2016届深圳宝安区九年级数学一模试题
2016年广东深圳17所名校初三一模数学试卷答案

A.
3
B.
−3
或0
C.
3
或0
D.
0
答案 解析
C
x
2
= 3x
,把原方程化为一般式得:x2 − 3x = 0 ,x(x − 3) = 0 ,
解得:x = 0 或x = 3 , 故本题正确答案选C.
g. co m
20
18
/1
2/ 0
3
∴x = 0 或x − 3 = 0 ,
+试题篮
纠错
A.
jia
B.
os h
A.
1
B.
os
答案
D
经过另一条直角边AC 的中点D,且C D⊥x轴,
hi .iz
,
hi
A.
2
B.
ka ng .c
om
20
C.
18 /1
2/ 0
( ).
3
4
6
D.
3
2
C.
3
D.
4
学生版
答案 解析
教师版 C
答案版
编辑
根据图象可得:抛物线开口向上,则a > 0 .抛物线与y交与负半轴,则c < 0 , 故①ac < 0 正确. 对称轴:x = −
选择题(本部分共12小题,每小题3分,… 填空题(本题共4小题,每小题3分,共1… 解答题(本题共7小题,其中第17小题5…
C
.当x > 3 时,y随x的增大而减小,此选项正确,不合题意. .抛物线y = −
1 2 (x − 3)
2
D
− 2
可由y = −
1 2
x
2
经过平移得到,不是由y =
广东省深圳市宝安区2016届九年级上学期期末数学试卷【解析版】

广东省深圳市宝安区2016届九年级上学期期末数学试卷一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.方程x2=1的根是( )A.x=1B.x=﹣1C.x1=1,x2=0D.x1=1,x2=﹣12.如图,该几何体的左视图是( )A.B.C.D.3.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )A.8只B.12只C.18只D.30只4.菱形的边长为5,一条对角线长为8,则此菱形的面积是( )A.24B.30C.40D.485.若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为( )A.3B.﹣3C.1D.﹣16.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( )A.y=B.y=C.y=D.y=7.下列命题中,正确的是( )A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形8.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .当﹣1<x <3时,y >0C .当x <1时,y 随x 的增大而减小D .对称轴是直线x=19.某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x ,则列方程( )A .20(1+x )3=24.2B .20(1﹣x )2=24.2C .20+20(1+x )2=24.2D .20(1+x )2=24.210.如图,每个小正方形的边长均为1,△ABC 和△DEC 的顶点均在“格点”上,则=( )A .B .C .D .11.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 与AD 上的一点E 作直线OE ,交BA 的延长线于点F .若AD=4,DC=3,AF=2,则AE 的长是( )A .B .C .D . 12.如图,抛物线y=x 2﹣4x 与x 轴交于点O 、A ,顶点为B ,连接AB 并延长,交y 轴于点C ,则图中阴影部分的面积和为( )A.4B.8C.16D.32二、填空题(共4小题,每小题3分,满分12分)13.抛物线y=﹣2(x+1)2﹣2的顶点坐标是 .14.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为 .15.某水果店销售一种进口水果,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.水果店想要能尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价 元出售这种水果.16.如图,在边长为2的正方形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则CF= .三、解答题(共7小题,满分52分)17.计算:sin30°﹣2sin60°+tan45°+cos245°.18.解方程:x2﹣5x+6=0.19.某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为 ;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为 .20.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.21.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?22.如图1,直线y=2x﹣2与曲线y=(x>0)相交于点A(2,n),与x轴、y轴分别交于点B、C.(1)求曲线的解析式;(2)试求AB•AC的值?(3)如图2,点E是y轴正半轴上一动点,过点E作直线AC的平行线,分别交x轴于点F,交曲线于点D.是否存在一个常数k,始终满足:DE•DF=k?如果存在,请求出这个常数k;如果不存在,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?广东省深圳市宝安区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.方程x2=1的根是( )A.x=1B.x=﹣1C.x1=1,x2=0D.x1=1,x2=﹣1【考点】解一元二次方程-直接开平方法.【分析】两边直接开平方即可.【解答】解:x2=1,两边直接开平方得:x=±=±1,故:x1=1,x2=﹣1,故选:D.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.如图,该几何体的左视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确;故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.3.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )A.8只B.12只C.18只D.30只【考点】利用频率估计概率.【分析】一共摸了50次,其中有30次摸到红球,由此可估计口袋中红球和总球数之比为3:5;即可计算出红球数.【解答】解:∵共摸了50次,其中有30次摸到红球,∴口袋中红球和总球数之比为3:5,∵口袋中有红球、白球共20只,∴估计这个口块中有红球大约有20×=12(只).故选B.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.菱形的边长为5,一条对角线长为8,则此菱形的面积是( )A.24B.30C.40D.48【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是4.根据勾股定理,得要求的对角线的一半是3,则另一条对角线的长是6,进而求出菱形的面积.【解答】解:在菱形ABCD中,AB=5,BD=8,∵对角线互相垂直平分,∴∠AOB=90°,BO=4,在RT△AOB中,AO==3,∴AC=2AO=6.∴则此菱形面积是:=24.故选:A.【点评】本题考查了菱形的性质,注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.5.若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为( )A.3B.﹣3C.1D.﹣1【考点】一元二次方程的解.【分析】方程的根就是能使方程的左右两边相等的未知数的值,因而把x=2代入关于x的一元二次方程x2﹣ax+2=0,就可以求出a的值.【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.【点评】考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出a 的值.6.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( )A.y=B.y=C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】利用三角形面积公式得出xy=10,进而得出答案.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.7.下列命题中,正确的是( )A.对角线垂直的四边形是菱形B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形D.位似图形一定是相似图形【考点】命题与定理.【分析】对角线互相垂直平分的四边形是菱形,矩形的对角线平分且相等,对角线相等、垂直且平分的矩形是正方形,位似图形一定是相似图形.【解答】解:A、对角线互相垂直平分的四边形是菱形,错误;B、矩形的对角线平分且相等,错误;C、对角线相等、垂直且平分的矩形是正方形,错误;D、位似图形一定是相似图形,正确;故选D.【点评】本题考查命题问题,关键是根据菱形、矩形、正方形的判定方法和位似图形解答.8.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A.函数有最小值B.当﹣1<x<3时,y>0C.当x<1时,y随x的增大而减小D.对称轴是直线x=1【考点】二次函数的性质.【分析】由抛物线开口向上得函数有最小值;观察函数图象得到当﹣1<x<3时,图象在x轴下方,则y<0;根据二次函数的性质可得当x<1时,y随x的增大而减小;根据抛物线的对称性可得到抛物线的对称轴为直线x=1.【解答】解:A、∵抛物线开口向上,∴函数有最小值,故本选项正确;B、当﹣1<x<3时,y<0,故本选项错误;C、∵抛物线开口向上,∴当x<1时,y随x的增大而减小,故本选项正确;D、∵抛物线与x轴的交点坐标为(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1,故本选项正确.故选B.【点评】本题考查了二次函数的图象:y=ax2+bx+c的图象为抛物线,可利用列表、描点、连线画出二次函数的图象.也考查了二次函数的性质.9.某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程( )A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设这个增长率为x,根据题意可得,前年缴税×(1+x)2=今年缴税,据此列出方程.【解答】解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选D.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.10.如图,每个小正方形的边长均为1,△ABC和△DEC的顶点均在“格点”上,则=( )A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据勾股定理求出两个三角形的各个边的长度,代入即可求出答案.【解答】解:∵每个小正方形的边长均为1,∴由勾股定理得:AC==2,AB==2,BC==2,DC==,CE==,DE==,∴==,故选A.【点评】本题考查了勾股定理,相似三角形的性质和判定的应用,能求出各个边的长度是解此题的关键.11.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是( )A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】延长FO,交BC于点G.由平行四边形的性质得出OD=OB,AD∥BC,AB=DC=3,根据ASA证明△DOE≌△BOG,得出DE=BG.再由AE∥BG,得出△AEF∽△BGF,根据相似三角形对应边成比例得出==,设AE=2x,则BG=5x,DE=BG=5x,根据AE+DE=AD=4,求出x=,那么AE=2x=.【解答】解:如图,延长FO,交BC于点G.∵四边形ABCD是平行四边形,∴OD=OB,AD∥BC,AB=DC=3,∴∠EDO=∠GBO,又∠DOE=∠BOG,∴△DOE≌△BOG(ASA).∴DE=BG.∵AE∥BG,∴△AEF∽△BGF,∴=,即==,设AE=2x,则BG=5x,∴DE=BG=5x,∵AE+DE=AD=4,∴2x+5x=4,∴x=,∴AE=2x=.故选C.【点评】本题考查了全等三角形的性质与判定,平行四边形的性质,相似三角形的判定与性质,准确作出辅助线构造全等三角形,是解题的关键.12.如图,抛物线y=x2﹣4x与x轴交于点O、A,顶点为B,连接AB并延长,交y轴于点C,则图中阴影部分的面积和为( )A.4B.8C.16D.32【考点】抛物线与x轴的交点.【专题】计算题.【分析】先通过解方程x2﹣4x=0得到A(4,0),再把解析式配成顶点式得到B(2,﹣4),接着利用待定系数法求出直线AB的解析式为y=2x﹣8,则可得到C(0,﹣8),然后利用抛物线的对称性得到图中阴影部分的面积和=S△OBC,最后根据三角形面积公式求解.【解答】解:当y=0时,x2﹣4x=0,解得x1=0,x2=4,则A(4,0),∵y=x2﹣4x=(x﹣2)2﹣4,∴B(2,﹣4),设直线AB的解析式为y=kx+b,把A(4,0),B(2,﹣4)代入得,解得,∴直线AB的解析式为y=2x﹣8;当x=0时,y=2x﹣8=﹣8,则C(0,﹣8),∴图中阴影部分的面积和=S△OBC=×8×2=8.故选B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.二、填空题(共4小题,每小题3分,满分12分)13.抛物线y=﹣2(x+1)2﹣2的顶点坐标是 (﹣1,﹣2) .【考点】二次函数的性质.【分析】已知抛物线为解析式为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=﹣2(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2).故答案为(﹣1,﹣2).【点评】此题考查了二次函数的性质,二次函数的顶点式为y=a(x﹣h)2+k,此时顶点坐标是(h,k),对称轴是直线x=h.14.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为 4m .【考点】相似三角形的应用.【分析】根据题意,易证得△ACE∽△ABD,根据相似三角形的性质得到=,然后利用比例性质求出BD即可.【解答】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度(测量距离);借助标杆或直尺测量物体的高度.15.某水果店销售一种进口水果,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.水果店想要能尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价 9 元出售这种水果.【考点】一元二次方程的应用.【专题】销售问题.【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2090元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2090,解得:x1=4(不合题意,舍去),x2=9.故答案是:9.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.16.如图,在边长为2的正方形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则CF= .【考点】翻折变换(折叠问题).【分析】先根据正方形的性质得AB=AD=BC=2,AD∥BC,得到∠AEB=∠EBF,再根据折叠的性质得∠AEB=∠BEF,EA′=AE=,∠BA′E=∠A=90°,A′B=AB=2,可推出∠BEF=∠EBF,证得BF=EF,设CF=x,则BF=2+x,A′F=+x,在Rt△A′BF中,由勾股定理得:(2)2+(+x)2=(2+x)2,解此方程即可求得结论.【解答】解:∵正方形ABCD,∴AB=AD=BC=2,AD∥BC,∴∠AEB=∠EBF,∵E为AD边的中点,∴AE=,由折叠的性质得∠AEB=∠BEF,EA′=AE=,∠BA′E=∠A=90°,A′B=AB=2,∴∠BEF=∠EBF,∴BF=EF,设CF=x,则BF=2+x,A′F=+x,在Rt△A′BF中,(2)2+(+x)2=(2+x)2,解得:x=.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形的性质和勾股定理.三、解答题(共7小题,满分52分)17.计算:sin30°﹣2sin60°+tan45°+cos245°.【考点】实数的运算;特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣2×+×1+()2=﹣++=1.【点评】本题考查了实数的运算,解答本题的关键是掌握特殊角的三角函数值.18.解方程:x2﹣5x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用“十字相乘法”对等式的左边进行因式分解,然后再来解方程.【解答】解:由原方程,得(x﹣3)(x﹣2)=0,∴x﹣3=0,或x﹣2=0,解得,x=3或x=2.【点评】本题考查了解一元二次方程﹣﹣因式分解法.因式分解法解一元二次方程的思想就是把未知方程化成2个因式相乘等于0的形式,如(x﹣a)(x﹣b)=0的形式,这样就可直接得出方程的解为x﹣a=0或x﹣b=0,即x=a或x=b.注意“或”的数学含义,这里x1和x2就是“或”的关系,它表两个解中任意一个成立时方程成立,同时成立时,方程也成立.19.某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为 ;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为 .【考点】列表法与树状图法.【专题】计算题.【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有20种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P2.【解答】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(2)画树状图为:共有20种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为12,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P2==.故答案为,.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.【考点】菱形的判定与性质;矩形的性质.【分析】(1)先证明四边形AODE是平行四边形,再由矩形的性质得出OA=OC=OD,即可得出四边形AODE是菱形;(2)连接OE,由菱形的性质得出AE=OB=OA,证明四边形AEOB是菱形,得出AB=OB=OA,证出△AOB是等边三角形,得出∠AOB=60°,再由平角的定义即可得出结果.【解答】(1)证明:∵AE∥BD,ED∥AC,∴四边形AODE是平行四边形,∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OC=OD,∴四边形AODE是菱形;(2)解:连接OE,如图所示:由(1)得:四边形AODE是菱形,∴AE=OB=OA,∵AE∥BD,∴四边形AEOB是平行四边形,∵BE⊥ED,ED∥AC,∴BE⊥AC,∴四边形AEOB是菱形,∴AE=AB=OB,∴AB=OB=OA,∴△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°.【点评】本题考查了菱形的判定与性质、矩形的性质、等边三角形的判定与性质、平行四边形的判定;熟练掌握矩形的性质和菱形的判定与性质,证明四边形AEOB是菱形再进一步证出△AOB是等边三角形是解决问题(2)的关键.21.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)在直角△BEF中首先求得BF,然后在直角△AEF中求得AF,根据AB=BF+AF即可求解;(2)作AG⊥BC于点G,在直角△ABG中首先求得AG,然后在直角△AGC中利用三角函数求解.【解答】解:(1)∵在直角△BEF中,tan∠EBF=,∴BE===12.同理AF=EF=12(米),则AB=BF+AF=12+12%(米);(2)作AG⊥BE于点G,在直角△ABG中,AG=AB•sin30°=(12+12)=6+6.又∵直角△AGC中,∠ACG=45°,∴AC=AG=6+6(米).【点评】本题考查了仰角、俯角的概念,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.如图1,直线y=2x﹣2与曲线y=(x>0)相交于点A(2,n),与x轴、y轴分别交于点B、C.(1)求曲线的解析式;(2)试求AB•AC的值?(3)如图2,点E是y轴正半轴上一动点,过点E作直线AC的平行线,分别交x轴于点F,交曲线于点D.是否存在一个常数k,始终满足:DE•DF=k?如果存在,请求出这个常数k;如果不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)首先把A代入直线解析式求得A的坐标,然后利用待定系数法求得反比例函数解析式;(2)首先求得A和B的坐标,过A作AM⊥x轴于点M,然后利用勾股定理求得AB和BC的长,则AB和AC的长即可求得,则两线段的乘积即可求得;(3)过点D作DN⊥x轴于点N.过点E作EG⊥DN于点G,易证△ABM∽△DFN,△ABM∽△DEG,根据相似三角形的对应边的比相等即可求解.【解答】解:(1)∵直线y=2x﹣2经过点A(2,n),∴n=2×2﹣2=2,即A的坐标是(2,2),把(2,2)代入y=得m=4,则反比例函数的解析式是y=(x>0);(2)过A作AM⊥x轴于点M.在y=2x﹣2中,令x=0解得y=﹣2,则C的坐标是(0,﹣2),令y=0,则2x﹣2=0,解得x=1,则B的坐标是(1,0);则AB===,BC===,则AB•AC=×2=10;(3)存在常数k,过点D作DN⊥x轴于点N.过点E作EG⊥DN于点G,则∠AMB=∠DNF=∠DGE=90°,设D的坐标是(a,),则EG=a,DN=,∵DF∥AC,EG∥FN,∴∠ABM=∠DFG=∠DEG,∴△ABM∽△DFN,△ABM∽△DEG,∴=,有DF:=,则DF=2a,又=,有=,则ED=a,于是,DE•DF=a•=10.即存在常数k=10.【点评】本题考查了待定系数法求函数解析式以及相似三角形的判定与性质,正确作出辅助线,构造相似三角形是关键.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【专题】压轴题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+t(0≤t≤2).当2≤t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB=[(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2≤t≤3)综上所述:S=.【点评】题目考查二次函数综合应用,通过对二次函数、一次函数解析式的求解,结合等腰三角形及图形面积求解,考查学生的观察问题能力和解决问题能力,特别是图形面积的求解,更对学生的能力提出更高的要求,题目整体较难,适合学生进行2016届中考压轴题目训练.。
2016年深圳九年级教学检测数学试卷(含答案)

2016年九年级教学质量检测数学参考答案及评分意见第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 题号 1 23 4 5 6 7 8 9 10 11 12 答案 CB A B D D AC B C B B 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分) 题号 13 14 1516 答案 ()21-x y π600 40 47+n三、解答题:(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分)17.解:原式1922-+-= …………………………4分 8= …………………………5分18.解:解不等式①,得.3->x …………………………2分 解不等式②,得.2≤x …………………………4分 在同一条数轴上表示不等式①②的解集,(图略)…………………………5分 所以,原不等式组的解集是.23≤<-x …………………………6分19. 解:(1)25%; …………………………2分(2)︒54 …………………………4分(3)375. …………………………7分20.(1)证明:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形. …………………………1分∵四边形ABCD 是矩形,∴AC=BD ,OA=OC ,OB=OD .∴OD=OC . …………………………3分∴四边形CODE 是菱形; …………………………4分(2)∵四边形ABCD 是矩形,∴︒=∠90ABC .在Rt △ABC 中,由勾股定理,得222AC BC AB =+, ∴34482222=-=-=AB AC BC . …………………………5分 ∴316344BC AB A BCD =⨯=∙=矩形S . …………………………6分 ∵3441ABCD ODC ==∆矩形S S . …………………………7分 ∴382ODC OCED ==∆S S 菱形. …………………………8分21. 解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,∵AB ∥CD ,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE 为矩形.∴AB=EF ,AE=BF .由题意可知:AE=BF=300米,CD=3500米. ……………………2分 在Rt △AEC 中,∠C=60°,AE=300米, ∴3100330060tan ==︒=AE CE (米), ……………………4分 在Rt △BFD 中,∠BDF=45°,BF=300米,∴DF=BF=300(米). ……………………6分 ∴31003003500-+=-+==CE DF CD EF AB ……………………7分 ≈3800﹣100×1.732≈3627(米) ……………………8分答:一小岛两端A 、B 的距离为3627米.22.(1)135 ……………………3分(2)PB·CQ=9 ……………………4分理由:由题意可得∠DCO=∠CDO=45°∵m ∥CD ∴∠PBx=∠CDO=45°∴∠QCO=∠PBO=135°∵∠POQ=45°∴∠POB+∠COQ=45°∵∠CQO+∠COQ=45°∴∠POB=∠CQO∴△CQO ∽△BOP ……………………5分 ∴C Q OB OC PB =∴PB·CQ=OB·OC=3×3=9 ……………………6分(3)∵OC=OB=3 ∴可将△OCQ 绕点O 顺时针旋转90°得到△OBQ'∴∠OBQ'=∠OCQ=135° ∠BOQ'=∠COQ BQ'=CQ OQ=OQ'∴∠xBQ'=∠PBx=45° ∠BOQ'+∠POB=∠COQ+∠POB=45°∴∠PBQ'=90° ∠POQ=∠POQ'=45° ……………………7分∵OQ=OQ' OP=OP∴△POQ ≌△POQ'∴PQ=PQ' ……………………8分在Rt △PB Q'中, 222''PQ PB BQ =+ ∴……………………9分23.解:(1)对于直线4--=x y ,当 0=x 时,;4-=y 当 0=y 时,;4-=x ∴A (―4,0),,C (0,―4). ……1分 由抛物线过A 、O 两点,可设抛物线a x a x ax y 4)2()4(2-+=+=,∴顶点B (―2,―4a ),又顶点B 的纵坐标为2-,∴―4a =―2,得21=a , ∴顶点B (―2,―2),点B 在直线AC 上. ……………………2分 ∴抛物线为x x x x y 221)4(212+=+=. …………………3分 (2)直线AC 与⊙D 相切.Q' B DC O x Q P y m A O xy C B · D P F连接DA 、DO ,由点D 与B 对称得D (―2,2),,4,822===OA DO DA ………4分 ∴,222OA DO DA =+ADO ∆是等腰直角三角形, ︒=∠45DAO , ︒=∠90D O A . ………………5分由对称得︒=∠45BAO ,∴ ︒=∠90DAC ,直线AC 与⊙D 相切. ………………6分(3)在⊙D 中, ︒=∠=∠4521ADO AEO , 由∠POA :∠AEO=2:3,得︒=∠30POA . ……………………7分设点)221,(2m m m P + ,过点P 作x PF ⊥于点F , 当点P 在x 轴上方时,在Rt △OPF 中,OFPF =︒30tan , 即mm m -+=221332,解得4332--=m ,32342212+=+m m , 点)3234,3324(+--P . ……………………8分 当点P 在x 轴下方时,同上法可得)3342,3324(-+-P ………………… 9分 综合知点P 的坐标为)3234,3324(+--P 或)3342,3324(-+-P .。
深圳市宝安区2016届九年级上期末调研测试数学试题含答案

D、位似图形一定是相似图形
y
8、二次函数 y ax2 bx c ( a 0 )的大致图象如图 2,关于该二次
函数,下列说法错误的是 (
)
A、函数有最小值
B、当 1 x 3 时, y 0
C、当 x 1时, y 随 x 的增大而减小 D、对称图是直线 x 1
9、某公司前年缴税 20万元,今年缴税 24.2万元。若该公司 这两年的年均增长率相同,设这个增长率为 x ,则列方程为
2015~2016学年第一学期宝安区期末调研测试卷
九年级
一、选择(12*3=36分)
1、一元二次方程 x2 1的根是(
)
A、 x 1
B、 x 1
x2 1
2、如图 1,该几何体的左视图是(
)
数学
C、 x1 1, x2 0
D、 x 1,
1
3、一个口袋中有红球、白球共 20只,这些球除颜色外都相同,将口袋中的球搅拌均
1.2m,那么该树的高度是
米。
15、某水果店销售一种进口水果,其进价为每千克 40 元,若按
每千克 60 元出售,平均每天可售出 100 千克。后经市场调
图6
查发现,单价每降低 2 元,则平均每天的销售可增加 20 千
克。水果店想要尽可能让利于顾客,赢得市场,又想要平均每天获利 2090 元,则
该店应降价
)
图3
D
E C
A、 1 2
B、 1 3
C、 1 4
D、2 3
11、如图 4,在□ABCD中,对角线 AC、BD相交于点 O,边点 O 与 AD上的一点 E 作直线
OE,交 BA的延长线于点 F,若 AD=4,DC=3,AF=2,则 AE的长是( )
【最新】2016届广东省深圳市中考模拟考试数学试卷(含答案)

15.如图 4,直线 y = x ,点 A 1 坐标为 ( 1,0),过点 A 1 作 x
y
y=x
B4 B3 B2 B1
O A 1A 2 A3 A 4 A 5 x
图4
8.若 ab 0 ,则函数 y
y
ax b 与函数 y
y
b
在同一坐标系中的大致图象可能是
x
y
y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
xa 1
9.已知不等式组 A.– 1
1
x
的解集如图 1 所示,则 a 的值为
1
3
B.0
C.1
D .2
–2 –1 0 1 2
图1
10.如图 2,一艘轮船以 40 海里 / 时的速度在海面上航行,当它 行驶到 A 处时,发现它的北偏东 30o方向有一灯塔 B。轮船 继续向北航行 2 小时后到达 C 处,发现灯塔 B 在它的北偏东
60o 方向。若轮船继续向北航行,那么当再过多长时间时轮 船离灯塔最近?
A. 1 小时
B . 3 小时
60o
C
B
北 东
30o
A
图2
C. 2 小时
D . 2 3 小时
11.对于数对 ( a,b)、 (c,d ),定义:当且仅当 a = c 且 b=d 时, (a,b) = ( c, d );并 定义其运算如下: (a,b)※(c,d)= (ac–bd,ad+bc ),如 (1, 2)※ (3,4) = (1× 3–2
2016-2017学年广东省深圳市宝安区九年级(上)期末数学试卷(2021年整理)

辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年广东省深圳市宝安区九年级(上)期末数学试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年广东省深圳市宝安区九年级(上)期末数学试卷(word版可编辑修改)的全部内容。
学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36.0分)1.一元二次方程x2-4=0的解是( )A.x=2B.x1=2,x2=-2C.x1=2,x2=0D.x=162。
一个几何体如图,则它的左视图是()A. B.C。
D。
3.如图,点P为反比例函数y=的图象上一点,PA⊥x轴于点A,△PAO的面积为2,则k的值是( )A。
2 B。
4 C。
-2 D。
-44.在一个有10 万人的小镇,随机调查了1000 人,其中有120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B.C。
D。
5。
如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC长是()A.4 B。
3 C。
2.5 D。
4.56.某学校2013 年年底调查学生的近视率为15%,经过两年的时间,2015 年年底再次调查该校学生的近视率为20%,设该校这两年学生人数总数不变,学生近视率年均增长率为x,则以下所列方程正确的是()A.(1+x)+15%(1+x)2=20%B。
广东省深圳市宝安区2016届九年级上学期期末调研测试数学考试试题(WORD版-有答案)

2015~2016学年第一学期宝安区期末调研测试卷九年级 数学 一、选择(12*3=36分)1、一元二次方程12=x 的根是( )A 、1=xB 、1-=xC 、11=x ,02=xD 、11=x ,12-=x2、如图1,该几何体的左视图是( )3、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?( ) A 、8只 B 、12只 C 、18只 D 、30只4、菱形的边长为5,一条对角线长为8,则此菱形的面积是( )A 、24B 、 30C 、40D 、485、若2=x 是关于x 的一元二次方程022=+-ax x 的一个根,则a 的值为( )A 、3B 、-3C 、1D 、-16、如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A 、x y 10=B 、x y 5=C 、x y 20=D 、20x y = 7、下列命题中,正确的是( )A 、对角线垂直的四边形是菱形B 、矩形的对角线垂直且相等C 、对角线相等的矩形是正方形D 、位似图形一定是相似图形8、二次函数c bx ax y ++=2(0≠a )的大致图象如图2,关于该二次函数,下列说法错误的是 ( ) A 、函数有最小值 B 、当31<<-x 时,0>y C 、当1<x 时,y 随x 的增大而减小 D 、对称图是直线1=x 9、某公司前年缴税20万元,今年缴税24.2万元。
若该公司这两年的年均增长率相同,设这个增长率为x ,则列方程为( )A 、2.24)1(203=+xB 、2.24)1(202=-xC 、2.24)1(20202=++xD 、2.24)1(202=+x10、如图3,每个小正方形的边长均为1,ABC ∆和DEF ∆的顶点均在“格点”上,则=∆∆周长周长ABC DEC ( ) x y -2-132O -111图 2CA B E D 图3A 、21B 、31C 、41D 、32 11、如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,边点O 与AD 上的一点E 作直线OE ,交BA 的延长线于点F ,若AD=4,DC=3,AF=2,则AE 的长是( ) A 、87 B 、58 C 、78 D 、2312、如图5,抛物线x x y 42-=与x 轴交于点O 、A ,顶点B ,连接AB 并延长,交y 轴于点C ,则图中阴影部分的面积和为( )A 、4B 、8C 、16D 、32 二、填空(4*3=12分)13、抛物线2)1(22-+-=x y 的顶点从标是 。
宝安区一模数学初三试卷

1. 下列各数中,不是有理数的是()A. 3.14B. -2C. 0.1010010001…D. 2/32. 下列各式中,正确的是()A. (-2)² = -4B. (-3)³ = -27C. (-5)⁴ = 625D. (-6)⁵ = -77763. 已知二次函数y=ax²+bx+c(a≠0)的图象与x轴的交点坐标为(1,0)和(-3,0),则该函数的解析式是()A. y=2x²-x-6B. y=x²+3x-6C. y=2x²+3x-6D. y=x²-3x+64. 下列函数中,是反比例函数的是()A. y=2x+1B. y=3/xC. y=x²D. y=x³5. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)6. 已知一元二次方程x²-5x+6=0的解为x₁和x₂,则x₁+x₂的值是()A. 5B. 6C. 10D. 117. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°8. 若x+y=5,x-y=1,则x²+y²的值是()A. 16B. 17C. 18D. 199. 下列各式中,正确的是()A. a²-b²=(a+b)(a-b)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. a³-b³=(a-b)(a²+ab+b²)10. 已知函数y=kx+b(k≠0),若k>0,则函数的图象()A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、三、四象限D. 经过第一、二、三、四象限11. 若a²=16,则a的值为______。