已知函数单调性求参数(简单)
核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围

核心考点十二含参函数在区间上具有单调性无单调性或存在单调区间求参数范围含参函数在区间上具有单调性、无单调性或存在单调区间,取决于函数的导数的正负情况。
在本篇文章中,我们将介绍含参函数单调性的概念以及如何判断参数范围。
一、含参函数的单调性含参函数的单调性指的是函数在一些区间上的值的增减趋势。
如果函数在整个区间上都递增或者递减,则称该函数在该区间上是单调的。
对于含参函数f(x),我们可以通过求导来判断其在区间上是否单调。
如果函数在整个区间上的导数恒大于0,则函数在该区间上递增;如果函数在整个区间上的导数恒小于0,则函数在该区间上递减。
换言之,我们可以通过求解方程f'(x)>0或者f'(x)<0来判断函数的单调性。
其中,f'(x)表示函数f(x)的导数。
二、参数范围的确定确定参数范围的方法主要包括以下步骤:1.根据问题的具体内容,确定需要讨论的函数范围,并确定参数的取值范围。
例如,如果需要讨论函数在区间[a,b]上的单调性,那么参数范围可以通过分析函数在区间的特性来确定。
2.找出函数的导数表达式。
通过计算函数f(x)的导数f'(x),可以得到函数在区间上的单调性。
如果求导的过程中出现了参数,则需要将参数的取值范围考虑进去。
3.解方程f'(x)>0或者f'(x)<0,得到函数在区间上的单调性,并得到参数的取值范围。
4.根据参数的取值范围进行验证。
将参数取值范围代入原函数带入计算,可以验证所得的结论是否正确。
举例说明:问题:求函数f(x)=ax^2+bx+c在区间[-2, 3]上的单调性。
解答:首先求出函数的导数:f'(x)=2ax+b。
接下来我们需要根据参数a的取值范围来判断函数的单调性。
当a>0时,函数f(x)的导数f'(x)=2ax+b恒大于0,说明函数f(x)在区间[-2, 3]上是递增的。
当a<0时,函数f(x)的导数f'(x)=2ax+b恒小于0,说明函数f(x)在区间[-2, 3]上是递减的。
由函数在区间上的单调性求参数(1)

由函数在区间上的单调性求参数江苏镇江韩雨1.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A. 13,+∞ B. −∞, 13 C. 13,+∞ D.−∞, 132.若函数f (x )=(x 2+ax +2)e x 在R 上单调递增,则a 的取值范围是()A.(−∞,−2)∪(2,+∞) B. −∞,−2∪2,+∞C.(−2,2) D.−2,23.已知函数f (x )=x 3−ax 2+ax 是R 上的增函数,则a 的取值范围()A. 0,3 B.(−∞,0)∪(3,+∞)C. 0,3D. −∞,0∪3,+∞4.已知函数f (x )=(2x −1)e x +ax 2−3(x >0)在(0,+∞)上为增函数,则a 的取值范围是()A. −2 e ,+∞ B. − 32 e ,+∞ C. −∞,−2 e D.−∞,− 32e 5.函数f x =log m 4x 2+m x (m >0且m ≠1)在 2,3上单调递增,则实数m 的取值范围为()A. 1,36 B. 36,+∞C. 1,16∪ 36,+∞D.1,166.已知函数f x =2xe x -ax 2-2ax 在 1,+∞上单调递增,则实数a 的取值范围是()A. -∞,e B. -∞,1 C. e ,+∞ D.1,+∞7.若函数f x =x 3+ax 2-9x +1在区间 -1,2上是单调函数,则实数a 的取值范围为()A.a ≤3或a ≥- 34 B.a <3或a >- 34 C.-3≤a ≤- 34 D.-3<a <- 348.已知函数f x =ax -ln x 在区间 1,+∞上单调递增,则a 的取值范围是()A.a >1 B.a ≥1 C.a <1 D.a ≤19.若函数f x =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是 ()A. 13,+∞ B. -∞, 13 C. 13,+∞ D.-∞, 1310.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是 ()A. 13,+∞ B. -∞, 13 C. 12,+∞ D.-∞, 1211.若函数f x =kx -cos x 在区间 π6, 2π3单调递增,则k 的取值范围是()A. 1,+∞ B. - 12,+∞ C. 1,+∞ D.12,+∞12.函数f x =ax 2+2 a +3x +1在区间 -2,+∞上递增,则实数a 的取值范围是()A. -∞,3B. 0,3C. 0,3D.3,+∞13.若函数f x =ln x +mx + 1x 在 1,+∞上是单调函数,则m 的取值范围是()A. -∞,- 14 ∪0,+∞ B. -∞,0∪14,+∞C. - 14,0 D.-∞,114.如果函数f x =x 3+ax 2+bx +c , a ,b ,c ∈R 在R 上不单调,则()A.a 2<3b B.a 2≤3b C.a 2>3b D.a 2≥3b15.已知函数f x =3x 3-ax 2+x -5在区间[1,2]上单调递增,则a 的取值范围是()A. -∞,5 B. -∞,5 C. -∞, 374 D.-∞, 37416.若函数f (x )=sin2x +4cos x +ax 在R 上单调递减,则实数a 的取值范围是()A. -∞,-3 B. -∞,-3 C. −∞,6 D.(−∞,6)17.若f (x )=− 12x 2+b ln (x +2)在(−1,+∞)上是减函数,则实数b 的取值范围是()A. -1,+∞ B. -1,+∞ C. -∞,-1 D.(-∞,-1)18.函数f (x )=x 2+ a x ,若函数f (x )在x ∈ 2,+∞上是单调递增的,则实数a 的取值范围为()A.a <8 B.a ≤16 C.a <-8或a >8 D.a ≤-16或a ≥1619.已知函数f (x )=m ln x +8x -x 2在[1,+∞)上单调递减,则实数m 的取值范围为()A. -∞,-8 B.(-∞,-8) C. −∞,−6 D.(−∞,6)20.已知函数f x =2x 3-3x 2+a 的极大值为6,那么a 的值是()A.0 B.1 C.5 D.621.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是()A.0<a < 34B. 12<a < 34C.a ≥ 34D.0<a < 1222.若函数f x =kx -ln x 在区间 1,+∞上为单调增函数,则k 的取值范围是______23.已知函数f (x )=e x +x 3,若f (x 2)<f (3x −2),则实数x 的取值范围是____参考答案1.C2.D3.C4.A5.D6.A7.C8.B9.C10.A11.B12.C13.A14.C15.B16.B17.C18.B19.A20.D21.C22.1,+∞23.(1,2)。
利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。
【高中数学】第二课时 导数与函数的单调性(二)

第二课时导数与函数的单调性(二) 课标要求素养要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性. 进一步理解函数的导数和其单调性的关系,提升数学运算素养与直观想象素养.题型一含参数函数的单调性【例1】讨论函数f(x)=12ax2+x-(a+1)ln x(a≥0)的单调性.解函数f(x)的定义域为(0,+∞),f′(x)=ax+1-a+1x=ax2+x-(a+1)x.①当a=0时,f′(x)=x-1 x,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.②当a>0时,f′(x)=a⎝⎛⎭⎪⎫x+a+1a(x-1)x,∵a>0,∴a+1 a>0.由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.综上所述,当a≥0时,f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.规律方法(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数的定义域内讨论,还要确定导数为0的点和函数的间断点.【训练1】求函数f(x)=1x2+a ln x(a∈R)的单调递减区间.解 易得函数f (x )的定义域是(0,+∞),f ′(x )=-2x 3+a x =ax 2-2x 3. ①当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 故f (x )在(0,+∞)上单调递减. ②当a >0时,若0<x <2a ,则f ′(x )<0;若x >2a ,则f ′(x )>0,所以f (x )在⎝⎛⎭⎪⎫0,2a 上单调递减,在⎝⎛⎭⎪⎫2a ,+∞上单调递增. 综上可知,当a ≤0时,f (x )的单调递减区间为(0,+∞),当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫0,2a . 题型二 根据函数的单调性求参数【例2】 (1)若函数f (x )=(x 2-cx +5)e x 在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,则实数c 的取值范围是( ) A.(-∞,2] B.(-∞,4] C.(-∞,8]D.[-2,4](2)已知函数f (x )=ln x +(x -b )22在⎣⎢⎡⎦⎥⎤12,2上存在单调递增区间,则实数b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,94 B.(-∞,3) C.⎝ ⎛⎭⎪⎫-∞,32 D.(-∞,2)解析 (1)易得f ′(x )=[x 2+(2-c )x -c +5]e x .∵函数f (x )在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,等价于x 2+(2-c )x -c +5≥0对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立, ∴c ≤x 2+2x +5x +1对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立.∵x ∈⎣⎢⎡⎦⎥⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.(2)易得f ′(x )=12x +x -b =2x 2-2bx +12x .根据题意,得f ′(x )>0在⎣⎢⎡⎦⎥⎤12,2上有解.令h (x )=2x 2-2bx +1,因为h (0)=1>0,所以只需h (2)>0或h ⎝ ⎛⎭⎪⎫12>0,解得b <94,故选A.答案 (1)B (2)A规律方法 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,利用分离参数或函数性质解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围,然后检验参数取“=”时是否满足题意.(2)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解(需验证解的两侧导数是否异号).【训练2】 若函数f (x )=x 3-12x 在区间(k -1,k +1)上不单调,则实数k 的取值范围是( )A.(-∞,-3]∪[-1,1]∪[3,+∞)B.(-3,-1)∪(1,3)C.(-2,2)D.不存在这样的实数k解析 由题意得,f ′(x )=3x 2-12=0在区间(k -1,k +1)上至少有一个实数根. 又f ′(x )=3x 2-12=0的根为±2,且f ′(x )在x =2或-2两侧导数异号,而区间(k -1,k +1)的区间长度为2,故只有2或-2在区间(k -1,k +1)内, ∴k -1<2<k +1或k -1<-2<k +1, ∴1<k <3或-3<k <-1,故选B. 答案 B题型三 函数单调性的应用【例3】(1)已知f(x)为R上的可导函数,其导函数为f′(x),且对于任意的x∈R,均有f(x)+f′(x)>0,则()A.e-2 019f(-2 019)<f(0),e2 019f(2 019)>f(0)B.e-2 019f(-2 019)<f(0),e2 019f(2 019)<f(0)C.e-2 019f(-2 019)>f(0),e2 019f(2 019)>f(0)D.e-2 019f(-2 019)>f(0),e2 019f(2 019)<f(0)(2)已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)·f(x2-1)的解集是()A.(0,1)B.(2,+∞)C.(1,2)D.(1,+∞)解析(1)构造函数h(x)=e x f(x),则h′(x)=e x f(x)+e x f′(x)=e x(f(x)+f′(x))>0,所以函数h(x)在R上单调递增,故h(-2 019)<h(0),即e-2 019f(-2 019)<e0f(0),即e-2 019f(-2 019)<f(0).同理,h(2 019)>h(0),即e2 019f(2 019)>f(0),故选A.(2)构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以x+1<x2-1,解得x>2或x<-1(舍).所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).故选B.答案(1)A(2)B【迁移1】把例3(1)中的条件“f(x)+f′(x)>0”换为“f′(x)>f(x)”,比较e2 019f(-2 019)和f(0)的大小.解令g(x)=f(x)e x,则g′(x)=f′(x)-f(x)e x,因为对任意的x∈R,都有f′(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,所以h(-2 019)<h(0),即f (-2 019)e-2 019<f (0)e 0,所以e 2 019f (-2 019)<f (0). 【迁移2】 把例3(2)中的条件“f (x )<-xf ′(x )”换为“f (x )<xf ′(x )”,解不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1).解 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,∵f (x )<xf ′(x ),∴g ′(x )>0,故g (x )在(0,+∞)上是增函数, 由(x 2+1)f (2x +1)>(2x +1)f (x 2+1)得 f (2x +1)2x +1>f (x 2+1)x 2+1即g (2x +1)>g (x 2+1),所以⎩⎨⎧2x +1>0,2x +1>x 2+1,解得0<x <2. 即不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1)的解集为(0,2).规律方法 用函数单调性比较大小或解不等式时常构造函数,常见的有: (1)对于f ′(x )>g ′(x ),构造h (x )=f (x )-g (x ). (2)对于f ′(x )+g ′(x )>0,构造h (x )=f (x )+g (x ). (3)对于f ′(x )+f (x )>0,构造h (x )=e x f (x ). (4)对于f ′(x )>f (x ),构造h (x )=f (x )e x . (5)对于xf ′(x )+f (x )>0,构造h (x )=xf (x ). (6)对于xf ′(x )-f (x )>0,构造h (x )=f (x )x .【训练3】 (多选题)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )sin x <0,则下列判断中正确的是( ) A.f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4 B.f ⎝ ⎛⎭⎪⎫ln π3>0C.f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin xcos 2x,因为f ′(x )cos x +f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减, 又π6<π4,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4, 即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错;又π6>π3,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确; 又π4<π3,所以g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确;故选CD.答案 CD一、素养落地1.通过学习导数与函数的单调性,提升数学运算与逻辑推理素养.2.对于含参数的导数的单调性,要清楚分类讨论的标准,做到不重不漏.3.利用函数的单调性求参数的取值范围的关键是转化为不等式的恒成立问题或存在性问题,再利用分离参数法或函数的性质求解. 二、素养训练1.设函数f (x )=2x +sin x ,则( ) A.f (1)>f (2)B.f (1)<f (2)C.f(1)=f(2)D.以上都不正确解析f′(x)=2+cos x>0,故f(x)是R上的增函数,故f(1)<f(2). 答案 B2.若f(x)=13x3-ax2的单调减区间是(0,2),则正数a的值是()A.1B.2C.3D.4解析f′(x)=x2-2ax,令f′(x)<0,由于a>0,故解得0<x<2a,故2a=2,即a=1. 答案 A3.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D4.若函数y=x2-2bx+6在(2,8)内是增函数,则实数b的取值范围是________. 解析由题意得y′=2x-2b≥0在(2,8)内恒成立,即b≤x在(2,8)内恒成立,所以b≤2.答案(-∞,2]5.若f(x)=-12x2+b ln(x+2)在(-1,+∞)上是减函数,则b的取值范围是________.解析∵f(x)在(-1,+∞)上为减函数,∴f′(x)≤0在(-1,+∞)上恒成立.∵f′(x)=-x+bx+2,∴-x+bx+2≤0在(-1,+∞)上恒成立,即b≤x(x+2)在(-1,+∞)上恒成立. 设g(x)=x(x+2)=(x+1)2-1,则当x>-1时,g(x)>-1,∴b≤-1.答案(-∞,-1]基础达标一、选择题1.已知函数f(x)=e xx,当1<x<3时,下列关系正确的是()A.f(x)<f(x)<f2(x)B.f(x)<f(x)<f2(x)C.f2(x)<f(x)<f(x)D.f2(x)<f(x)<f(x)解析由题意得f′(x)=(x-1)e xx2,当1<x<3时,f′(x)>0,所以f(x)在(1,3)上单调递增.又1<x<x<3,所以f(x)<f(x).由f(x)在(1,3)上单调递增,可知当x∈(1,3)时,f(x)>f(1)=e,所以f2(x)>f(x).综上f(x)<f(x)<f2(x).答案 A2.已知函数f(x),g(x)对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且当x>0时,有f′(x)>0,g′(x)>0,则当x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0解析由已知,得f(x)为奇函数,g(x)为偶函数.∵当x>0时,f′(x)>0,g′(x)>0,∴f(x),g(x)在(0,+∞)上均单调递增,∴f(x)在(-∞,0)上单调递增,g(x)在(-∞,0)上单调递减,∴当x<0时,f′(x)>0,g′(x)<0.答案 B3.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a=()A.1B.2C.0D. 2解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,∴a2≥1,得a≥2.g′(x)=2x-a x ,依题意g ′(x )≥0在(1,2)上恒成立,即2x 2≥a 在x ∈(1,2)时恒成立,有a ≤2,∴a =2. 答案 B4.已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)解析 f ′(x )=-3x 2+2ax -1,由题意,可知f ′(x )=-3x 2+2ax -1≤0在R 上恒成立,∴(2a )2-4×(-3)×(-1)≤0,解得-3≤a ≤ 3. 答案 B5.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎣⎢⎡⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32 解析 由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x .令f ′(x )=0,解得x =12或x =-12(舍去).当0<x <12时,f ′(x )<0,函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上单调递减;当x >12时,f ′(x )>0,函数f (x )在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增.因为函数f (x )在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32.又k -1≥0,所以1≤k <32.故选C. 答案 C 二、填空题6.若函数f (x )=(x 2+mx )e x 的单调递减区间是⎣⎢⎡⎦⎥⎤-32,1,则实数m 的值为________.解析 f ′(x )=[x 2+(m +2)x +m ]e x .因为f (x )的单调减区间是⎣⎢⎡⎦⎥⎤-32,1,所以f ′(x )=0的两个根分别为x 1=-32,x 2=1,即⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-32=0,f ′(1)=0,解得m =-32.答案 -327.函数f (x )=13x 3-12(2a +1)x 2+(a 2+a )x +4的单调减区间是________.解析 f ′(x )=x 2-(2a +1)x +a 2+a =[x -(a +1)](x -a ),令f ′(x )<0,得a <x <a +1,故f (x )的减区间是(a ,a +1). 答案 (a ,a +1)8.已知f (x )是定义在R 上的奇函数,且f (2)=0,若当x >0时,xf ′(x )+f (x )>0,则不等式xf (x )>0的解集是________. 解析 由题意设g (x )=xf (x ), 则g ′(x )=xf ′(x )+f (x ).∵当x >0时,xf ′(x )+f (x )>0,∴g (x )在(0,+∞)上单调递增. ∵f (x )是定义在R 上的奇函数, ∴g (x )是定义在R 上的偶函数. 又f (2)=0,则g (2)=2f (2)=0, ∴不等式xf (x )>0等价于g (x )>0=g (2), ∴|x |>2,解得x <-2或x >2,∴不等式xf (x )>0的解集是(-∞,-2)∪(2,+∞). 答案 (-∞,-2)∪(2,+∞) 三、解答题9.已知函数f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a >0,求函数f (x )的单调区间. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴f ′(1)=4.又f (1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0. (2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ),由f ′(x )=0得x =-a 或x =a3. 又a >0,由f ′(x )<0,得-a <x <a3, 由f ′(x )>0,得x <-a 或x >a3,故f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为()-∞,-a 和⎝ ⎛⎭⎪⎫a 3,+∞.10.试讨论函数f (x )=kx -ln x 的单调区间. 解 函数f (x )=kx -ln x 的定义域为(0,+∞), f ′(x )=k -1x =kx -1x .当k ≤0时,kx -1<0,∴f ′(x )<0, 则f (x )在(0,+∞)上单调递减. 当k >0时,由f ′(x )<0,即kx -1x <0, 解得0<x <1k ; 由f ′(x )>0,即kx -1x >0,解得x >1k. ∴当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.综上所述,当k ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间; 当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.能力提升11.已知函数f (x )=x ln x +x (x -a )2(a ∈R ).若存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得f (x )>xf ′(x )成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,+∞ B.⎝ ⎛⎭⎪⎫32,+∞ C.(2,+∞)D.(3,+∞)解析 由f (x )>xf ′(x )成立,可得⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0.设g (x )=f (x )x =ln x +(x -a )2,则存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得g ′(x )=1x +2(x -a )<0成立,即a >⎝ ⎛⎭⎪⎫x +12x min .又x +12x ≥2x ·12x =2,当且仅当x =12x ,即x =22时取等号,所以a > 2.故选C. 答案 C12.已知函数f (x )=x 3+ax 2+x +1,a ∈R . (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3). 当Δ>0,即a >3或a <-3时, 令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33.故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R上单调递增.(2)由(1),知只有当a >3或a <-3时, f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数,所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).创新猜想13.(多选题)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x ),对任意的x ∈R 恒成立,则( ) A.f (ln 2)<2f (0) B.f (2)<e 2f (0) C.f (ln 2)>2f (0)D.f (2)>e 2f (0)解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x <0,故g (x )在R 上单调递减,而ln 2>0,2>0,故g (ln 2)<g (0),g (2)<g (0),即f (ln 2)2<f (0)1,f (2)e 2<f (0)1,所以f (ln 2)<2f (0),f (2)<e 2f (0). 答案 AB14.(多空题)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,则实数a 的取值范围是________; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,则实数a 的取值范围是________. 解析 (1)由题知h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.由h (x )在(0,+∞)上存在单调递减区间,可得当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x (x >0),所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.因为a ≠0,所以-1<a <0或a >0.(2)由h (x )在[1,4]上单调递减,得当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.设H (x )=1x 2-2x ,x ∈[1,4],所以a ≥H (x )max ,而H (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以H (x )max =-716(此时x =4). 因为a ≠0,所以-716≤a <0或a >0.答案 (1)(-1,0)∪(0,+∞) (2)⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞)高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
简单含参函数单调性的确定(教案)

简单含参函数单调性的确定——求导后转化为含参的一元二次不等式正阳县高级中学吕玉光简单含参函数单调性的确定——求导后转化为含参的一元二次不等式正阳高中 吕玉光了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间.这部分在高考中每年都有涉及,特别是含参函数单调性的确定及单调性的逆问题,所占分值比重较大,是学生学习的重点,也是难点。
本课时的设计主要是解决含有参数的函数单调性的确定,意在巩固、提升学生分类讨论及讨论后整合的能力。
1.正确理解利用导数判断函数单调性的原理;2.解决求导之后转化为含参的一元二次不等式的单调性问题,掌握不同类型下的不同处理方法;3. 解决在分类讨论时如何确定分类标准、如何展开分类讨论以及讨论后的整合,培养学生转化与化归的数学思想。
复习回忆——利用导数判断函数单调性的方法若0)('>x f 在区间),(b a 上恒成立⇒)(x f y =在区间),(b a 上单调递增;若0)('<x f 在区间),(b a 上恒成立⇒)(x f y =在区间),(b a 上单调递减。
上一节课我们学习了利用导数判断函数单调性的方法以及具体函数的单调性的判断,那么对于含有参数的函数,其单调性又该如何研究呢?这就是我们这节课要讨论的重点——简单含参函数单调性的确定 【引例】(09年全国二卷)设函数a ax x a x x f 244)1(31)(23+++-=讨论函数)(x f 的单调性.分析:先求导,然后对导函数进行分解因式,再求出零点,判断两个零点的大小关系,从而确定函数的单调区间.解:由题意:)2()2(4)1(2)(2'a x x a x a x x f -⋅-=++-=,由0)('=x f 得a x x 22==或,(1)当122<<a a 即时由0)('>x f 得22><x a x 或,由0)('<x f 得22<<x a ,此时)(x f 的单调增区间是),2()2,(+∞-∞和a ,单调减区间是)2,2(a ;(2)当122==a a 即时0)('≥x f 恒成立,此时)(x f 的单调增区间是),(+∞-∞;(3)当122>>a a 即时由0)('>x f 得a x x 22><或,由0)('<x f 得a x 22<<,此时)(x f 的单调增区间是),2()2,(+∞-∞a 和,单调减区间是)2,2(a .综上:当1<a 时)(x f 的单调增区间是),2()2,(+∞-∞和a ,单调减区间是)2,2(a ; 当1=a 时)(x f 的单调增区间是),(+∞-∞;当1>a 时)(x f 的单调增区间是),2()2,(+∞-∞a 和,单调减区间是)2,2(a .【变式1】设函数x a x a x x f ln 4)1(221)(2++-=,讨论函数)(x f 单调性. 分析:求导之后发现含有分式,则通分,然后对导函数的分子进行十字相乘分解因式,再求出对应的零点,判断零点是否在定义域内,能否确定零点的大小关系,得出函数的单调区间.解:由题意:)(x f 的定义域为),0(+∞且xa x x x a a x x f )2()2(4)1(2)('-⋅-=++-=,由0)('=x f 得a x x 22==或(1)当002≤≤a a 即时由0)('>x f 得2>x ,由0)('<x f 得20<<x ,此时)(x f 的单调增区间是),2(+∞,单调减区间是)2,0(;(2)当10220<<<<a a 即时由0)('>x f 得220><<x a x 或,由0)('<x f 得22<<x a ,此时)(x f 的单调增区间是),2()2,0(+∞和a ,单调减区间是)2,2(a ;(3)当122==a a 即时0)('≥x f 恒成立,此时)(x f 的单调增区间是),0(+∞;(4)当122>>a a 即时由0)('>x f 得a x x 220><<或,由0)('<x f 得a x 22<<,此时)(x f 的单调增区间是),2()2,0(+∞a 和,单调减区间是)2,2(a .综上:当0≤a 时)(x f 的单调增区间是),2(+∞,单调减区间是)2,0(;当10<<a 时)(x f 的单调增区间是),2()2,0(+∞和a ,单调减区间是)2,2(a ; 当1=a 时0)('≥x f 恒成立,此时)(x f 的单调增区间是),0(+∞;当1>a 时)(x f 的单调增区间是),2()2,0(+∞a 和,单调减区间是)2,2(a . 【变式2】设函数a ax ax x x f 24431)(23++-=,讨论函数)(x f 单调性. 分析:导函数a ax x x f 42)(2'+-=的符号不能确定,也不能在有理式范围内实现十字相乘分解,故我们要用△来研究其导函数的符号问题.解:由题意:a ax x x f 42)(2'+-=则a a 1642-=∆1.当01642≤-=∆a a 即40≤≤a 时0)('≥x f 恒成立,此时)(x f 的单调增区间是),(+∞-∞;2.当01642>-=∆a a 即40><a a 或时由0)('=x f 得,4,42221a a a x a a a x -+=--=由0)('>x f 得21x x x x ><或,由0)('<x f 得21x x x <<,则)(x f 的单调增区间是),4(),4,(22+∞-+---∞a a a a a a 单调减区间)4,4(22a a a a a a -+--.综上:当40≤≤a 时)(x f 的单调增区间是),(+∞-∞;当40><a a 或时)(x f 的单调增区间是),4(),4,(22+∞-+---∞a a a a a a 单调减区间)4,4(22a a a a a a -+--.【课后探究】设函数)0(ln 4)1(221)(2≥++-=a x x a ax x f ,讨论函数)(x f 单调性. 分析:先注意最高次前面的系数问题,确定大的分类讨论点,求导以后注意观察导函数,看能否进行分解因式求出对应的零点,然后再着手讨论.解:由题意:)(x f 的定义域为),0(+∞且xx ax x a ax x f )2()2(4)1(2)('-⋅-=++-=, 当0=a 时x x x f )2(2)('--=此时)(x f 的单调增区间是)2,0(单调减区间是),2(+∞; 当0>a 时由0)('=x f 得a x x 2221==或 1.当10220<<<<a a 即时由0)('>x f 得220><<x ax 或,由0)('<x f 得22<<x a ,此时)(x f 的单调增区间是),2()2,0(+∞和a ,单调减区间是)2,2(a ; 2.当122==a a即时0)('≥x f 恒成立,此时)(x f 的单调增区间是),0(+∞, 3.当122>>a a 即时由0)('>x f 得a x x 220><<或,由0)('<x f 得a x 22<<,此时)(x f 的单调增区间是),2()2,0(+∞a和,单调减区间是)2,2(a . 综上:当0=a 时)(x f 的单调增区间是)2,0(单调减区间是),2(+∞;当10<<a 时)(x f 的单调增区间是),2()2,0(+∞和a ,单调减区间是)2,2(a ;当1=a 时)(x f 的单调增区间是),0(+∞;当1>a 时)(x f 的单调增区间是),2()2,0(+∞a 和,单调减区间是)2,2(a.在解决含参数的函数单调性问题时:要先考虑定义域,再对导函数进行因式分解求零点,然后判断零点是否在定义域内,以及零点的大小是否确定(大小不定时需分类讨论);若导函数不能因式分解,则需要用判别式对导函数的符号进行研究.1.已知函数)(ln )(2R a x a x x f ∈+=讨论函数的单调性2.试讨论函数1)1(213123+---=x x a ax y 的单调性1.已知函数32()1f x x ax x =+++,a ∈R .(1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.2.已知函数()()0221ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围;。
专题03 利用函数的单调性求参数取值范围(解析版)

专题03利用函数的单调性求参数取值范围一、单选题1.已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为()A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【解析】()232f x x x a '=+-,因为()f x 在R 上为单调递增函数,故()0f x ¢³在R 上恒成立,所以4120a ∆=+≤即13a ≤-,故选:A.2.若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .(),1-∞-C .[)2,-+∞D .[)1,-+∞【解析】由ln 1a y x a x y x'=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10a x +≥在[)1,+∞上恒成立,因为[)1,x ∞∈+,所以由100a x a a x x +≥⇒+≥⇒≥-,因为[)1,x ∞∈+,所以(,x -∈-∞-,于是有1a ≥-,故选:D3.若函数()cos f x ax x =+在(),-∞+∞上单调递增,则实数a 的取值范围是()A .(-1,1)B .[)1,+∞C .(-1,+∞)D .(-1,0)【解析】()sin f x a x '=-,由题意得:()sin 0f x a x '=-≥,即sin a x ≥在(),-∞+∞上恒成立,因为[]sin 1,1y x =∈-,所以1a ≥恒成立,故实数a 的取值范围是[)1,+∞.故选:B4.若函数()2sin f x bx x =+在ππ,42x ⎡⎤∈⎢⎣⎦上单调递增,则实数b 的取值范围是()A .0b ≥B .0b >C .b ≥D .b >【解析】由题意()2cos 0f x b x '=+≥在ππ,42⎡⎤⎢⎣⎦上恒成立,2cos b x ≥-,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,2cos y x =-是增函数,max 0y =(π2x =时取得),所以0b ≥.故选:A .5.若函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .(,2)-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .(2,)-+∞D .(8,)-+∞【解析】由2()ln 2f x x ax =+-可得:1()2f x ax x'=+.因为函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,所以()0f x '>在1,14x ⎛⎫∈ ⎪⎝⎭上有解,即212a x >-在1,14x ⎛⎫∈ ⎪⎝⎭上有解.设()21,1124,g x x x ⎛⎫∈-⎝=⎪⎭,由()30g x x -'=>在1,14x ⎛⎫∈ ⎪⎝⎭上恒成立,所以()g x 在1,14x ⎛⎫∈ ⎪⎝⎭单调递增,所以()()114g g x g ⎛⎫<< ⎪⎝⎭.所以184a g ⎛⎫>=- ⎪⎝⎭.故选:D 6.已知函数32()132x ax f x ax =+++存在三个单调区间,则实数a 的取值范围是()A .(0,4)B .[0,4]C .(,0)(4,)-∞+∞ D .(,0][4,)-∞+∞ 【解析】由题意,函数32()132x ax f x ax =+++,可得2()f x x ax a '=++,因为函数()f x 存在三个单调区间,可得()'f x 有两个不相等的实数根,则满足240a a ∆=->,解得0a <或4a >,即实数a 的取值范围是(,0)(4,)-∞+∞ .故选:C.7.若函数()219ln 2f x x x =-在区间[]1,a a -上单调递减,则实数a 的取值范围是()A .13a <£B .4a ≥C .23a -≤≤D .14a <≤【解析】函数()219ln 2f x x x =-,()0x >.则()299x f x x x x-'=-=,因为()f x 在区间[1]a a -,上单调递减,则()0f x '≤在区间[1]a a -,上恒成立,即290x -≤,所以03x <≤在区间[1]a a -,上恒成立,所以103a a ->⎧⎨≤⎩,解得13a <£,故选:A.8.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为()A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-【解析】因为函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,所以()cos 2sin 0f x a x x '=-≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,即2tan a x ≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,由2tan y x =在π(,0)2-上单调递增知,max π2tan()24y =-=-,所以2a ≥-,故选:C9.若()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,则实数a 的取值范围是()A .5,4⎡⎫+∞⎪⎢⎣⎭B .(],1-∞-C .5,4⎛⎤-∞ ⎝⎦D .[)1,+∞【解析】由1sin 2()()cos 24x f x a x x =--+,得1cos 2()sin 22xf x a x '=---,因为()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,所以1cos 2()sin 022x f x a x '=---≤在R 上恒成立,即221cos2sin cos sin 1sin sin 22x a x x x x x ≤++=+=-+=215(sin )24x --+在R 上恒成立,由于1sin 1x -≤≤,所以215(1124a ---+=-≤.故选:B.10.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在区间7,24ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为()A .10,7⎡⎤⎢⎥⎣⎦B .16,09⎡⎤-⎢⎥⎣⎦C .1,7⎛⎤-∞ ⎥⎝⎦D .(],0-∞【解析】函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-()()1cos 23sin cos 412x a x x a x =+-+-()()()()2'sin 23cos sin 41cos sin 3cos sin 40f x x a x x a x x a x x a ∴=-+++-=-++++≤,对7π,2π4x ⎡⎤⎢⎥⎣⎦∈恒成立.πcos sin sin 4x x x ⎛⎫ ⎪⎝++⎭ ,∴当7π,2π4x ⎡⎤⎢⎥⎣⎦∈时,0cos sin 1x ≤+≤.令()()23401g t t at a t =-++≤≤,欲使()0g t ≤恒成立,只需满足231t a t ≤+,当01t ≤≤时,恒成立,即2min31t a t ⎛⎫≤ ⎪+⎝⎭,设[]311,4t m +=∈,13m t -=,222112203199999t m m m t m m -+==+-≥=+,当199m m =时,等号成立,即0a ≤.故选:D 11.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝=-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .二、多选题12.若函数21()9ln 2f x x x =-,在区间[]1,1m m -+上单调,则实数m 的取值范围可以是()A .4m =B .2m ≤C .12m <≤D .03m <≤【解析】定义域为()0,∞+,299()x f x x x x'-=-=;由()0f x '≥得函数()f x 的增区间为[)3,+∞;由()0f x '≤得函数()f x 的减区间为(]0,3;因为()f x 在区间[]1,1m m -+上单调,所以1013m m ->⎧⎨+≤⎩或13m -≥解得12m <≤或4m ≥;结合选项可得A,C 正确.故选:AC.三、填空题13.若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【解析】()'2f x x a =-+,由于函数()313f x x ax =-+有三个单调区间,所以()'20f x x a =-+=有两个不相等的实数根,所以0a >.故答案为:()0,∞+14.已知函数322()3(1)1(0)f x kx k x k k =+--+>,若()f x 的单调递减区间是(0,4),则实数k 的值为________.【解析】由322()3(1)1(0)f x kx k x k k =+--+>,得'2()36(1)f x kx k x =+-,因为()f x 的单调递减区间是(0,4),所以'()0f x <的解集为(0,4),所以4x =是方程236(1)0kx k x +-=的一个根,所以126(1)0k k +-=,解得13k =15.若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则实数m 的取值范围为________.【解析】由()2sin x f x e mx x =+-,得()'2cos xf x e mx x =+-,若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则()'2cos 0xf x e mx x =+-在[)0,∞+上恒成立,令()2cos xg x e mx x =+-,0x,则()'2sin x g x e m x =++,再令()2sin xh x e m x =++,0x,则()'cos x h x e x =+,因为0x ,所以01x e e = ,所以()'cos 0xh x e x =+在[)0,∞+上恒成立,则()h x 在[)0,∞+上单调递增,故()min ()012h x h m ==+;当120m +时,得12m - ,此时()()'0g x h x = ,则()g x 在[)0,∞+上单调递增,则()()00g x g =,此时符合()'2cos 0x f x e mx x =+- 在[)0,∞+上恒成立;当120m +<时,得12m <-,()00,x ∃∈+∞,使得0()0h x =,故[)00,x x ∈时,()0h x <,即()'0g x <,()0,x x ∈+∞时,()0h x >,即()'0g x >,故()g x 在[)00,x 上单调递减,则当[)00,x x ∈时,()()00g x g =,此时()'2cos 0x f x e mx x =+- ,不合题意;综上,实数m 的取值范围为12m - .16.已知函数1()2ln f x x x x=--,21()(1)2x g x x e ax =--,R a ∈.对于任意12,(1,)x x ∈+∞,且12x x ≠,必有()()()()12120f x f x g x g x ->-,则a 的取值范围是___________.【解析】()f x 定义城为(0,)+∞.22212(1)()10x f x x x x-'=+-=≥.故()f x 在(1,)+∞内单调递增.对于任意12,(1,)x x ∈+∞,不妨设12x x <,则()()120f x f x -<.故()()120g x g x -<,()()12g x g x <,()g x 在(1,)+∞内单调递增.故()()0x xg x xe ax a e x '=-=-≥在(1,)+∞恒成立,即x a e ≤恒成立,可知a e ≤.∴a 的取值范围为(,]e -∞.17.已知函数32()23f x x kx x =-+-在R 上不单调,则k 的取值范围是______.【解析】22()341f x x kx '=-+,因为函数32()23f x x kx x =-+-在R 上不单调,所以223410x kx -+=必有解,当223410x kx -+=只有一个解时,22()3410f x x kx '=-+≥得出函数()f x 在R 上单调递增,与题干矛盾,故223410x kx -+=必有两个不等实根则()2044310k ∆>⇒--⨯⨯>,解得k <或k >18.若实数()0,2a ∈,()0,2b ∈,则函数()232211432f x a x b x x =+-在区间()1,+∞单调递增的概率为___________.【解析】由题意222()40f x a x b x ¢=+-³在(1,)+∞上恒成立,二次函数的对称轴是2202bx a=-<,因此()'f x 在(1,)+∞上单调递增,所以22(1)40f a b ¢=+-³,易知满足02,02a b <<<<的点(,)a b 据区域为图中正方形OABC ,面积为224⨯=,又满足2240a b +-³的(,)a b 在正方形OABC 在圆224x y +=外部的部分,面积为214244p p -´=-,所以概率为44P π-=.19.若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.【解析】 函数()324132x af x x x =-++,'2()4f x x ax ∴=-+,若函数()f x 在区间(1,4)上不单调,则()'240f x x ax =-+=在(1,4)上存在变号零点,由240x ax -+=得4a x x =+,令4()g x x x =+,(1,4)x ∈,'2(2)(2)()x x g x x +-=,()g x ∴在()1,2递减,在()2,4递增,而()422+42g ==,()411+51g ==,()444+54g ==,所以45a <<.故答案为:()45,.四、解答题20.已知函数()31f x x ax =--.(1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围.(2)若()f x 的单调递减区间为(1,1)-,求a 的值.【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立,所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞(2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得x <()f x 的单调递减区间为(,又已知()f x 的单调递减区间为(1,1)-,所以(=(1,1)-1=,即3a =.21.已知函数()ln af x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.【解析】(1)当3a =-时,3()ln (0)f x x x x =+>,则'22133()x f x x x x-=-=,令'()0f x =,得3x =,x ,'()f x 和()f x 的变化情况如下表x(0,3)3(3,)+∞'()f x -0+()f x 递减极小值递增所以当3x =时,()f x 取得极小值(3)ln 31f =+,无极大值(2)由()ln a f x x x =-(0x >),得()'221a x a f x x x x+=+=(0x >),当0a ≥时,'()0f x >,所以()f x 在(0,)+∞上单调递增,所以()f x 在3,e e ⎡⎤⎣⎦上单调递增,当0a <时,由'()0f x =,得x a =-,x ,'()f x 和()f x 的变化情况如下表x (0,)a -a-(,)a -+∞'()f x -0+()f x 递减极小值递增因为()f x 在3,e e ⎡⎤⎣⎦上单调递增,所以a e -≤,得0e a -≤<,综上,a 的取值范围为[,)e -+∞22.已知a R ∈,函数2()()e (xf x x ax x R =-+∈,e 为自然对数的底数).(1)当2a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在(1,1)-上单调递增,求a 的取值范围;【解析】(1)当2a =时,2()(2)e x f x x x =-+,2()(2)e x f x x '=--令()0f x '>,得220x -<,∴x <()f x ∴的单调递增区间是(;(2)2()[(2)]e x f x x a x a '=-+-+,若()f x 在(1,1)-内单调递增,即当11x -<<时,()0f x ',即2(2)0x a x a -+-+对(1,1)x ∈-恒成立,即111a x x +-+ 对(1,1)x ∈-恒成立,令111y x x =+-+,则2110(1)y x '=+>+,111y x x ∴=+-+在(1,1)-上单调递增,1311112y ∴<+-=+,32a ∴ ,当32a =时,当且仅当0x =时,()0f x '=,a ∴的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭.23.已知函数1()xxf x ax e +=-.(1)若曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,求实数a ,b 的值;(2)若函数()f x 在区间(0,2)上存在..单调增区间,求实数a 的取值范围;(3)若()f x 在区间(0,2)上存在极大值,求实数a 的取值范围(直接写出结果).【解析】(1)因为1(1)()x x x xf x a a e e'-+=-=+,所以(0)f a '=,因为曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,所以切线斜率为1,即1a =,(0)1f b =-=,所以1,1a b ==-.(2)因为函数()f x 在区间(0,2)上存在单调增区间,所以()0x xf x a e='+>在(0,2)上有解,即只需()'f x 在(0,2)上的最大值大于0即可.令1()(),()x x x xh x f x a h x e e-==+='',当(0,1)x ∈时,()0,()h x h x '>为增函数,当(1,2)x ∈时,()0,()h x h x '<为减函数,所以,当1x =时,()h x 取最大值1a e +,故只需10a e +>,即1a e >-.所以实数a 的取值范围是1,e ⎛⎫-+∞ ⎪⎝⎭.(3)212,⎛⎫-- ⎪⎝⎭e e 24.1.已知函数()()31R f x x ax a =--∈.(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若函数()f x 的单调递减区间是)-,求实数a 的值;(3)若函数()f x 在区间()1,1-上单调递减,求实数a 的取值范围.【解析】(1)易知()23f x x a '=-.因为()f x 在R 上单调递增,所以()0f x '≥恒成立,即23a x ≤恒成立,故()2min30a x≤=.经检验,当0a =时,符合题意,故实数a 的取值范围是(],0-∞.(2)由(1),得()23f x x a '=-.因为()f x 的单调递减区间是()1,1-,所以不等式230x a -<的解集为()1,1-,所以-1和1是方程230x a -=的两个实根,所以3a =.(3)由(1),得()23f x x a '=-.因为函数()f x 在区间()1,1-上单调递减,所以()0f x '≤在()1,1x ∈-上恒成立,即23a x ≥在()1,1x ∈-上恒成立.又函数23y x =在()1,1-上的值域为[)0,3,所以3a ≥.故实数a 的取值范围是[)3,+∞.25.已知函数22()ln ()f x x a x ax a R =-+∈.(1)当1a =时,求函数()f x 的最值(2)若函数()f x 在区间[1,)+∞上是减函数,求实数a 的取值范围.【解析】(1)当1a =时,2()ln f x x x x =-+,则()()2211121()21x x x x f x x x x x+---'=-+=-=-,当01x <<时,()0f x '>,当1x >时,()0f x '<,所以当1x =时,()f x 有最大值0,无最小值;(2)21()2f x a x a x-'=+,因为函数()f x 在区间[1,)+∞上是减函数,所以21()20f x a x a x=-+≤'在区间[1,)+∞上恒成立,令()212g x a x a x =-+,则()22120g x a x'=--<,所以()g x 在区间[1,)+∞上递减,所以()()2max 121g x g a a ==-++,则2210a a -++≤,即2210≥--a a ,即()()2110a a +-≥,解得12a ≤-或1a ≥,所以实数a 的取值范围1(,[1,)2-∞-⋃+∞.26.已知函数()22f x x a x x =⋅-+.(1)当1a =时,求曲线()y f x =在点()()22f ,处的切线方程;(2)若()22f x x a x x =⋅-+在区间[0,1]上单调递增,求实数a 的取值范围.【解析】(1)当1a =时,()22·21||()1f x x x x x x =+=--,则2()341'=-+f x x x ,所以()(252,2)f f '==,所以,所求切线方程为25(2)y x -=-,即580x y --=.(2)设()()2201g x x x a x =+≤≤-,则()2(1)0g x x '=-≤,所以()g x 在[]0,1上单调递减,从而()()()10g g x g ≤≤,即()1a g x a ≤≤-.(i )当1a ≥时,()10g x a ≥≥-,则()22()f x x x x a -=+,则2()34f x x x a '=-+,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+≥对于任意的[]0,1x ∈恒成立,即234a x x ≥-+.因为2224343(33x x x -+=--+,所以当23x =时,2434()3max x x +=-,所以43a ≥,又1a ≥,此时a 的取值范围为4,3⎡⎫+∞⎪⎢⎣⎭(ii )当0a ≤时,()0g x ≤,则()2()2f x x x x a =-+-,则2()34f x x x a '=-+-,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+-≥对于任意的[]0,1x ∈恒成立,即234a x x ≤-+.因为2224343(33x x x -+=--+,所以当0x =时,2min 340()x x +=-,所以0a ≤,此时a 的取值范围为(,0]-∞.(iii )当01a <<时,则存在唯一的()00,1x ∈,使得()00g x =.当()100,x x ∈时,()10g x >,即存在()010,1x x ∈,且10x x <,使得()()10g x g x >,从而()()1100x g x x g x >,即()()10f x f x >,这与“()f x 在[]0,1上为增函数”矛盾,此时不合题意.综上,实数a 的取值范围(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭27.已知函数()ln f x ax x =-,()e 2ax g x x =+,其中a ∈R .(1)当2a =时,求函数()f x 的极值;(2)若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上具有相同的单调性,求实数a 的取值范围.【解析】(1)当2a =时,()2ln f x x x =-,定义域为(0,)+∞,则1()2f x x'=-,故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.所以()f x 在12x =处取得极小值,且11ln 22f ⎛⎫=+ ⎪⎝⎭,无极大值.(2)由题意知,1()f x a x'=-,()e 2ax g x a '=+.当0a >时,()0g x '>,即()g x 在R 上单调递增,而()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,故必存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上单调递增;当0a =时,1()0f x x '=-<,故()f x 在(0,)+∞上单调递减,而()g x 在(0,)+∞上单调递增,故不存在满足条件的区间D ;当0a <时,1()0f x a x '=-<,即()f x 在(0,)+∞上单调递减,而()g x 在12,ln a a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递减,在12ln ,a a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上有相同的单调性,则有12ln 0a a ⎛⎫-> ⎪⎝⎭,解得2a <-.综上可知,a 的取值范围为(,2)(0,)-∞-+∞ .。
核心考点十二 含参函数在区间上具有单调性、无单调性或存在单调区间,求参数范围

核心考点十二 含参函数在区间上具有单调性、无单调性或存在单调区间,求参数范围思路提示:1、已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于零或恒小于等于零,先分析导函数的性质及图像特点,如一次函数最值,开口向上抛物线最大值,开口向下抛物线最小值等都在区间端点上考虑;2、已知区间上函数不单调,转化为导函数在区间上存在变号零点,通常利用分析变量法求解参变量范围;3、已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解。
方向一:含参函数在区间上具有单调性,求参数的范围解法突破:函数)(x f 在给定的区间上单调递增,转化为其导函数0)('≥x f 在区间上恒成立,进而转化为)('x f 在区间上最大值大于等于0,同理若)(x f 在区间上单调递减,转化为导函数0)('≤x f 在区间上恒成立,进而转化为)('x f 在区间上的最大值小于等于0. 例1、已知函数ax x x x f -+=2ln )(,若函数)(x f 在其定义域上为增函数,求a 的取值范围。
变式1、已知函数)(1ln )(为实数a ax xx x f ++=,(1)当0=a 时,求)(x f 的最小值;(2)若)(x f 在),2[+∞上是单调函数,求a 的取值范围。
变式2、设21)(ax e x f x +=,其中0>a ,(1)当34=a 时,求)(x f 的极值点;(2)若)(x f 为R 上的单调函数,求a 的取值范围。
解法突破:含参函数在给定区间上不单调,即含参函数在给定区间上存在极值点,即导函数在区间上存在变号零点,若能直接求解极值点的话,将其限定在给定区间上建立不等关系,求解参变量的取值范围;若不易求解极值点,应分离自变量与参变量,转化为函数的最值,但要注意变号零点并非零点。
例2、已知函数1)5()1()(23-++-+=x k x k x x f ,其中R k ∈,若函数)(x f 在区间)3,0(上不单调,求k 的取值范围。
含参函数的单调性问题

上 的 单 调 性.
1 3a 4 1 3a 4
函数f ( x) 1 (1 a) x x x 在(,
)上单调递增,
( 2)可导函数f ( x )在区间a , b上存在单增(减)区间
f ( x) 0( f ( x) 0)在区间a, b上有解
a, b
(3)可导函数f ( x )的单调区间是
a, b是f ( x) 0的两根.
合作探究
1 2
例3 已知函数f ( x) ln x,g ( x) ax 2 x, a 0
D
4.函数f ( x ) x 2 a ln x在(1,)上单调递增,则实数
a的取值范围为
(____)
A.a 1
B.a 1
C.a 2
D.a 2
2
5.已知函数f ( x) x ax x c, 且a f ( ).
3
3
x
(
2
)
若g(xFra bibliotek)
(
f
(
x
)
x
)
e
在 3,2上 单增 , 求 实数
3
3
1 3a 4 1 3a 4
在(- ,
), (
,)上单调递减
3
3
2
3
1 3
变式训练2: 求函数 = − + 2 + 1, (
3
≤ 0)的单调区间.
当a 0时, f ( x)在(0, )上递增,在( - ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知函数单调性求参数(简单)一、选择题1.函数y=ax3-x在(-∞,+∞)上是减函数,则()A.a=B.a=1C.a=2D.a≤02.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A. (-∞,-2]B. (-∞,-1]C. [2,+∞)D. [1,+∞)3.若函数f(x)=a ln x+在区间(1,+∞)上单调递增,则实数a的取值范围是()A. (-∞,-2]B. (-∞,-1]C. [1,+∞)D. [2,+∞)4.已知f(x)=a ln x+x2,若对任意两个不等的正实数x1,x2都有>0成立,则实数a的取值范围是()A. [0,+∞)B. (0,+∞)C. (0,1)D. (0,1]5.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是()A. (-∞,)B. [,+∞)C. (,+∞)D. (-,)6.函数f(x)=e x-ax-1在R上单调递增,则实数a的取值范围为()A.RB. [0,+∞)C. (-∞,0]D. [-1,1]7.已知a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,则a+b的取值范围为()A. (0,]B. [,+∞)C. (0,1)D. (1,+∞)8.已知函数f(x)=x3+ax在[1,+∞)上是增函数,则a的最小值是()A.-3B.-2C. 2D. 39.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是减函数,则实数a的取值范围是()A. (-∞,-)∪[,+∞)B. [-,]C. (-∞,-)∪(,+∞)D. (-,)10.已知函数f(x)=x-a ln x在区间(0,2]上单调递减,则实数a的取值范围是()A. (0,)B. (0,2)C. (,+∞)D. [2,+∞)11.已知f(x)=x3+bx2+(b+2)x+3在R上是单调增函数,则b的取值范围是()A.b≤-1或b≥2B.b<-1或b>2C.-1≤b≤2D.-1<b<212.已知函数f(x)=在[1,+∞)上为减函数,则a的取值范围是()A. 0<a<B.a≥eC.a≥D.a≥413.若函数f(x)=-x2+a ln x在区间(1,+∞)上是减函数,则实数a的取值范围为()A. [1,+∞)B. (1,+∞)C. (-∞,1]D. (-∞,1)14.若函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是()A. (3,+∞)B. [-3,+∞)C. (-3,+∞)D. (-∞,-3)二、填空题15.已知函数f(x)=ax3+3x2-x+1在(-∞,+∞)上是减函数,则实数a的取值范围是________.16.函数f(x)=x3-mx2+m-2的单调递减区间为(0,3),则m=________.17.若函数y=a(x3-x)的单调减区间为(-,),则a的取值范围是________.18.若函数y=-x3+ax有三个单调区间,则a的取值范围是________.19.若函数f(x)=x3+bx2+cx+d的单调减区间为[-1,2],则b=________,c=________.20.已知函数f(x)=在(-2,+∞)内单调递减,则实数a的取值范围为________.21.已知函数f(x)=x3-x2+mx+2,若对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,则实数m的取值范围是________.22.已知a>0,函数f(x)=ln x+在[1,+∞)上是增函数,则实数a的取值范围是________.23.若函数y=ax+sin x在R上单调递增,则a的最小值为________.24.若函数f(x)=在(0,+∞)上单调递增,则实数a的取值范围是________.25.函数y=x3-ax+4在(1,+∞)上为增函数,则a的取值范围是________.三、解答题26.已知函数f(x)=2ax-,x∈(0,1].若f(x)在x∈(0,1]上是增函数,求a的取值范围.27.已知函数f(x)=x3-ax-1.(1)是否存在a,使f(x)的单调减区间是(-1,1);(2)若f(x)在R上是增函数,求a的取值范围.28.已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0).若f(x)的单调递减区间为(0,4),单调递增区间为(-∞,0)与(4,+∞),求k的值.答案解析1.【答案】D【解析】y′=3ax2-1,∵函数y=ax3-x在(-∞,+∞)上是减函数,则3ax2-1≤0在R上恒成立,∴a=0或∴a≤0.2.【答案】D【解析】由条件知f′(x)=k-≥0在(1,+∞)上恒成立,∴k≥1.3.【答案】C【解析】f′(x)=-=.∵f(x)在(1,+∞)上单调递增,∴f′(x)≥0在(1,+∞)上恒成立,∴ax-1≥0在(1,+∞)上恒成立,显然,需a>0,∴函数y=ax-1在(1,+∞)上是增函数,∴a-1≥0,a≥1,∴实数a的取值范围是[1,+∞).4.【答案】A【解析】对任意两个不等的正实数x1,x2,都有>0恒成立,即f(x)为增函数.则当x>0时,f′(x)>0恒成立,f′(x)=+x>0在(0,+∞)上恒成立,则a>(-x2)max,而-x2<0,则a≥0.5.【答案】B【解析】由f(x)=-x3+2ax,所以f′(x)=-3x2+2a,因为f(x)=-x3+2ax在(0,1]上是单调递增函数,所以f′(x)=-3x2+2a≥0在(0,1]上恒成立,即2a≥3x2在(0,1]上恒成立.因为函数y=3x2≤3在(0,1]上恒成立,所以a≥.6.【答案】C【解析】∵f(x)=e x-ax-1在R上单调递增,∴f′(x)≥0恒成立,即f′(x)=e x-a≥0恒成立,即a≤e x,∵e x>0,∴a≤0.7.【答案】B【解析】∵a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,∴f′(x)=-x2+2ax+b,且f′(x)=-x2+2ax+b≥0在区间[-1,2]上恒成立.由于二次函数f′(x)=-x2+2ax+b的图象是抛物线,开口向下,对称轴为x=a,故有f′(-1)≥0,且f′(2)≥0,即化简可得 2a+2b≥5,a+b≥,故a+b的取值范围为[,+∞).8.【答案】A【解析】f′(x)=3x2+a,∵函数f(x)=x3+ax在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立,∵f′(x)=3x2+a在[1,+∞)上是增函数,∴3x2+a≥3×12+a=3+a,∴3+a≥0,∴a≥-3.9.【答案】B【解析】f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立,由Δ=4a2-12≤0得-≤a≤.10.【答案】D【解析】若函数f(x)=x-a ln x在区间(0,2]上单调递减,则等价为f′(x)≤0在(0,2]上恒成立,即1-≤0,即≥1,即a≥x,∵0<x≤2,∴a≥2.11.【答案】C【解析】∵f(x)=x3+bx2+(b+2)x+3,∴f′(x)=x2+2bx+b+2,∵f(x)是R上的单调增函数,∴x2+2bx+b+2≥0恒成立,∴Δ≤0,即b2-b-2≤0,则b的取值是-1≤b≤2.12.【答案】B【解析】f′(x)=,∵函数f(x)=在[1,+∞)上为减函数,∴f′(x)=≤0在[1,+∞)上恒成立,即1-ln a≤ln x在[1,+∞)上恒成立,∴1-ln a≤0,∴a≥e.13.【答案】C【解析】∵f′(x)=-x+,∵f(x)在区间(1,+∞)上是减函数,∴f′(x)=-x+≤0在区间(1,+∞)上恒成立,∴a≤x2在区间(1,+∞)上恒成立,∵x2>1,∴a≤1.14.【答案】B【解析】因为f(x)=x3+ax-2,所以f′(x)=3x2+a,因为函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,所以f′(x)=3x2+a≥0在区间(1,+∞)内恒成立且不恒为零,即a≥-3x2在区间(1,+∞)内恒成立且不恒为零,又x∈(1,+∞)时,(-3x2)max=-3,所以实数a的取值范围是[-3,+∞).15.【答案】(-∞,-3]【解析】由题意得3ax2+6x-1≤0在(-∞,+∞)上恒成立.当a=0时,6x-1≤0,x≤不满足题意,∴a≠0;当a≠0时,由题意得∴a≤-3.综上可知,实数a的取值范围是(-∞,-3].16.【答案】【解析】令f′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,m=.17.【答案】(0,+∞)【解析】由f′(x)=a(3x2-1)=3a(x-)(x+)<0的解集为(-,),知a>0.18.【答案】(0,+∞)【解析】y′=-4x2+a且y有三个单调区间,∴方程y′=-4x2+a=0有两个不等的实根,∴Δ=02-4×(-4)×a>0,∴a>0.19.【答案】--6【解析】∵y′=3x2+2bx+c,由题意知[-1,2]是不等式3x2+2bx+c<0的解集,∴-1,2是方程3x2+2bx+c=0的根,由根与系数的关系得b=-,c=-6.20.【答案】(-∞,)【解析】f′(x)=,由题意得f′(x)≤0在(-2,+∞)内恒成立,∴解不等式得a≤,但当a=时,f′(x)=0恒成立,不合题意,应舍去,∴a的取值范围是(-∞,).21.【答案】[,+∞)【解析】对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,即函数f(x)在R上为增函数,即有f′(x)≥0在R上恒成立.由f(x)=x3-x2+mx+2的导数为f′(x)=3x2-2x+m,由3x2-2x+m≥0恒成立,可得判别式Δ=4-12m≤0,解得m≥,则所求m的取值范围是[,+∞).22.【答案】[1,+∞)【解析】f′(x)=-=,若函数f(x)=ln x+在[1,+∞)上是增函数(a>0),则ax-1≥0在[1,+∞)恒成立,即a≥()max=1.23.【答案】1【解析】y′=a+cos x,∵y=ax+sin x在R上单调递增,∴a+cos x≥0,在R上恒成立.∴a≥-cos x,-cos x的最大值为1,∴a≥1,即a的最小值为1.24.【答案】(0,+∞)【解析】f′(x)=(ax-)′=a+,由题意得,a+≥0在x∈(0,+∞)上恒成立,所以a≥-在x∈(0,+∞)上恒成立,故a≥0.25.【答案】(-∞,3)【解析】y′=3x2-a,∵y=x3-ax+4在(1,+∞)上为增函数,∴y′=3x2-a≥0在(1,+∞)上恒成立,∴a≤3x2在(1,+∞)上恒成立,∵3x2>3在(1,+∞)上恒成立,∴a≤3.26.【答案】解由已知得f′(x)=2a+,∵f(x)在(0,1]上单调递增,∴f′(x)≥0,即a≥-在x∈(0,1]上恒成立.而g(x)=-在(0,1]上单调递增,∴g(x)max=g(1)=-1,∴a≥-1,∴f(x)在(0,1]上为增函数,a的取值范围是[-1,+∞).【解析】27.【答案】解f′(x)=3x2-a.(1)∵f(x)的单调减区间是(-1,1),∴-1<x<1是f′(x)<0的解,∴x=±1是方程3x2-a=0的两根,∴a=3.(2)∵f(x)在R上是增函数,∴f′(x)=3x2-a≥0对x∈R恒成立,即a≤3x2对x∈R恒成立.∵y=3x2在R上的最小值为0.∴a≤0.【解析】28.【答案】解f′(x)=3kx2-6(k+1)x,由题意知x=0或x=4为方程f′(x)=0的两根,∴0+4=4=,∴k=1.【解析】。