坐标和节点自由度等有关 {ue} - 单元节点的物理量值;对于结构位移法可以是位移、转 角或其对坐标的导数。 常用的大型分析软件中基本上是位移+转角。
有限元分析的基本过程
结构分析时一些常用单元的节点自由度 (在单元坐标系中) 杆元:单元形状为线段,变形形式为拉伸和扭转。 在单元坐标系中: 节点自由度为 Tx 和 Rx,其中 x 为杆的轴线。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。 梁元:单元形状为线段,变形形式为拉伸、扭转,以及两个垂 直于轴线方向的弯曲 在单元坐标系中: 节点自由度为 Tx,Ty,Tz,Rx,Ry,Rz。其中 x 为梁的 轴线,Y,z 为梁截面的两个抗弯惯矩主轴方向。 在总体坐标系中: 三个位移和三个转角 (T1,T2,T3,R1,R2,R3)。
有限元分析的基本过程
有限元分析的基本过程
单元形状函数举例 (未必是实际使用的单元):
(1) 一维单元
a. 杆单元 轴向拉伸和扭转:节点位移自由度为 Tx,Rx 对 2 节点单元 (线性单元): Tx = a0 + a1 * x Rx = b0 + b1 * x 各有 2 个未知数,可以由 2 个节点的位移值确定; 对 3 节点单元 (二次单元): Tx = a0 + a1 * x + a2 * x2 Rx = b0 + b1 * x + b2 * x2 各有 3 个未知数,可以法的发展 有限元分析方法最早是从结构化矩阵分析发展而来,逐步推广 到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有 效的数值分析方法。 (1) 有限元方法已发展到流体力学、温度场、电传导、磁场、 渗流和声场等问题的求解计算,目前又发展到求解几个交叉学科的 问题。 例如当气流流过一个很高的铁塔产生变形,而塔的变形又反过 来影响到气流的流动……这就需要用固体力学和流体动力学的有限 元分析结果交叉迭代求解,即所谓"流固耦合"的问题。 (2) 由求解线性工程问题进展到分析非线性问题 线性理论已经远远不能满足设计的要求。 例如:航空航天和动力工程的高温部件存在热变形和热应力, 要考虑材料的非线性 (弹塑性) 问题;诸如塑料、橡胶和复合材料 等各种新材料的出现,也只有采用非线性有限元算法才能解决。

有限元分析基础复习要点

有限元分析基础复习要点

复习要点复习要点1.弹性力学解的形式以及有限元解的性质。

2.历史上首次使用的单元形状。

3.有限元方法的应用场合及其发展。

4.有限元方法的研究人员有几类?5.有限元软件的架构。

6.等参元的构造方法和性质。

7.计算模态分析的数学本质。

8.梁理论的种类及特点?9.有限元解与网格密度的关系,与理论解的关系。

10.等参元的局部坐标系特点。

11.不同的梁理论适用范围。

11.剪切锁死,沙漏,减缩积分,零能模式的概念。

12.显示算法和隐式算法。

13.有限元软件的发展趋势。

14.板、壳、膜单元的定义。

15.接触算法的基本算法及其特点。

16.两种模态分析方法的特点。

17.圣维南原理。

18.常用的强度理论。

19.有限元刚度矩阵的特点。

20.应变矩阵的特点。

21.有限元对网格的要求。

22.压力容器的建模方法?油罐,储气罐,槽车,对称或不对称的建模方法23.机械联接面上接触网格的划分。

24.模态计算结果对机床结构优化的意义。

25.已知单元插值函数和结点位移,求给定点的位移。

26.已知单元插值函数和结点温度,求给定点的温度。

27.传热学的三个基本定律。

课后练习汇总(一)用软件进行有限元分析的几个步骤是什么?(二)基于位移的有限元法求出的是结点位移还是单元的位移?(三)机械工程中,有限元法有什么用处?(四)列举几个有限元法可以应用的工程学科。

(五)什么是插值函数?(六)什么是广义胡克定律?(七)有限元软件中常见的单元类型有几种?分别说明这几种单元的应用场合(八)传统的机械设计中,零件强度的校核方法与现代的机械设计有和不同?(九)有限元方法的实施主要是依靠手工计算还是商业软件?(十)有限元法能够用于固体结构的分析,是否可以用于流体、热、电磁场、声场的分析?(十一)传统的机械零件强度校核中,一般要求零件形状简单,可以简化成杆或者梁,有限元方法有这方面的要求么?(十二)CAD建模得到的模型与有限元的模型之间有什么联系?(十三)列举常用的5个常用有限元软件?(十四)工程中常用的模拟、仿真技术除了有限元方法以外,还有哪几种?(十五)主流的有限元软件架构一般是怎样的?(十六)CAD软件经常在有限元软件中经常扮演什么角色?(十七)有限元分析在机械设计中能起到什么作用?(十八)有限元方法与弹性力学的关系是什么?(十九)什么是材料的真应力-应变曲线,跟有限元分析有什么关系?(二十)什么是Tresca应力和Mises应力?分别说明其应用场合。

有限元基础知识培训

有限元基础知识培训

HB
HRB
HV
第3页/共34页
一、材料基础知识
➢根据经验,大部分金属的硬度和强度之间有如 下近似关系: 低碳钢 σb≈0.36 HB 高碳钢 σb≈0.34 HB 灰铸铁 σb≈0.1 HB
➢因而可用硬度近似地估计抗拉强度。
第4页/共34页
一、材料基础知识
塑性
➢ 材料的塑性是指材料受力时,当应力超过屈服点后, 能产生显著的变形而不立即断裂的性质。
约束:就是消灭自由度!?
有限元模型由一些简单形状的单元组成,单元间通过节 点连接,并承受一定载荷
第19页/共34页
二、CAE基础知识
节点和单元
第20页/共34页
二、CAE基础知识
节点和单元
第21页/共34页
二、CAE基础知识
有限单元法特点
第22页/共34页
二、CAE基础知识
有限元求解问题的基本步骤
作用在单元边界上的表面力、 作用在单元内的体积力和集中 力等,都必须等效移置到单元 节点上去,化为相应的单元等 效节点载荷
第25页/共34页
二、CAE基础知识
有限元求解问题的基本步骤
• 定义求解域 • 求解域离散化 • 单元推导 • 等效节点载荷计算 • 总装求解 • 联立方程组求解和结果解释
将单元总装形成离散域的总矩 阵方程(联合方程组) (1)由各单元刚度矩阵组集成 整体结构的总刚度矩阵 (2)将作用于各单元的节点载 荷矩阵组集成总的载荷列阵 求得整体坐标系下各单元刚度矩 阵后,可根据结构上各节点的力 平衡条件组集求得结构的整体刚 度方程
➢ 各向同性与各向异性。
第6页/共34页
一、材料基础知识
应力集中与应力集中系数
➢材料会由于截面尺寸改变而引起应力的局部增大, 这种现象称为应力集中。

有限元基本理论

有限元基本理论
第1章 预备知识
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:

第1章 预备知识
两项近似解,取W1=1,W2=x

则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)

则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)

有限元复习提纲

有限元复习提纲

有限元复习提纲第一章1、有限元法是分析连续体的一种近似计算方法,简言之就是将连续体分割为有限个单元的离体的数值方法。

有限元分析方法是广泛应用于工程实体建模、结构分析与计算的有效方法。

有限元法是一种适用于大型或者复杂物体结构的力学分析与计算的有效方法。

2、有限元法的实现过程:对象离散化----单元分析----构造总体方程----求解方程----输出结果3、建立有限元方程的方法:(1)直接方法:指直接从结构力学引申得到。

直接方法具有过程简单、物理意义明确、易于理解等特点。

(2)变分方法:常用方法之一,主要用于线性问题的模型建立。

(3)加权残值法:对于线性自共轭形式方程,加权残值法可得到和变分法相同的结果,如对称的刚度矩阵。

4、有限元法的基本变量:有限元分析过程中的常用变量包括体力、面力、应力、位移和应变等体力:指分布在物体体积内部各个质点上的力,如重力、惯性力等。

面力:指分布在物体表面上的力。

如风力、接触力、流体力、阻力等。

应力:指在外力作用下其物体产生的内力。

位移:指节点的移动。

在约束条件下的节点位移称作虚位移,是指可能发生的位移。

应变:指在外力作用下其物体发生的相对变形量。

是无量纲的变量。

线段单位长度的伸缩,称为正应变。

在直角坐标中所取单元体为正六面体时,单元体的两条相互垂直的棱边,在变形后直角改为变量定义为剪应变、角应变或切应变。

切应变以直角减少为正,反之为负。

5、正应力和剪应力的概念第二章1、ANSYS软件的使用主要包括4方面:初初始设置、前处理、求解计算和后处理。

2、前处理主要包括:①单元类型选择; ②定义材料参数;③建立几何模型;④划分单元网格;⑤设置约束条件和施加外载荷等3、单元实常数的定义。

实常数是有限元分析过程中需要用到单元类型的补充几何特性如杆单元的横截面积、梁单元的横截面积和惯性矩、板壳单元的厚度等等,是计算求解的重要参数。

4、弹性模量和泊松比弹性模量:E=σ/ε材料在单向受拉或受压时,纵向正应力σ=F/A与线应变ε=?l/l 的比值,其单位与应力的单位相同泊松比:μ=|ε′/ε|,材料在单向受拉或受压时,横向正应变ε′=?b/b 与纵向正应变ε=?l/l 之比的绝对值。

有限元分析小白入门指南(深度干货)

有限元分析小白入门指南(深度干货)

有限元分析小白入门指南(深度
干货)
作为结构工程师,有限元分析是必备技能。

如何在工作中有效地运用有限元分析,是我们掌握的重点。

我也是在有限元边缘测试,欢迎朋友们批评指正。

什么场合会用到有限元分析
1.设计验证(有效减少原型数量):传统验证方式主要采用原型和手工计算,成本高,时间长,可验证方案少。

如果不做设计验证,对于企业来说,将处于崩溃的边缘。

2、新产品研发,完整的产品研究:可以模拟和测试产品在各种场合的使用。

3.设计方案评估:对结构工程师提出的各种创新结构进行有效评估,找出符合要求的结果。

4.提供优化思路和方案:优化模块可以基于多个参数、约束和优化目标的范围。

找到最佳解决方案。

5.设计参数的确定:在日常的设计工作中,参数的确定大多是通过原有的产品类比和工程经验来确定的。

有限元分析可以用来做数值计算,提供设计参考。

6.产品问题分析和质量管理:如果产品存在质量问题和检测问题,设计是否合理是检验的重要环节。

有限元分析软件是一种重要的分析工具。

有限元分析理论基础大全超详细

有限元分析理论基础大全超详细

有限元分析理论基础大全超详细有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。

由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。

有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。

在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。

如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。

线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。

非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。

有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。

由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。

在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。

2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。

当物体的位移较大时,应变与位移的关系是非线性关系。

研究这类问题一般都是假定材料的应力和应变呈线性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

这种单元称为常应变三角形单元。

常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。

6、数值积分,阶次选择的基本要求?答:通常是选用高斯积分积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。

选择时主要从两方面考虑。

一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

1有限元法的基本原理是一种工程物理问题的数值分析方法,根据近似分割和能量极值原理,把求解区域离散为有限个单元的组合,研究每个单元的特性,组装各单元,通过变分原理,把问题化成线性代数方程组求解。

分析指导思想:化整为零,裁弯取直,以简驭繁,变难为易单元位移函数应满足什么条件a 、 位移模式必须能反映单元的刚体位移b 、 位移模式必须能反映单元的常量应变c 、 位移模式应尽可能反映位移的连续性,相邻单元间要协调刚度矩阵具有什么特点A 、刚度矩阵是对称矩阵B 、 每个元素有明确的物理意义C 、 刚度矩阵的主对角线上的元素总是正的D 、刚度矩阵是一个稀疏矩阵E 、 刚度矩阵是一个奇异阵 1.单元分析(平面桁架单元、平面梁单元、平面3节点三角形单元、平面4节点四边形单元、平面8节点四边形单元)整体平衡方程中约束条件的处理A 、划行划列法:零位移约束条件、非零位移约束条件B 、 乘大数法13. 有限元分析的基本步骤(1)将结构进行离散化,包括单元划分、结点编号、单元编号、结点坐标计算、位移约束条件确定 (2)等效结点力的计算(3)刚度矩阵的计算(先逐个计算单元刚度,再组装成整体刚度矩阵) (4)建立整体平衡方程,引入约束条件,求解结点位移 (5)应力计算14. 形函数的性质a 、形函数Ni 在结点i 上的值等于1,在其他结点上的值等于0b 、在单元中的任一点,三个形函数之和等于1c 、在三角形单元边界ij 上一点(x,y ),有形函数公式(,)1i i j i x x N x y x x -=-- (,)1ij j ix x N x y x x -=--(,)0m N x y = d 、形函数Ni 在单元上的面积积分和边界ij 上的线积分公式为3i AAN dxdy =⎰⎰ 12i ij N dl ij =⎰ij 为ij 边的长度15.平面问题中的应力分量应满足哪些条件A 、平衡微分方程、相容方程、应力边界条件、多连体中的位移单值条件B 、代入相容方程,不满足相容方程,不是可能的解答C 、代入相容方程,不满足相容方程,由此求得的位移分量不存在6、 位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断影响有限元解的误差:1)离散误差 2)位移函数误差 •收敛准则:1)位移函数必须包括常量应变(即线形项)2635x y xy u x v y u v yx εαεεαγαα⎧⎫∂⎪⎪∂⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪∂===⎨⎬⎨⎬⎨⎬∂⎪⎪⎪⎪⎪⎪+⎩⎭⎩⎭∂∂⎪⎪+∂∂⎩⎭——3节点三角形单元为例证明2)位移函数必须包括单元的刚体位移(即单元应变2635,,αααα+为0时的位移)(即常量项)1040v u y x αθαθ=-=+⎫⎬⎭(平动和转动),3)位移函数在单元内部必须连续(连续性条件),因为线性函数,内部连续。

4)位移函数应使得相邻单元间的位移协调(协调性条件),(相邻单元在公共边界上位移值相同)。

设公共边界直线方程为y=Ax+B ,代入位移函数可得:边界上位移为123456()()u x Ax B v x Ax B αααααα=+++=+++u,v 仍为线性函数,即公共边界上位移连续协调。

综上所述,常应变三角形单元的位移函数满足解的收敛性条件,称此单元为协调单元注:上述四个条件称为有限元解收敛于真实解的充分条件;前三个条件称为必要条件。

满足四个条件的位移函数构成的单元称为协调元;满足前三个条件的单元称为非协调元;满足前两个条件的单元称为完备元。

5、 位移函数的构造方法及基本条件定义:有限单元法的基本原理是分块近似,对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律,该简单函数可由单元节点上物理量来表示----通常称为插值函数或位移函数 1.)广义坐标法——构造一维单元位移函数:20112012()... (){1...}{...}nn n Tn u x x x x u x x x x αααααααααα=+++=ΦΦ==简记为 123456v u x y x y αααααα=++=++⎫⎬⎭3节点三角形单元的位移函数 i α为待定系数,也称为广义坐标2.)插值函数法——即将位移函数表示为各个节点位移与已知插值基函数积的和。

一维:11221()()()...()ni iu x N x u N x u N x u =++=∑二维:11(,)(,)ni ini iu x y N u v x y N v ==∑∑ Ni 可为形函数• 选择位移函数的一般原则(基本条件):1)位移函数在单元节点的值应等于节点位移(即单元内部是连续的); 2)所选位移函数必须保证有限元的解收敛于真实解。

注:为了便于微积分运算,位移函数一般采用多项式形式,在单元内选取适当阶次的多项式可得到与真实解接近的近似解1、 平面应力/平面应变问题;空间问题/轴对称问题;板壳问题;杆梁问题;温度场;线性问题/非线性问题(材料非线性/几何非线性)等1.)平面应力问题:如等厚度薄板。

弹性体在一个坐标方向的几何尺寸远小于其他两个方向的几何尺寸,只受平行于板面,且不沿厚度变化的外力(表面力或体积力)。

在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yxσσττ=、、(000z zx xz zy yz σττττ=====,,)。

一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。

于是只需要考虑x y xyεεγ、、三个应变分量即可。

2.)平面应变问题:如长厚壁圆筒(受均匀内压或外压)重力坝一纵向(即Z 向)很长,且沿横截面不变的物体,受有平行于横截面而且不沿长度变化的面力和体力,所有一切应力分量、应变分量和位移分量都不沿Z 方向变化,它们都只是x 和y 的函数。

此外,在这一情况下,由于对称(任一横截面都可以看作对称面),所有各点都只会有x 和y 方向的位移而不会有Z 方向的位移,即w = 0这种问题称为平面位移问题,习惯上常称为平面应变问题。

0z yz zx εγγ===只剩下三个应变分量x y xyεεγ、、。

也只需要考虑x y xyσστ、、三个应力分量即可。

两种平面问题,几何方程,虚功方程,物理方程相同。

弹性矩阵不同。

3.) 空间轴对称问题—即弹性体内任一点的位移、应力与应变只与坐标r 、z 有关,与θ无关•几何形状关于轴线对称;• 作用于其上的载荷关于轴线对称。

•约束条件关于轴线对称。

轴对称单元的特点(与平面三角形单元的区别)• 轴对称单元为圆环体,单元与单元间为节圆相连接; • 节点力与节点载荷是施加于节圆上的均布力; • 单元边界是一回转面; •应变分量{}ε中出现了r u r,即应变不是常量;且应变矩阵在r--》0时,存在奇异点,需特殊处理,通常用该单元的形心坐标替代节点坐标。

4.) 力学概念定义的板是指厚度尺寸相对长宽尺寸小很多的平板11118010058t b ≤≤薄板,且能承受横向或垂直于板面的载荷。

如板不是平板而为曲的(指一个单元),则称为壳问题。

如作用于板上的载荷仅为平行于板面的纵向载荷,则称为平面应力问题;如作用于板上的载荷为垂直于板面的横向载荷,则称为板的弯扭问题,常简称板的弯曲问题。

•常用的单元有三角形和矩形。

为了使相邻单元间同时可传递力和力矩,节点当作刚性节点,即节点处同时有节点力和节点力矩作用。

每个节点有三个自由度,即一个扰度和分别绕x ,y 轴的转角 •薄板矩形/三角形单元是非协调单元(相邻单元在公共边界上扰度是连续的但转角不一定连续)。

但实践表明,当单元细分,其解完全能收敛真实解。

3、 有限元法的基本思想(二次近似)与有限元分析的基本步骤(5步)有限元法的基本思想:•先将求解域离散为有限个单元,单元与单元只在节点相互连接;----即原始连续求解域用有限个单元的集合近似代替( 第一次近似) •对每个单元选择一个简单的场函数近似表示真实场函数在其上的分布规律,该简单函数可由单元节点上物理量来表示----通常称为插值函数或位移函数(第二近似) • 基于问题的基本方程,建立单元节点的平衡方程(即单元刚度方程)•借助于矩阵表示,把所有单元的刚度方程组合成整体的刚度方程,这是一组以节点物理量为未知量的线形方程组,引入边界条件求解该方程组即可。

有限元分析的基本步骤:• 所研究问题的数学建模 •物体离散( 第一次近似)网格划分---即把结构按一定规则分割成有限单元边界处理---即把作用于结构边界上约束和载荷处理为节点约束和节点载荷要求:1)离散结构必须与原始结构保形----单元的几何特性2)一个单元内的物理特性必须相同----单元的物理特性 • 单元分析(第二近似)•整体分析与求解,整体分析的四个步骤:1、)建立整体刚度矩阵;2、)根据支承条件修改整体刚度矩阵;3、)解方程组,求节点位移(消元法和迭代法);4、)根据节点位移求出应力。

相关文档
最新文档