高三数学-30道压轴题及答案 精品
高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考必做的36道压轴题变式题答案

高考数学必做36道压轴题答案(解析几何部分)1-1 解:(Ⅰ)设双曲线的方程是12222=-by a x (0>a ,0>b ),则由于离心率2==ace ,所以a c 2=,223a b =. 从而双曲线的方程为132222=-ay a x ,且其右焦点为F (a 2,0). 把直线MN 的方程a x y 2-=代入双曲线的方程,消去y 并整理,得074222=-+a ax x .设M 11(,)x y ,N 22(,)x y ,则a x x 221-=+,22127a x x -=. 由弦长公式,得212214)(2||x x x x MN -+⋅=)27(4)2(222a a ---⋅==6.所以1=a ,3322==a b .从而双曲线的方程是1322=-y x . (Ⅱ)由m kx y +=和1322=-y x ,消去y ,得032)3(222=----m kmx x k . 根据条件,得0)3)(3(442222>----=∆m k m k 且032≠-k .所以 3322≠>+k m .设A ),(33y x ,B ),(44y x ,则24332k km x x -=+,332243-+=k m x x . 由于以线段AB 为直径的圆过原点,所以04343=+y y x x . 即 0)()1(243432=++++m x x km x x k .从而有03233)1(22222=+-⋅+-+⋅+m k km km k m k ,即22321m k =+. 所以 点Q 到直线l :m kx y +=的距离为|11|2632|1|1|1|22mm m k m d +=+=++=.由 13222-=m k ≥0,解得 36136≤≤-m 且01≠m . 由 13222-=m k 3≠,解得 ≠m 166±. 所以当26=m 时,d 取最大值226)361(26+=+,此时0=k . 因此d 的最大值为226+,此时直线l 的方程是26=y . 1-2 解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l=2c = 所以椭圆C 的焦距为4.(Ⅱ)设1122(,),(,)A x y B x y ,由题意知10y <,20y >,且直线l的方程为2).y x -联立22222),1y x x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y y b +--=,解得12y y ==. 因为222AF F B =,所以122y y -=,即222222(22)(22)233a a a b a b+-=⋅++,得3a =.而224a b -=,所以b =故椭圆C 的方程为221.95x y += 2-1 解:(Ⅰ)因为c e a ==所以 22222213c a b e a a -=== ,即2223b a =,又b == 所以22b =,23a =,即a =b =(Ⅱ)解法1:由(1)知12,F F 两点分别为(1,0)-,(1,0),由题意可设(1,)P t . 那么线段1PF 中点为(0,)2tN ,设(,)M x y .由于(,)2tMN x y =--,1(2,)PF t --, 则1,2(),2y t t MN PF x t y =⎧⎪⎨⋅=+-⎪⎩消去参数t ,得24y x =-,其轨迹为抛物线. 解法2:如图,因为M 是线段1PF 垂直平分线上的点,所以1||||MP MF =,即动点M 到定点1F 的距离与的定直线1l 的距离相等,1F ,由抛物线的定义知,动点M 的轨迹是以定点以定直线1l 为准线的抛物线,易得其方程是24y x =-.2-2 解:(Ⅰ)设动点E 的坐标为(,)x y ,依题意可知1222y y x x ⋅=-+-,整理得221(2)2x y x +=≠±. 所以动点E 的轨迹C 的方程为221(2)2x y x +=≠±. (II )当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2212x y +=并整理得, 2222(21)4220k x k x k +-+-=. 2880k ∆=+>.设11(,)M x y ,22(,)N x y ,则2122421k x x k +=+, 21222221k x x k -=+. 设MN 的中点为Q ,则22221Q k x k =+,2(1)21Q Q k y k x k =-=-+, 所以2222(,)2121k kQ k k -++.由题意可知0k ≠,又直线MN 的垂直平分线的方程为22212()2121kk y x k k k +=--++. 令0x =解得211212P k y k k k==++.当0k >时,因为12k k +≥0P y <≤=; 当0k <时,因为12k k +≤-0P y >≥= 综上所述,点P纵坐标的取值范围是[. 3-1 解:(Ⅰ)由椭圆的定义可知,动点P 的轨迹是以A ,B为焦点,长轴长为所以1c =,a =22b =. 所以W 的方程是22132x y +=.(Ⅱ)设C ,D 两点坐标分别为11(,)C x y 、22(,)D x y ,C ,D 中点为00(,)N x y .当0k =时,显然0m =; 当0k ≠时,由221,132y kx x y =+⎧⎪⎨+=⎪⎩ 得 22(32)630k x kx ++-=.所以122632k x x k +=-+, 所以12023232x x kx k +==-+, 从而0022132y kx k =+=+.所以MN 斜率2002232332MNy k k k x m m k +==---+. 又因为CM DM =, 所以CD MN ⊥,所以222132332k k k m k +=---+,即 212323k m k k k=-=-++6[,0)(0,]1212∈-. 故所求m 的取范围是[]1212-. 3-2 解:(Ⅰ)依题意,c =1b =,所以a .故椭圆C 的方程为2213x y +=. (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设A ,(1,B ,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=. 综上所述,,m n 的关系式为10m n --=.4-1 解:(Ⅰ)设椭圆长半轴长及分别为a ,c ,由已知得,1,7.a c a c -=⎧⎨+=⎩解得a =4,c =3.所以椭圆C 的方程为221.167x y += (Ⅱ)设M (x ,y ),P(x ,1y ),其中[]4,4.x ∈- 由已知得222122.x y e x y+=+ 因为 34e =, 所以 2222116()9().x y x y +=+由点P 在椭圆C 上得,221112716x y -=,化简得 29112y =. 所以点M的轨迹方程为(44)3y x =±-≤≤, 轨迹是两条平行于x 轴的线段.4-2(Ⅰ)解:因为A , B 两点关于x 轴对称,所以AB 边所在直线与y 轴平行. 设M (x , y ),由题意,得(),(,3)A x B x x ,所以||,||AM y MB y -=,因为||||3AM MB ,所以)()3y y -⨯=,即2213y x -=,所以点M 的轨迹W 的方程为221(0)3y x x -=>.(Ⅱ)证明:设000(,)(0)M x y x >,因为曲线221(0)3y x x -=>关于x 轴对称,所以只要证明“点M 在x 轴上方及x 轴上时,2MQP MPQ ∠=∠”成立即可. 以下给出“当00y ≥时,2MQP MPQ ∠=∠” 的证明过程.因为点M 在221(0)3y x x -=>上,所以01x ≥.当x 0=2时,由点M 在W 上,得点(2,3)M , 此时,||3,||3MQ PQ MQ PQ ⊥==, 所以,42MPQ MQP ππ∠=∠=,则2MQP MPQ ∠=∠;当02x 时,直线PM 、QM 的斜率分别为0000,12PM QM y y k k x x ==+-, 因为0001,2,0x x y ≥≠≥,所以0001PM y k x =≥+,且0011PM yk x =≠+, 又tan PM MPQ k ∠=,所以(0,)2MPQ π∠∈,且4MPQ π∠≠,所以22tan tan 21(tan )MPQ MPQ MPQ ∠∠=-∠00002220000212(1)(1)1()1y x y x y x y x ⨯++==+--+, 因为点M 在W 上,所以220013y x -=,即220033y x =-,所以tan 2MPQ ∠000220002(1)(1)(33)2y x y x x x +==-+---,因为tan QM MQP k ∠=-, 所以tan tan 2MQP MPQ ∠=∠, 在MPQ ∆中,因为(0,)2MPQ π∠∈,且4MPQ π∠≠,(0,)MQP π∠∈,所以2MQP MPQ ∠=∠.综上,得当00y ≥时,2MQP MPQ ∠=∠.所以对于轨迹W 的任意一点M ,2MQP MPQ ∠=∠成立.5-1 解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等, 即(,2)M m 到2py =-的距离为3; 所以 232p-+=,解得2p =. 所以 抛物线P 的方程为24x y =.(ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 216160k ∆=-=,解得1k =±.所以切线方程为1y x =±-.(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. 所以 122x x pk +=,212x x p ⋅=-; 因为 11(,)A x y , 所以 直线OA :11y y x x =,与2p y =-联立可得11(,)22px p C y --, 同理得22(,)22px pD y --. 因为 焦点(0,)2pF , 所以 11(,)2px FC p y =--,22(,)2pxFD p y =--, 所以 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--22212121212224px px p x x p p y y y y =+=+2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- 所以 以CD 为直径的圆过焦点F .5-2 解:(Ⅰ)如图,由题意得,22b c ==.所以b c ==2a =.所以所求的椭圆方程为22142x y +=. (Ⅱ)由(Ⅰ)知,C (2-,0),D (2,0).由题意可设CM :(2)y k x =+,P (1x ,1y ).MD CD ⊥,∴M (2,4k ).由 22142(2)x y y k x ⎧+=⎪⎨⎪=+⎩,整理 得:2222(12)8840k x k x k +++-=.因为21284212k x k --=+, 所以2122412k x k-=+. 所以1124(2)12k y k x k =+=+,222244(,)1212k kP k k-++. 所以222222444(12)244121212k k k OM OP k k k k-+⋅=⋅+⋅==+++. 即OM OP ⋅为定值. (Ⅲ)设0(,0)Q x ,则02x ≠-.若以MP 为直径的圆恒过DP ,MQ 的交点,则MQ DP ⊥,∴0MQ DP ⋅=恒成立.由(Ⅱ)可知0(2,4)QM x k =-,22284(,)1212k kDP k k -=++. 所以202284(2)401212k kQM DP x k k k -⋅=-⋅+⋅=++. 即2028012k x k =+恒成立. 所以00x =.所以存在(0,0)Q 使得以MP 为直径的圆恒过直线DP ,MQ 的交点. 5-3 解:(I)直线l 的方程为210x y --=;(II) 由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=. (*)由2228(1)804m m m ∆=--=-+>,知28m <.设11(,)A x y ,22(,)B x y ,则由(*)式,有12212,21.82m y y m y y ⎧+=-⎪⎪⎨⎪=-⎪⎩由于1(,0)F c -,2(,0)F c ,且O 是12F F 的中点,依题意,由2AG GO =,2BH HO =,可知,11(,)33x y G ,22(,)33x yH . 若原点在以线段GH 为直径的圆内,则0OG OH ⋅<,即12120x x y y +<.而2222121212121()()(1)()2282m m m x x y y my my y y m +=+++=+-, 所以21082m -<,即24m <.又由已知1m >,所以12m <<. 即,实数m 的取值范围是(1,2).5-4 解:(Ⅰ)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:1(0)x x =>,化简得24(0)y x x =>.(Ⅱ)设过点M (m ,0)(m >0)的直线l 与曲线C 的交点为A 12(,)x y ,B 22(,)x y . 设直线l 的方程为x =ty +m , 由2,4x ty m y x=+⎧⎨=⎩得2440y ty m --=,△=16(2t +m )>0,于是12124,4.y y t y y m +=⎧⎨=-⎩ ①又1122(1,),(1,)FA x y FB x y =-=-.0FA FB ⋅<1212(1)(1)x x y y ⇔--+=1212()x x x x -++1+120y y < ②又24y x =,于是不等式②等价于2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+<⎣⎦ ③ 由①式,不等式③等价于22614m m t -+< ④对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+<, 即33m -<<+由此可知,存在正实数m ,对于过点M (m ,0)且与曲线C 有两个交点A ,B 的任一直线,都有0FA FB ⋅<,且m的取值范围(3-+.6-1 解:(Ⅰ)由题意,2221,,a c b a b c ⎧-=⎪⎪=⎨⎪=+⎪⎩解得1a c ==.即:椭圆方程为.12322=+y x (Ⅱ)当直线AB 与x轴垂直时,AB =,此时AOB S ∆不符合题意故舍掉;当直线AB 与x 轴不垂直时,设直线 AB 的方程为:)1(+=x k y , 代入消去y 得:2222(23)6(36)0k x k x k +++-=.设1122(,),(,)A x y B x y ,则212221226,2336.23k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以AB =. 原点到直线的AB距离d =,所以三角形的面积12S AB d ==由224S k k =⇒=⇒=所以直线0AB l y -=或0AB l y +=.6-2 解:(I )椭圆C 的方程为)0(12222>>=+b a b y a x,由已知得2222.c e a a a b c ⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩解得1,1a b c ===所以所求椭圆的方程为1222=+y x .(II)由题意知l 的斜率存在且不为零,设l 方程为2(0)x my m =+≠ ①,将①代入1222=+y x ,整理得 22(2)420m y my +++=,由0>∆得2 2.m >设),(11y x E ,),(22y x F ,则1221224222m y y m y y m -⎧+=⎪⎪+⎨⎪=⎪+⎩②由已知,12OBE OBF S S ∆∆=, 则||1||2BE BF = 由此可知,2BF BE =,即212y y =,代入②得,12212432222m y m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,消去1y 得222221629(2)2m m m ⋅=++ 解得,2187m =,满足22.m >即7m =±. 所以,所求直线l的方程为71407140x x --=+-=或.7-1 解:(Ⅰ)设椭圆的方程为22221,(0)x y a b a b+=>>,由题意可得:椭圆C 两焦点坐标分别为1(1,0)F -,2(1,0)F .所以532422a ==+=. 所以2a =,又1c = 2413b =-=,故椭圆的方程为22143x y +=. (Ⅱ)当直线l x ⊥轴,计算得到:33(1,),(1,)22A B ---,21211||||32322AF B S AB F F ∆=⋅⋅=⨯⨯=,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得 2222(34)84120k x k x k +++-=,显然0∆>成立,设1122(,),(,)A x y B x y ,则221212228412,,3434k k x x x x k k -+=-⋅=++又||AB ==即2212(1)||34k AB k+==+, 又圆2F的半径r ==所以2221112(1)||,22347AF Bk S AB r k ∆+==⨯==+ 化简,得4217180k k +-=,即22(1)(1718)0k k -+=,解得1k =±,所以,r ==故圆2F 的方程为:22(1)2x y -+=. (Ⅱ)另解:设直线l 的方程为 1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得 22(43)690t y ty +--=,0∆>恒成立,设1122(,),(,)A x y B x y ,则12122269,,4343t y y y y t t+=⋅=-++ 所以12||y y -== 又圆2F的半径为r ==,所以21212121||||||27AF B S F F y y y y ∆=⋅⋅-=-==,解得21t =,所以r ==2F 的方程为:22(1)2x y -+=.7-2 (Ⅰ)解 设直线PQ 的方程为)3(-=x k y .由⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得,062718)13(2222=-+-+k x k x k , 依题意0)32(122>-=∆k ,得3636<<-k . 设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ②由直线PQ 的方程得 11(3)y k x =-,22(3)y k x =-.于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ 因为0OP OQ ⋅=,所以 02121=+y y x x . ④ 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (Ⅱ)证法1 ),3(),,3(2211y x AQ y x AP -=-=. 由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x FM -+-=--=λ),21(),21(21y y λλλλ--=--=.而2221(2,)(,)2FQ x y y λλ-=-=,所以FM FQ λ=-. 证法2 (坐标法与几何证法结合)为使结论更具一般性,下面就椭圆方程为22221(0)x y a b a b +=>>,点A 的坐标为2(,0)a c进行证明(其中22c a b =+).如图,对三角形PHA ∆应用梅涅劳斯定理,得1AQ PM HEQP MH EA⋅⋅=,又2PM MH =, 所以,12AQ HE QP EA ⋅=, 作QD x ⊥轴于D ,则,12AD HE DH EA ⋅=, (二维问题一维化)设),(),,(2211y x Q y x P ,0(,0)E x , 将上式用坐标表示,得2201221012a x x x c a x x x c--⋅=--,整理得,2201212122[()]()2a a x x x x x x x c c-+=⋅+-. (这个过程虽然复杂,但却表现出强烈的目标意识!下面的目标是非常明确的,即用解析几何的常规方法,求出12x x +与12x x )显然,直线AP 不垂直x 轴,故可设直线AP 的方程为2()a y k x c=-,由22222(),1a y k x c x y ab ⎧=-⎪⎪⎨⎪+=⎪⎩消去y ,整理得,242622222222()0k a k a a k b x x a b c c +-+-=, 所以,24122222*********,()().()k a x x c a k b k a abc x x c a k b ⎧+=⎪+⎪⎨-⎪=⎪+⎩222422122222222222()()()a a k a ab x xc c c a k b c a k b -+=-=++ 22242622212122222222222222()2()2()()a a k a k a abc a b x x x x c c c a k b c a k b a k b-⋅+-=⋅-=+++ 所以,222220222222()2a b c a k b x c a k b a b+=⋅=+. 这说明,直线MQ 与x 轴的交点是椭圆的右焦点(,0)F c . 所以,若AP AQ λ=,即,AP AQλ=,则PH MH MFQD QD FQ λ===,即FM FQ λ=-.注:λ可以是一切正实数,当1λ=时,,P Q 重合. 8-1 解:(Ⅰ)由焦点F ( 1, 0 ) 在l 上, 得k = –21, 所以l : y = –21x +21. 设点N( m , n ) , 则有: 11()()1,12112 1.22n m m n -⎧-=-⎪-⎨++⎪+=⎩解得1,53.5m n ⎧=⎪⎨⎪=-⎩所以N (51, – 53), 因为54≠ ( –53)2 ,所以N 点不在抛物线C 上. (2) 把直线方程11--=kk y x 代入抛物线方程得: k 2y 2 + 4y + 4k +4 = 0 , 因为相交,所以△ = 16 (–k 2 – k + 1)≥ 0,解得251--≤ k ≤251+- 且k ≠ 0 . 由对称得⎪⎪⎩⎪⎪⎨⎧+++=+-=⋅--1221110000k a x k y k a x y ,解得 x 0 =12)1(222+--k k k a (2511+-≤ k ≤251+-,且k ≠ 0). 当P 与M 重合时, a = 1,所以 f ( k ) = x 0 =13122+-k k = – 3 +142+k (2511+-≤ k ≤251+-, 且k ≠ 0), 因为函数x 0 = f ( k )(k ∈R)是偶函数,且k > 0时单调递减. 所以当k =251--时, (x 0)min =5525+-, 1lim 00=→x k ,所以 x 0 ∈[5525+-,1). 8-2 解:(Ⅰ)由33=a b ,22232121b a b a +⋅⋅=⋅ ,得3=a ,1=b ,所以椭圆方程是:1322=+y x . (Ⅱ)设EF :1-=my x (0>m )代入1322=+y x ,得022)3(22=--+my y m , 设),(11y x E ,),(22y x F ,由DF ED 2=,得212y y -=.由322221+=-=+m m y y y ,32222221+-=-=m y y y , 得31)32(222+=+-m m m ,1=∴m ,1-=m (舍去),直线EF 的方程为:1-=y x 即01=+-y x .(Ⅲ)将2+=kx y 代入1322=+y x ,得0912)13(22=+++kx x k (*) 记),(11y x P ,),(22y x Q ,PQ 为直径的圆过)0,1(-D ,则QD PD ⊥,即0)1)(1(),1(),1(21212211=+++=+⋅+y y x x y x y x ,又211+=kx y ,222+=kx y ,得01314125))(12()1(221212=++-=+++++k k x x k x x k . 解得67=k ,此时(*)方程0>∆, 所以存在67=k ,满足题设条件. 9-1 解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===. 即2243a b =.又因为b == 所以24a =,23b =.故椭圆C 的方程为22143x y +=. (Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -. 直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-. ②由①得 21223243k x x k +=+,2122641243k x x k -=+代入② 整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(,)M M M x y ,(,)N N N x y 在椭圆C 上.由22(1),1.43y m x x y =-⎧⎪⎨+=⎪⎩ 得2222(43)84120m x m x m +-+-=.易知0∆>.所以22843M N m x x m +=+,2241243M N m x x m -=+, 22943M N m y y m =-+. 则M N M N OM ON x x y y ⋅=+2225125334344(43)m m m +=-=--++. 因为20m ≥,所以21133044(43)m -≤-<+. 所以5[4,)4OM ON ⋅∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N -.此时54OM ON ⋅=-. 所以OM ON ⋅的取值范围是5[4,]4--.9-2 (Ⅰ)解:由题意可设抛物线的方程为22x py =(0)p ≠.因为点(,4)A a 在抛物线上,所以0p >. 又点(,4)A a 到抛物线准线的距离是5,所以452p+=,可得2p =. 所以抛物线的标准方程为24x y =.(Ⅱ)解:点F 为抛物线的焦点,则(0,1)F .依题意可知直线MN 不与x 轴垂直,所以设直线MN 的方程为1y kx =+.由21,4.y kx x y =+⎧⎨=⎩ 得2440x kx --=.因为MN 过焦点F ,所以判别式大于零. 设11(,)M x y ,22(,)N x y . 则124x x k +=,124x x =-.2121(,)MN x x y y =--2121(,())x x k x x =--.由于24x y =,所以'12y x =. 切线MT 的方程为1111()2y y x x x -=-, ① 切线NT 的方程为2221()2y y x x x -=-. ② 由①,②,得1212(,)24x x x x T + 则1212(,1)(2,2)24x x x x FT k +=-=-. 所以21212()2()0FT MN k x x k x x ⋅=---=. (Ⅲ)证明:2222(2)(2)44FTk k =+-=+.由抛物线的定义知 11MF y =+,21NF y =+.则12(1)(1)MF NF y y ⋅=++2121212(2)(2)2()4kx kx k x x k x x =++=+++244k =+.所以2FTMF NF =⋅.即FT 是MF 和NF 的等比中项.10-1 (Ⅰ)解:设椭圆G 的标准方程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PFO ∠=︒, 所以1bc . 所以 2222ab c .所以 椭圆G 的标准方程为2212x y +=. (Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ∆=-+>,1122211224,1222.12km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩所以||AB ===同理||CD =因为 ||||AB CD =, 所以=因为 12m m ≠, 所以 120m m +=.(ⅱ)解:由题意得四边形ABCD 是平行四边形,设两平行线,AB CD 间的距离为d ,则1221m m dk.因为 120m m +=, 所以 1221m dk.所以||S AB d =⋅=2221121k m m -++=≤=.(或S ==≤ 所以 当221212k m +=时, 四边形ABCD 的面积S取得最大值为10-2 (Ⅰ)解:依题意(1,0)F ,设直线AB 方程为1x my =+. 将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=. 设11(,)A x y ,22(,)B x y ,所以 124y y m +=,124y y =-. ① 因为 2AF FB =, 所以 122y y =-. ②联立①和②,消去12,y y,得4m =±. 所以直线AB的斜率是±.(Ⅱ)解:由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆. 因为 12122||||2AOB S OF y y ∆=⨯⋅⋅-==所以 0m =时,四边形OACB 的面积最小,最小值是4.11-1 解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① 又点3(1,)2M 在椭圆C 上,所以221914a b += ② 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得m =||OP = 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. 由于点P 在椭圆C 上,所以 2200143x y +=. 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式.又||OP =====因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. 综上,所求OP的取值范围是. (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥把④⑤⑥代入③整理得0034x ky =- 与22003412x y +=联立消0x 整理得202943y k =+.由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+, 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,OP ≤≤. 所求OP的取值范围是. 11-2 解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+, 所以24622+=+c a ,,即c a =,所以c =,所以3a =,c =所以1b =,椭圆M 的方程为1922=+y x . (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x ,同理可得2219327n n x +-=,所以1961||22++=n n BC ,222961||nn n n AC ++=, 964)1()1(2||||212+++==∆n n n n AC BC S ABC, 设21≥+=nn t , 则22236464899t S t t t==≤++, 当且仅当38=t 时取等号, 所以ABC ∆面积的最大值为83. 方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 设),(11y x A ,),(22y x B ,则有12229km y y k +=-+,212299m y y k -=+. ①因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=. 由 1122(3,),(3,)CA x y CB x y =-=-, 得 1212(3)(3)0x x y y --+=. 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点), 所以121||||2ABC S DC y y ∆=-12== 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 12-1 解:(Ⅰ)因为四边形AMBN 是平行四边形,周长为8,所以两点,A B 到,M N 的距离之和均为4,可知所求曲线为椭圆.由椭圆定义可知,2,a c ==1b =,所求曲线方程为1422=+y x . (Ⅱ)由已知可知直线l 的斜率存在,又直线l 过点(2,0)C -,设直线l 的方程为:(2)y k x =+,代入曲线方程221(0)4x y y +=≠,并整理得2222(14)161640k x k x k +++-=, 点(2,0)C -在曲线上,所以D (228214k k -++,2414kk +),(0,2)E k ,CD =2244(,)1414kk k++,(2,2)CE k =, 因为OA //l ,所以设OA 的方程为y kx =.代入曲线方程,并整理得22(14)4k x +=,所以(A .22222228814142441414k CD CE k k k OA k k+⋅++==+++,所以2CD CE OA ⋅为定值.12-2 解:(Ⅰ)由题意得2c a =① 因为椭圆经过点)21,26(P ,所以22221()221a b += ② 又222a b c =+ ③由①②③ 解得 22=a ,122==c b .所以椭圆方程为2212x y +=. (Ⅱ)以OM 为直径的圆的圆心为(1,)2t ,半径r =方程为222(1)()124t t xy -+-=+,因为以OM 为直径的圆被直线3450x y --=截得的弦长为2, 所以圆心到直线3450x y --=的距离d 2t=. 所以32552t t--=,解得4t =. 所求圆的方程为22(1)(2)5x y -+-=.(Ⅲ)方法一:过点F 作OM 的垂线,垂足设为K ,由平几知:2ONOK OM =.则直线OM :2t y x =,直线FN :2(1)y x t=--,由,22(1),t y x y x t ⎧=⎪⎪⎨⎪=--⎪⎩得244K x t =+.所以2M ONx x =22444422=⋅+⋅+=t t . 所以线段ON方法二:设00(,)N x y ,则 ),1(00y x FN -=,),2(t OM =,),2(00t y x MN --=,),(00y x ON =.因为 OM FN ⊥,所以 0)1(200=+-ty x .所以 2200=+ty x . 又因为 ON MN ⊥,所以0)()2(0000=-+-t y y x x , 所以22002020=+=+ty x y x . 所以22020=+=y x 为定值.12-3 解:(Ⅰ)(ⅰ)因为 圆O 过椭圆的焦点,圆O :222x y b +=,所以b c =,所以2222b ac c =-=, 所以222a c =,所以e =(ⅱ)由90APB ∠=及圆的性质,可得OP =,所以2222,OP b a =≤所以222a c ≤ 所以212e ≥,12e ≤<. (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y x x x y -=--整理得220011x x y y x y +=+ 因为22211x y b +=所以PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.所以11x x y y +=22x x y y +, 所以021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,所以2222222220022442a y b x a b a b a b b bON OM ++===,所以2222a b ON OM+为定值,定值是22a b . 13-1 解:(Ⅰ)由题意可知:222,c c e a a b c ⎧=⎪⎪==⎨⎪=+⎪⎩解得 1,2==b a .所以椭圆的方程为:1422=+y x . (II )证明:由方程组⎪⎩⎪⎨⎧+==+m kx y y x 14220448)k 41222=-+++m kmx x 得(0)44)(41(4)8(222>-+-=∆m k km ,整理得01422>+-m k , 设),(),,(2221y x N x x M则22212214144,418km x x k km x x +-=+-=+. 由已知,AN AM ⊥且椭圆的右顶点为)0,2(A , 所以1212(2)(2)0x x y y --+=,2212122121)())((m x x km x x k m kx m kx y y +++=++=,即04))(2()1(221212=+++-++m x x km x x k ,也即04418)2(4144))1(22222=+++-•-++-•+m kkmkm k m k , 整理得:01216522=++k mk m , 解得562k m k m -=-=或均满足01422>+-m k . 当k m 2-=时,直线的l 方程为k kx y 2-=,过定点(2,0)与题意矛盾舍去; 当56k m -=时,直线的l 方程为)56(-=x k y ,过定点)0,56(. 故直线l 过定点,且定点的坐标为)0,56(. 13-2 解:(I )由题意可得OP OM ⊥, 所以0OP OM ⋅=,即(,)(,4)0x y x -=,即240x y -=,即动点P 的轨迹W 的方程为24x y =.(II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -. 由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 则216640k ∆=->,即||2k >.12124,16x x k x x +==.直线212221':()y y A B y y x x x x --=-+,所以212221()y y y x x y x x -=-++,2222122121()4()4x x y x x x x x -=-++,222121221444x x x x x y x x --=-+,2112y 44x x x xx -=+,即2144x x y x -=+. 所以,直线'A B 恒过定点(0,4). 13-3 解:(Ⅰ)设动点M 的坐标为(,)x y ,|1|x =+,化简得24y x =,所以点M 的轨迹C 的方程为24y x =.(Ⅱ)设,A B 两点坐标分别为11(, )x y ,22(,)x y , 则点P 的坐标为1212(,)22x x y y ++. 由题意可设直线1l 的方程为(1)y k x =- (0)k ≠,由24, (1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=. 2242(24)416160k k k .因为直线1l 与曲线C 于,A B 两点, 所以12242x x k +=+,12124(2)y y k x x k+=+-=. 所以点P 的坐标为222(1, )k k+. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为2(12,2)k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为222(12)1k y k x k k+=---, 整理得2(3)0yk x k y +--=.于是,直线PQ 恒过定点(3, 0)E ;当1k =±时,直线PQ 的方程为3x =,也过点(3, 0)E . 综上所述,直线PQ 恒过定点(3, 0)E . (Ⅲ)可求的||2EF ,所以FPQ ∆面积121||(2||)2(||)42||||S FE k k k k =+=+≥. 当且仅当1k =±时,“=”成立,所以FPQ ∆面积的最小值为4. 14-1 解:(Ⅰ)由题意知:1c .根据椭圆的定义得:22222(11)()22a ,即2a .所以 2211b.所以 椭圆C 的标准方程为2212x y +=. (Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=-恒成立.当直线l 的斜率为0时,(A B .则 7,0)(2,0)16m m . 解得 54m.当直线l 的斜率不存在时,(1,22A B -. 由于52527(1,)(1,)424216,所以54m . 下面证明54m时,716QA QB ⋅=-恒成立. 显然 直线l 的斜率为0时,716QA QB ⋅=-. 当直线l 的斜率不为0时,设直线l 的方程为:1xty ,1122,,,A x y B x y .由221,21x y x ty 可得:22(2)210t y ty .显然0∆.1221222,21.2t y y t y y t因为 111x ty ,221x ty ,所以 112212125511(,)(,)()()4444x y x y ty ty y y2121211(1)()416t y y t y y2221121(1)24216t t t t t22222172(2)1616t t t . 综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=-恒成立. 14-2解:(Ⅰ)由题意可知2)(136abe -==,得 223b a =. 因为1,1B()在椭圆上11122=+b a 解得:34422==b ,a .故椭圆M 的方程为:143422=+y x . (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为k -,因此PB ,QB 的直线方程分别为(1)1y k x =-+,(1)1y k x =--+.由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k .因为点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P所以22361131P k k x k --⋅=+,即2236131P k k x k --=+,同理1316322+-+=k k k x Q .所以=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P .因为(2,0),(1,1)A C --,所以13AC k =, 即 AC PQ k k =. 所以向量AC //PQ ,则总存在实数λ使AC PQ λ=成立.15-1 解:(Ⅰ)因为ace ==22, 12122=+a b ,222c b a +=所以2=a ,2=b ,2=c所以14222=+y x . (Ⅱ)设直线BD 的方程为b x y +=2所以⎩⎨⎧=++=42222y x bx y 0422422=-++⇒b bx x所以06482>+-=∆b 2222<<-⇒b,2221b x x -=+ ----① 44221-=b x x -----②因为12BD x =-===,设d 为点A 到直线BD :b x y +=2的距离, ∴3b d =所以2)8(422122≤-==∆b b d BD S ABD ,当且仅当2±=b 时取等号. 因为2±)22,22(-∈,所以当2±=b 时,ABD ∆的面积最大,最大值为2.(Ⅲ)设),(11y x D ,),(22y x B ,直线AB 、AD 的斜率分别为:AB k 、AD k ,则=+AB AD k k 122122121222112211--++--+=--+--x b x x b x x y x y=]1)(2[22212121++--++x x x x x x b ------*将(Ⅱ)中①、②式代入*式整理得]1)(2[22212121++--++x x x x x x b =0,即=+AB AD k k 0.15-2 解:(Ⅰ)设1122(,),(,)C x y D x y ,直线l 的方程为1(0)y kx k =+≠.由2244,1x y y kx ⎧+=⎨=+⎩得22(4)230k x kx ++-=, 222412(4)16480k k k ∆=++=+>,12224k x x k -+=+,12234x x k -=+, 由已知1(,0),(0,1)E F k-, 又CE FD =,所以11221(,)(,1)x y x y k---=- 所以121x x k --=,即211x x k+=-, 所以2214k k k-=-+,解得2k =±,符合题意, 所以,所求直线l 的方程为210x y -+=或210x y +-=. (Ⅱ)2121y k x =+,1211y k x =-,12:2:1k k =, 所以2112(1)2(1)1y x y x -=+,平方得 22212212(1)4(1)y x y x -=+, 又221114y x +=,所以22114(1)y x =-,同理22224(1)y x =-,代入上式, 计算得2112(1)(1)4(1)(1)x x x x --=++,即121235()30x x x x +++=.假设满足条件的实数k 存在,则由(Ⅰ)得12224k x x k -+=+,12234x x k-=+. 所以231030k k -+=,解得3k =或13k =, 因为2112(1)2(1)1y x y x -=+,12,(1,1)x x ∈-,所以12,y y 异号,故舍去13k =,所以存在实数k ,使得12:2:1k k =,且3k =.16- 1 解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b +=>>,由题意得22222191,41,2.a b c a a b c ⎧+=⎪⎪⎨=⎪⎪=+⎩解得24a =,23b =,故椭圆C 的方程为22143x y +=. (Ⅱ)因为过点(2, 1)P 的直线l 与椭圆在第一象限相切,所以l 的斜率存在,故可设直线l 的方程为(2)1y k x =-+.由221,43(2)1,x y y k x ⎧+=⎪⎨⎪=-+⎩得222(34)8(21)161680k x k k x k k +--+--=. ① 因为直线l 与椭圆相切,所以222[8(21)]4(34)(16168)0k k k k k ∆=---+--=. 整理,得32(63)0k +=. 解得12k =-. 所以直线l 方程为11(2)1222y x x =--+=-+. 将12k =-代入①式,可以解得M 点横坐标为1,故切点M 坐标为3(1, )2. (Ⅲ)若存在直线1l 满足条件,设直线1l 的方程为1(2)1y k x =-+,代入椭圆C 的方程得22211111(34)8(21)161680k x k k x k k +--+--=.因为直线1l 与椭圆C 相交于不同的两点,A B ,设,A B 两点的坐标分别为1122(,),(,)x y x y , 所以222111111[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>.。
高考必做的 道压轴题 数学 变式题 pdf版

所以
e2
c2 a2
a2 b2 a2
1 3
,即 b2 a2
2 3
,又 b
2 11
2,
所以 b2 2 , a2 3,即 a 3 , b 2 .
(Ⅱ)解法 1:
由(1)知 F1, F2 两点分别为 (1, 0) , (1, 0) ,由题意可设 P(1,t) .
那么线段
PF1
中点为
N
(0,
t 2
)
,
N (x2,
y2 ) ,则
x1
x2
4k 2 2k 2 1
,
x1x2
2k 2 2k 2
2 1
.
设 MN
的中点为 Q
,则
xQ
2k 2 2k 2 1 ,
yQ
k ( xQ
1)
k, 2k 2 1
所以 Q( 2k 2 , k ) . 2k 2 1 2k 2 1
第 3 页 共 83 页
上的 离与
F1 ,
由题意可知 k 0 ,
当 k 0 时,显然 m 0 ; 当 k 0 时,
y kx 1,
由
x
2
y2
3 2 1
得 (3k2 2)x2 6kx 3 0 .
所以
x1
x2
6k 3k 2
2
,
所以 x0
x1
x2 2
3k , 3k 2 2
从而
y0
kx0
1
2 3k 2
2
.
2
所以 MN
斜率 kMN
y0 x0 m
4
2
当 x0 ¹
2 时,直线 PM、QM 的斜率分别为 kPM
上海高考数学压轴题50道(有答案-精品)

高考压轴题目选(50题)1.(函数)设32()log (f x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的 条件。
2.(函数)设)22,22(),(y x y x y x f +-=为定义在平面上的函数,且+=2),{(x y x A }0,0,12≥≥≤y x y ,令}),(),({A y x y x f B ∈=,则B 所覆盖的面积为3.(函数)老师在黑板上写出了若干个幂函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(,)-∞+∞上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幂函数共有 个。
4.(函数)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=5.(函数)已知函数()1).f x a =≠在区间(]0,1上是减函数,则实数a 的取值范围是6.(函数)方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是7.(函数)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的轨迹方程是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
8.(三角函数)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________ 9.(三角函数)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图像与直线1=y 交点个数的最大值为2,则ω的取值范围为10.(三角函数)已知方程x 2+33x+4=0的两个实根分别是x 1,x 2,则21a r c t a n a r c t a n x x += 11.(数列)设定义在*N 上的函数:(21)()()(2)2n n k f n n f n k =-⎧⎪=⎨=⎪⎩,其中*k N ∈,记(1)(2)(3)(4)(2)n n a f f f f f =+++++,则1n n a a +-=12.(数列)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-. (14分)2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。
(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。
(2) 证明)(x f 是偶函数。
(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。
当3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。
(1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g(3) 过轨迹E 上一点P 求点P 的坐标及S4.以椭圆222y ax+=1试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6 已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。
(1) 求a 、b 的值;(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;(3) 令()()132++--=tx x x f x g 。
是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→→⋅PN PM 的等比中项。
(1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。
8.已知数列{a n }满足aa aa b a a a a a a a n nn n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;(2)设数列{b n }的前项和为S n ,试比较S n 与87的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.10. )(x f 对任意R x ∈都有.21)1()(=-+x f x f (Ⅰ)求)21(f 和)( )1()1(N n nn f nf ∉-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1()2()1(f nn f n f n f +-+++ ,数列}{n a 是等差数列吗?请给予证明;(Ⅲ)令.1632,,1442232221nS b b b b T a b n n n n n -=++++=-=试比较n T 与n S 的大小.11. :如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA →·OB →=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)12.知函数f (x )=log 3(x 2-2mx +2m 2+9m 2-3)的定义域为R(1)求实数m 的取值集合M ;(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和x 的值.13.设关于x 的方程2x 2-tx-2=0的两根为),(,βαβα<函数f(x)=.142+-x tx (1). 求f()()βαf 和的值。
(2)。
证明:f(x)在[],βα上是增函数。
(3)。
对任意正数x 1、x 2,求证:βααββα-<++-++2)()(21212121x x x x f x x x x f14.已知数列{a n }各项均为正数,S n 为其前n 项的和.对于任意的*n N ∈,都有()241n n S a =+.I 、求数列{}n a 的通项公式.II 、若2n n tS ≥对于任意的*n N ∈恒成立,求实数t 的最大值.15.( 12分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ上,且满足HP ·PM =0,PM =-23MQ , (1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 为等边三角形,求x 0的值.16.(14分)设f 1(x )=x+12,定义f n +1 (x )=f 1[f n (x )],a n =2)0(1)0(+-n n f f ,其中n ∈N *.(1) 求数列{a n }的通项公式;(2)若T 2n =a 1+2a 2+3a 3+…+2na 2n ,Q n =144422+++n n nn ,其中n ∈N *,试比较9T 2n 与Q n 的大小.17. 已知→a =(x,0),→b =(1,y ),(→a +3→b )⊥(→a –3→b ).(I ) 求点P (x ,y )的轨迹C 的方程;(II ) 若直线L :y=kx+m(m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有 |AD|=|BD|,试求m 的取值范围.18.已知函数)(x f 对任意实数p 、q 都满足()()(),f p q f p f q +=⋅1(1).3f =且(1)当n N +∈时,求)(n f 的表达式;(2)设),()(+∈=N n n nf a n 求证:13;4nk k a =<∑(3)设1(1)(),,()nn n k k nf n b n N S b f n +=+=∈=∑试比较11nk kS =∑与6的大小. 19.已知函数),10(log )(≠>=a a x x f a 且若数列:),(),(,221a f a f …,)(42),(*∈+N n n a f n 成等差数列.(1)求数列}{n a 的通项n a ;(2)若}{,10n a a 数列<<的前n 项和为S n ,求n n S ∞→lim ;(3)若)(,2n n n a f a b a ⋅==令,对任意)(,1t fb N n n -*>∈都有,求实数t 的取值范围.20.已知△OFQ 的面积为.,62m FQ OF =⋅且(1)设θ的夹角与求向量FQ OF m ,646<<正切值的取值范围; (2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2)146(,||c m c OF -==, 当||OQ 取得最小值时,求此双曲线的方程.(3)设F 1为(2)中所求双曲线的左焦点,若A 、B 分别为此双曲线渐近线l 1、l 2上的动点,且2|AB|=5|F 1F|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.21、已知函数13)(2++=bx x x f 是偶函数,c x x g +=5)(是奇函数,正数数列{}n a 满足11211=+-+=++)a a a (g )a a (f ,a n n n n n n① 求{}n a 的通项公式;②若{}n a 的前n 项和为n S ,求n n S ∞→lim .22、直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =21.椭圆C 以A 、B 为焦点且经过点D .(1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 21=AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求出直线l 与AB 夹角的范围,若不存在,说明理由. 23、.设函数,241)(+=xx f (1)求证:对一切)1()(,x f x f R x -+∈为定值; (2)记*),()1()1()2()1()0(N n f nn f n f n f f a n ∈+-++++= 求数列}{n a 的通项公式及前n 项和.24. 已知函数)(x f 是定义在R 上的偶函数.当X ≥0时, )(x f =172++-x x x.(I) 求当X<0时, )(x f 的解析式;(II)试确定函数y =)(x f (X ≥0)在[)+∞,1的单调性,并证明你的结论.(III) 若21≥x 且22≥x ,证明:|)(1x f -)(2x f |<2.25、已知抛物线x y 42=的准线与x 轴交于M 点,过M 作直线与抛物线交于A 、B 两点,若线段AB 的垂直平分线与X 轴交于D (X 0,0) ⑴求X 0的取值范围。
⑵△ABD 能否是正三角形?若能求出X 0的值,若不能,说明理由。
26、已知□ABCD ,A (-2,0),B (2,0),且∣AD ∣=2 ⑴求□ABCD 对角线交点E 的轨迹方程。
⑵过A 作直线交以A 、B 为焦点的椭圆于M 、N 两点,且∣MN ∣=238,MN 的中点到Y 轴的距离为34,求椭圆的方程。
⑶与E 点轨迹相切的直线l 交椭圆于P 、Q 两点,求∣PQ ∣的最大值及此时l 的方程。
27.(14分)(理)已知椭圆)1(1222>=+a y ax ,直线l 过点A (-a ,0)和点B (a ,ta )(t >0)交椭圆于M.直线MO 交椭圆于N.(1)用a ,t 表示△AMN 的面积S ; (2)若t ∈[1,2],a 为定值,求S 的最大值.x28.已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,1)成中心对称. (1)求函数f (x )的解析式;(2)若数列{a n }(n ∈N*)满足:a n >0,a 1=1,a n +1= [f (a n )]2,求数列{a n}的通项公式a n ,并证明你的结论.30、已知点集},|),{(n m y y x L ⋅==其中),1,1(),1,2(+=-=b n b x m 点列),(n n n b a P 在L 中,1P 为L 与y 轴的交点,等差数列}{n a 的公差为1,+∈N n 。