钢筋混凝土材料的力学性能

合集下载

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能

规范规定轴心抗拉强度标准值ftk与立方体抗压强度标准值fcu,k 的关系为:
ftk 0.880.395 fcu,k0.55(11.645 )0.45 c2
c2
高强混凝土的脆性折减系数,C40以下取1.00,C80取0.87,中
间线性插值。
0.88 考虑实际构件与试件混凝土之间的差异等,引入的修正系数。
中高强钢丝和钢绞线强度较高,均无明显的屈服点和屈服台阶,主要用于预应 力混凝土结构。
热处理钢筋,将强度大致相当于Ⅳ级热轧钢筋的某些特定品种热轧钢筋通过加热 、淬火和回火等调质工艺处理,使强度得到较大幅度的提高,但无明显的屈服点和 屈服台阶。主要用于预应力混凝土结构。
硬钢的应力应变曲线
N/mm2
1600σ σ0.2
150×150×150
C
200×200×200
A、B、C三个试块,材料、养护条件等均相同,三者强度的大小关系?
A>B> C,为什么?
试验方法方面 试件形状、尺寸、加载速度等 (3)润滑剂
涂润滑剂
涂润滑剂
A
B
150×150×150
150×150×150
A、B两个试块,材料、养护条件等均相同,二者强度的大小关系?(A>B)
储备,fy/σb=0.6~0.7。
不同级别热轧钢 筋的应力应变曲线
热轧钢筋级别越高,强度越 高,屈服平台越 ,塑短性越 。差
塑性性能
伸长率
l
l’
l'l 100%
l
伸长率越高,塑性性能越好。
冷弯性能
把钢筋在常温下围绕直径为D的辊轴弯转α角而要求不发生裂纹。
冷弯直径越小,角度 越大,塑性越好。
(3)钢筋的冷拉和冷拔

钢筋混凝土材料力学性能

钢筋混凝土材料力学性能

冷弯是检验钢筋局部变形能力的指标。 钢筋塑性愈好,构件破坏前预兆愈明显。
*对有明显屈服点的钢筋:检验屈服强度、极限抗拉强度、伸长 率、冷弯性能四项指标,
*对没有明显屈服点的钢筋:只须检验极限抗拉强度、伸长率、 冷弯性能三项指标。
3 可焊性
2.5钢筋的蠕变、松弛和疲劳
蠕变:钢筋在高应力作用下,随时间的增长其应变 继续增长的现象为蠕变。
Ïû ³ý ¦Ó Á¦ ¸Ö Ë¿ ¡¢ ÂÝ Ðý Àß Ö¸ Ë¿ ¡¢ ¿Ì ºÛ ¸Ö Ë¿
¸Ö ½Ê Ïß
Es 2.1Á¡ 105
2.0Á¡ 105
2.05Á¡ 105 1.95Á¡ 105
(2)无明显屈服点的钢筋(硬钢)
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性 a点后:应力-应变关系为非线性, 有一定塑性变形,且没有明显的屈 服点 强度设计指标——条件屈服点
(矾)、Nb(铌)、Ti(钛)、Cr(铬)等合金元 素,既能使钢筋的强度提高,又能保持一定的塑性。
2 钢筋的品种和级别
RRB400 (KL400)级(Ⅳ级) (《钢筋混凝土用余热处 理钢筋》GB1499-1998)钢筋强度太高,不适宜作为钢 筋混凝土构件中的配筋,一般冷拉后作预应力筋。
(2)冷拉钢筋:由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭 加工后而成。
延 伸 率:钢筋拉断后的伸长值与原长的比率,是反映钢筋塑性 性能的指标。延伸率大的钢筋,在拉断前有足够预兆,延性较好。
s
5
or
10

l1/
l1 l1
屈 强 比:反映钢筋的强度储备,
fy/fu=0.6~0.7。 在抗震结构中: fy/fu不小于0.8
µ¯ ÐÔ ±ä ÐÎ ee

第二章-钢筋混凝土材料的力学性能

第二章-钢筋混凝土材料的力学性能

第2章钢筋混凝土材料的力学性能知识点1. 钢筋的强度和变形, 钢筋的级别和品种, 混凝土结构对钢筋性能的要求;2. 单轴和复合受力状态下混凝土的强度;3. 混凝土在一次短期加荷以及重复荷载和长期荷载作用下的变形性能;4. 混凝土的弹性模量、混凝土的强度和强度等级;5. 钢筋和混凝土的粘结性能。

要点1. 混凝土材料的强度标准值与强度设计值二者的大小关系。

混凝土材料的强度标准值与强度设计值二者的大小关系为标准值大。

2. 有明显流幅的热轧钢筋屈服强度的依据。

有明显流幅的热轧钢筋屈服强度的依据是屈服下限。

3. 混凝土的徐变混凝土承受荷载不变, 而变形随时间增长的现象称为混凝土的徐变4. 混凝土的立方体抗压强度混凝土的立方强度是指按标准方法制作养护的边长为150mm的立方体试件, 在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。

5. 混凝土的轴心抗压强度混凝土的轴心强度是指按标准方法制作养护的边长为150 150 300mm的棱柱体作为标准试件, 试验所测得的具有95%保证率的抗压强度为轴心抗压强度。

6. 光圆钢筋与混凝土的粘结作用的组成光圆钢筋与混凝土的粘结作用由胶结力, 摩阻力, 咬合力三部分组成。

7. 钢筋混凝土结构对钢筋性能的要求有哪些。

钢筋混凝土结构对钢筋性能的要求有强度、塑性或变形能力、可焊性、温度要求及与混凝土的粘结力或称握裹力。

8. 混凝土在荷载作用下的应变包括哪些。

混凝土在荷载作用下的应变包括加载瞬间产生的瞬时应变, 和在长期荷载作用下的徐变。

9. 钢筋与混凝土这两种材料能结合在一起共同工作的原因。

钢筋与混凝土这两种材料能结合在一起共同工作, 其原因是二者之间具有相近的温度线膨胀系数和良好的粘结力。

10. 结构的极限状态分为哪两种。

结构的极限状态分为承载能力极限状态和正常使用极限状态。

钢筋混凝土构件的受力分析

钢筋混凝土构件的受力分析

钢筋混凝土构件的受力分析一、引言钢筋混凝土是一种广泛应用于建筑工程中的结构材料,它的使用范围包括楼房、桥梁、水利工程等。

钢筋混凝土构件的受力分析是建筑工程设计的重要部分,它涉及到钢筋混凝土构件的力学性能、受力特点、受力机理等方面的知识。

本文将详细介绍钢筋混凝土构件的受力分析原理。

二、钢筋混凝土构件的力学性能1. 材料的力学性质钢筋混凝土的力学性质是指它的抗拉强度、抗压强度、弹性模量等指标。

钢筋混凝土通常由水泥、砂子、骨料、水和钢筋组成。

水泥是黏结剂,砂子和骨料是填料,水是调节材料的稠度和流动性,钢筋是增强材料的主要成分。

水泥的强度与其组成的矿物成分、熟化度、水泥砂比等因素有关。

砂子和骨料的强度与它们的种类、大小、形状等因素有关。

钢筋的强度与其材料、直径、表面形状等因素有关。

2. 断面受力特点钢筋混凝土构件的受力分析需要考虑它的断面受力特点。

钢筋混凝土构件通常由板、梁、柱、墙等构件组成。

不同构件的受力特点不同。

板的受力特点主要是受弯矩和剪力作用,梁的受力特点主要是受弯矩作用,柱的受力特点主要是受压力作用,墙的受力特点主要是受拉压力和剪力作用。

因此,不同构件的受力分析需要采用不同的理论和方法。

三、钢筋混凝土构件的受力分析方法1. 弹性力学方法弹性力学方法是一种基于弹性理论的受力分析方法,它假设材料在受力作用下的形变是可逆的、线性的、小的。

在弹性力学方法中,钢筋混凝土构件的受力分析可以看作是一个弹性体的受力分析问题。

弹性力学方法适用于小变形、小应力、单轴受力的情况。

弹性力学方法的主要理论是梁、板、壳的弯曲理论和轴心受压的柱理论等。

2. 塑性力学方法塑性力学方法是一种基于材料塑性特性的受力分析方法,它假设材料在受力作用下的形变是可逆的、非线性的、大的。

在塑性力学方法中,钢筋混凝土构件的受力分析可以看作是一个塑性体的受力分析问题。

塑性力学方法适用于大变形、大应力、多轴受力的情况。

塑性力学方法的主要理论是塑性弯曲理论和塑性轴心受压的柱理论等。

钢筋混凝土材料力学性能

钢筋混凝土材料力学性能

砼结构对钢筋质量要求 适当强度:屈服和极限强度,屈服强度是计算主要依据; 可焊性好:要求钢筋焊接后不产生裂纹及过大变形;
足够塑性:以伸长率和冷弯性能为主要指标,即要求钢筋断裂前有足够变形,在钢筋混凝土结构 中,能给出构件将要破坏的预告信号,同时保证钢筋冷弯要求。一般而言强度高的钢筋塑性和可 焊性就差些;
1 混凝土立方体抗压强度的定义和强度等级 砼立方体强度的定义:立方体试件的强度比较稳定,我国把立方体强度值作为混 凝土强度的基本指标,并把立方体抗压强度作为评定混凝土强度等级的标准。我国《规 范》规定:,用ƒ表示,单位2。
换句话:混凝土强度等级应按立方体强度标准值确定。
立方体抗压强度标准值(ƒ) 两重含义: 1、采用边长为150㎜的立方体试块,在标准条件(温度为17~23℃,湿度在90%以上) 下养护28d,按照标准的试验方法加压到破坏测得的立方体抗压强度。
1 钢筋强度指标 (1)软钢:屈服强度、极限强度
当某截面钢筋应力达到屈服强度后,试件将在荷载基本不增加情况下产生持续塑性变形,构件 可能在钢筋尚未进入强化阶段之前就已破坏或产生过大的变形与裂缝。因此,钢筋的屈服强度是钢 筋关键性强度指标;此外,钢筋的屈强比(屈服强度与极限强度之比)表示结构可靠性潜力。在抗 震结构中,考虑受拉钢筋可能进入强化阶段,要求其屈强比≤0.8,因而钢筋极限强度是检验钢筋质 量的另一强度指标。
近年来,我国强度高,性能好的预应力钢筋已可充分供应,冷加工钢筋不再列入规范。

1.1.2 钢筋品种、级别和分类
推广具有较好延性、可焊性、机械连接性能及施工适应性的系列普通热轧带肋钢筋。列入采 用控温轧制工艺生产的系列细晶粒带肋钢筋。
系列余热处理钢筋由轧制钢筋经高温淬水,余热处理后提高强度。而其它性能则相应降低, 一般可用于对变形性能及加工性能要求不高的构件中,如基础、大体积混凝土、楼板、墙体及 次要的中小结构构件中。

钢筋和混凝土的材料力学性能

钢筋和混凝土的材料力学性能

(2) 强度指标
1) 屈服强度 fy : 有物理屈服点的钢筋到达屈服点后,
会产生很大的塑性变形,使构件出现很大的变形和过宽的
裂缝,以致不能使用。在计算承载力时以屈服强度fy作为
钢筋强度标准值;
2) 极限抗拉强度fu : 在抗震结构设计中,要求结构在
罕遇地震下“裂而不倒”, 钢筋应力可考虑进入强化段, 要
预应力混凝土不应低于C30;当采用钢绞线、钢丝、热处理 钢筋作预应力钢筋时,混凝土强度等级不宜低于C40。
4)试验方法对立方体抗压强度的影响
图3.1 砼立方体试块的破坏情况
a)不涂润滑剂
b)涂润滑剂
我国规定的标准试验方法:不涂润滑剂。
5)几点说明
① 按图纸规定的强度等级制作混凝土; ② 现场制作试块(标养试块、同条件养护试块); ③ 检验立方体抗压强度是否满足设计要求采用标养试块; ④ 结构实体的环境条件与实验室养护条件不同,必须增加 同条件养护试块予以判定结构实体的强度; ⑤ 不同尺寸试件的“尺寸效应” :
2. 钢筋的种类及选用
热轧钢筋
HPB235 HRB335 HRB400
RRB400
光圆钢筋 变形钢筋 变形钢筋 变形钢筋
强度 塑性
非低 高



钢 筋

Байду номын сангаас


钢丝
强度高,塑性低


钢绞线
强度高,塑性低,粘结
应 力


热处理钢筋
强度高,塑性低

3. 我国常见钢筋外形
3.2.2 钢筋的材料力学性能
钢筋按力学性能的不同,分为有物理屈服点的钢 筋和无物理屈服点的钢筋。

钢筋混凝土材料的力学性能

• 2. 轴心抗压强度
上一页 下一页 返回
任务2.2 混凝土的力学性能
• 在实际工程中,一般的受压构件不是立方体而是棱柱体,我国《普通 混凝土力学性能试验方法标准》(GB/T50081-2002) 规定,以150mm×150mm×300mm 的棱柱体作为混凝 土轴心抗压强度试验的标准试件,又称为棱柱体抗压强度。由于棱柱 体试件的高度越大,试验机压板与试件之间摩擦力对试件高度中部的 横向变形的约束影响越小,所以棱柱体试件的抗压强度都比立方体的 强度值小,并且棱柱体试件高宽比越大,强度越小。但是当试件的高 宽比为2~3时,可以基本消除影响。《混凝土结构设计规范》(G B50010—2010)规定以上述棱柱体试件试验测得的具有95%保证 率的抗压强度为混凝土轴心抗压强度标准值,用符号fck表示。轴心 抗压强度标准值与立方体抗压强度标准值的关系按下式确定:
上一页 下一页 返回
任务2.2 混凝土的力学性能
• 有利影响:在某种情况下,徐变有利于防止结构裂缝形成;有利于构 件的应力重分布,减少应力集中现象及减少温度应力等。不利影响: 由于混凝土的徐变使构件变形增大,在预应力混凝土构件中,徐变会 导致预应力损失;徐变使受弯和偏心受压构件的受压区变形加大,故 而使受弯构件挠度增加,使偏心受压构件的附加偏心距增大进而导致 构件承载能力的降低。因弊大于利,在工程实际中应尽量减少徐变。 影响徐变的因素可归结为三个方面:内在因素、环境影响、应力因素 。混凝土的组成成分水泥用量越多,徐变越大;水灰比越大,徐变也 越大。混凝土的龄期越早,徐变越大。
• 按有无物理屈服点,钢筋可分为软钢和硬钢。 • 有物理屈服点的钢筋叫软钢,如热轧钢筋和冷拉钢筋;无物理屈服点
的钢筋叫硬钢,如钢丝和热处理钢筋。 • 除以上三种分类方法外,从外形上钢筋还可分为光圆钢筋、螺纹钢筋

钢筋混凝土材料的力学性能试题及答案

钢筋混凝土材料的力学性能试题及答案第一章钢筋混凝土的材料力学性能一、填空题:1、《混凝土规范》规定以强度作为混凝土强度等级指标。

2、测定混凝土立方强度标准试块的尺寸是。

3、混凝土的强度等级是按划分的,共分为级。

4、钢筋混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常称它们为和。

5、钢筋按其外形可分为、两大类。

6、HPB235、 HRB335、 HRB400、 RRB400表示符号分别为。

7、对无明显屈服点的钢筋,通常取相当于于残余应变为时的应力作为名义屈服点,称为。

8、对于有明显屈服点的钢筋,需要检验的指标有、、、等四项。

9、对于无明显屈服点的钢筋,需要检验的指标有、、等三项。

10、钢筋和混凝土是两种不同的材料,它们之间能够很好地共同工作是因为、、。

11、钢筋与混凝土之间的粘结力是由、、组成的。

其中最大。

12、混凝土的极限压应变cu ε包括和两部分,部分越大,表明变形能力越,越好。

13、钢筋冷加工的方法有、、三种。

14、有明显屈服点的钢筋采用强度作为钢筋强度的标准值。

15、钢筋的屈强比是指,反映。

二、判断题:1、规范中,混凝土各种强度指标的基本代表值是轴心抗压强度标准值。

()2、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。

()3、采用边长为100mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.95。

()4、采用边长为200mm 的非标准立方体试块做抗压试验时,其抗压强度换算系数为1.05。

()5、对无明显屈服点的钢筋,设计时其强度标准值取值的依据是条件屈服强度。

()6、对任何类型钢筋,其抗压强度设计值y y f f '=。

()7、钢筋应在焊接前冷拉。

()8、混凝土的收缩和徐变对钢筋混凝土结构都是有害的。

()9、冷拉后的钢筋不可以作受压钢筋。

()10、钢材的含C量越大,钢材的强度越高,因此在建筑结构选钢材时,应选用含C 量较高的钢筋。

第3章钢筋力学性能


r s (%)
0.200 0.100 0.000
其他方面
●裂缝宽度计算(修改钢筋混凝土裂缝宽度计算公式,钢 筋 应力按荷载准永久组合弯矩计算);
●锚固长度
基本锚固长度 lab 锚固长度
fy ft d
la alab
原规范规定:当混凝土的强度等级高 于C40时,按C40取值 ; 修订后改为:当混凝土的强度等级高 于C60时,按C60取值
●钢筋断后伸长率

l l0 100% l0
只能反映钢筋断口颈缩区域残余变形的大小;不同标距长 度l0得到的结果不一致;忽略了钢筋的弹性变形,不能反 映钢筋受力时的总体变形能力;容易产生人为误差。 ●最大力下的总伸长率(均匀伸长率)gt (Agt)
s sb
0 残余变形e r 最大力下总伸长率(%)
e
弹性变形e e
L L0 s b gt ( ) 100% L0 Es
钢筋和混凝土材料的力学性能
(3)冷弯性能
钢筋弯曲试验是检验钢筋在弯折加工时或在使用时 不致脆断的一种试验方法。伸长率不能反应钢筋这一脆
性性能。 在常温下将钢筋绕规定的直 径D弯曲α角度而不出现裂纹、 鳞落或断裂现象,即认为钢筋的 弯曲性能符合要求。 通常D值愈小,而α值愈大,则其 弯曲性能愈好。
F
6~22
6~50
300
335
420
455
F R
6~50
400
540
F
6~50
500
630
钢筋的强度设计值和伸长率
表2 普通钢筋强度设计值(N/mm2) 牌号 抗拉强度设计值 f 2.热轧钢筋强度设计值 HPB300 HRB335、HRBF335 HRB400、HRBF400、 RRB400 HRB500、HRBF500 270 300 360 415(抗剪计算360)

钢筋混凝土材料力学性能

钢筋混凝土材料的力学性能1.《规范》规定钢筋混凝土结构(包括预应力钢筋混凝土结构)中的钢筋有哪几种,其等级如何?答:《规范》规定钢筋混凝土结构(包括预应力钢筋混凝土结构)中的钢筋有以下几种:(1)热轧钢筋:是低碳钢、普通低合金钢在高温状态下轧制而成,包括光圆钢筋和带肋钢筋。

等级分为HPB235级,HRB335级,HRB400级,HRB500级。

(2)余热处理钢筋:热轧后立即穿水,进行表面控制冷却,然后利用芯部自身余热完成回火处理所得成品钢筋。

钢筋混凝土中常用RRB400级。

(3)热处理钢筋:是将热轧钢筋在通过加热、淬火和回火等调质工艺处理的钢筋。

热处理后钢筋强度能得到较大幅度的提高,而塑性降低并不多。

常用的有三种,分别是40Si2Mn,48Si2Mn,45Si2Cr。

(4)冷轧带肋钢筋:采用强度较低、塑性较好的普通低碳钢或低合金钢热轧圆盘条作为母材,经冷轧减径后其表面形成二面或三面有月牙肋的钢筋,根据其力学指标的高低,分为LL550,LL650,LL800三种。

《规范》规定预应力混凝土结构中用的钢丝按外形有下列几类:(1)光面钢丝(消除应力钢丝):用高碳镇定钢轧制成圆盘后经过多道冷拔,并进行应力消除矫直回火处理而成。

(2)刻痕钢丝:在光面钢丝的表面上进行机械刻痕处理,以增加与混凝土的粘结能力。

(3)螺旋肋钢丝:是用普通低碳钢或低合金钢热轧的圆盘条作为母材,经冷轧减径在其表面形成二面或三面有月牙肋的钢丝。

(4)钢绞线:是由多根高强钢丝捻制在一起,并经低温回火处理清除内应力后制成。

可分为2股、3股、7股3种。

2.上述种类钢筋的受力和变形有何特点?答:在上述钢筋种类中,热轧钢筋为软钢,其应力-应变曲线有明显的屈服点和流幅,断裂时有“颈缩”现象,伸长率比较大;冷轧带肋钢筋、热处理钢筋、光面钢丝、刻痕钢丝、螺旋形钢丝及钢绞线均为硬钢,它们的应力-应变曲线没有明显的屈服点,伸长率小,质地硬脆。

从各级热轧钢筋和光面钢丝的应力-应变曲线中可以看出:随着钢材强度的提高其塑性性能降低,HPB235级钢筋有较好的塑性,但强度较低,碳素钢丝虽强度很高,但塑性较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章钢筋混凝土材料的力学性能2.1 钢筋2.1.2 钢筋的力学性能钢筋的主要力学性能包括强度和变形性能,可通过拉伸试验得到的应力-应变曲线来说明。

由此分为有屈服点的钢筋和无屈服点钢筋,即钢筋的应力-应变曲线有的有明显的流幅,如图2-5。

如热轧低碳钢和普通的热轧合金钢制成的钢筋。

有的则没有明显的流幅(图2-6),如光面钢丝等。

从图2-5的典型应力-应变曲线来看,应力值在A点以前,应力和应变按线性比例关系增长,A点对应的应力称为比例极限。

过了A点以后,应变比应力增长地快,到达Bˊ点以后,钢筋开始出现塑流,Bˊ称为屈服上限,它与加载速度、断面形式、试件表面光洁度等不确定因素有关,故Bˊ是不稳定的。

待从Bˊ降至B点(屈服下限)后,应力水平基本不变而应变急剧增加,图形接近水平线,直到C点。

B点到C点的水平部分称为为依据的。

过C点以后,应力又继续增长,钢筋的抗拉能力又开始发挥,随屈服台阶,BC大小称为流幅。

有明显流幅的热轧钢筋屈服强度是以屈服下限着曲线上升,到达最高点D,D对应的应力称为钢筋的极限强度,CD段称为钢筋的强化阶段。

过了D点以后,应变迅速增加,应力随之下降,在测试试件上体现为试件薄弱处的截面突然显著减小,发生局部径缩现象,变形迅速增加达到E点试件被拉断。

而图2-6中没有明显流幅的钢筋应力-应变关系曲线则没有前者的屈服台阶,而是直接到达强度极限,乃至破坏,具有脆性破坏的特点。

钢筋的一个强度代表值是标准值,标准值应具有不小于95%的保证率。

对构件计算配筋时,对于热轧钢筋的强度标准值是根据屈服强度确定,用fyk表示。

因为构件中的钢筋应力达到屈服点后,将产生很大的塑性变形,使钢筋混凝土构件出现很大变形和不可闭合的裂缝,以至不能使用。

对预应力钢绞线、钢丝和热处理钢筋等没有明显屈服点的钢筋强度标准值是根据国家标准极限抗拉强度ζb 确定的,采用钢筋应力为0.85ζb的点作为条件屈服点。

普通钢筋的强度标准值见后面的附表6。

钢筋除要有足够的强度外,还应有一定的塑性变形能力,钢筋的塑性通常用伸长率和冷弯性能两个指标来衡量。

钢筋拉断后的伸长值与原长的比值称为伸长率,伸长率越大塑性越好;冷弯是将直径为d的钢筋绕直径为D的弯芯弯曲到规定的角度而无裂纹及起层现象,则表示合格。

弯芯的直径D越小,弯转角越大,说明钢筋的塑性越好。

为了使钢筋在拉断前保持足够的伸长,能给出构件即将破坏的预兆,并且使钢筋在加工成型时不发生断裂,亦即保证钢筋具有一定的塑性,国家标准规定了各种钢筋所必须达到的伸长率最小值(用δ5表示标距ι=5d时的伸长率)以及相应的冷弯试验要求(弯芯直径及弯转角),见表2.1。

2.1.3 钢筋的应力-应变曲线的数学模型在钢筋混凝土结构的设计和理论分析中,需要将钢筋的应力-应变曲线理想化,对不同性能的钢筋建立不同的应力-应变曲线数学模型。

常用的有以下几种:1.双直线(完全弹塑性模型)2.三折线(完全弹塑性加硬化模型)3.双斜线(弹塑性模型)2.1.4 钢筋的疲劳强度钢筋的疲劳破坏是钢筋在承受重复、周期性动荷载作用下,经过一定次数后,从塑性破坏变成突然脆性断裂的破坏现象。

疲劳强度是指在某一规定应力幅度内,经受一定次数荷载循环后,发生疲劳破坏的最大应力值。

一般认为,钢筋产生疲劳断裂是由于在外力作用下钢筋内部或外表面的缺陷引起了应力集中,钢筋中超负荷的弱晶粒发生滑移,产生疲劳裂纹,最后断裂。

对于承受重复荷载的钢筋混凝土构件,如吊车梁等,如何确保其在正常使用期间不发生疲劳破坏,就需要研究和分析材料的疲劳强度或疲劳应力幅度限值。

2.1.5 钢筋混凝土构件对钢筋性能的要求1.强度所谓强度是指钢筋的屈服强度及极限强度。

钢筋的屈服强度是设计计算时的主要依据(无明显流幅的钢筋由它的条件屈服点强度确定)。

改变钢材的化学成分,采用高强度钢筋可以节约钢材,取得较好的经济效果。

应考虑钢筋有适宜的强屈比(极限强度与屈服强度的比值),保证结构在达到设计强度后有一定的强度储备,同时应满足专门规程的规定。

2.塑性要求钢材在断裂前应有足够的变形(伸长率)以保证构件和结构的延性,在钢筋混凝土结构中,给人们以将要破坏的报警信号,从而采取措施进行补救。

另外,还要保证钢筋冷弯的要求,通过检验钢材承受弯曲变形能力的试验以间接反映钢筋的塑性性能。

3.可焊性在一定的工艺条件下,要求钢筋焊接后不产生裂纹及过大的变形,保证焊接后的接头性能良好。

尽量减小焊接处的残余应力和应力集中。

4.温度要求钢材在高温下,性能会大大降低,对常用的钢筋类型,热轧钢筋的耐火性最好,冷轧钢筋次之,预应力钢筋最差。

在进行结构设计时要注意施工工艺中高温对各类钢筋的影响,同时注意混凝土保护层厚度对构件耐火极限的要求。

在寒冷地区,为了防止钢筋发生脆性破坏,对钢筋的低温性能也应有一定的要求。

5.与混凝土的粘结力(或称握裹力)为了保证钢筋与混凝土共同工作的有效性,两者之间必须有足够的粘结力,钢筋表面的形状对粘结力有重要的影响。

同时要保证钢筋的锚固措施和锚固长度和混凝土保护层厚度。

另外针对不同的存在条件对钢筋还应有具体的要求。

2.2 混凝土2.2.1 混凝土的组成结构普通混凝土是由水泥、砂子和骨料三种基本材料用水拌和经过养护凝固硬化后形成的人工石材,是一种由具有不同性质的多组分组成的多相复合材料。

综上所述,混凝土各组分结合形成的复杂结构层次构成了混凝土的骨架,主要用来承受外力,并使混凝土具有弹性变形的特征;水泥石中的凝胶、混凝土中的空隙和结合面初始微裂缝等,在外力作用下,由于其可压缩空间的存在,使混凝土具有较大的塑性变形。

混凝土结构中的孔隙、界面微裂缝等先天的缺陷往往是混凝土完整性改变,受力破坏的根源,微裂缝在受荷时的发展对混凝土的力学性能改变有非常重要的影响。

由于水泥凝胶块的硬化过程将经历若干年才能完成,所以混凝土的强度、变形也要经历较长时间的稳定期。

2.2.2 混凝土强度指标在实际工程中,单向受力的构件和结构极少,一般处于复合受力状态,复合受力作用下混凝土的强度是设计者非常关心和重视的问题。

但研究复合受力作用下混凝土的强度试验需要复杂的设备,理论分析也比较困难。

单向受力状态下混凝土的强度指标,仍然是进行钢筋混凝土结构构件强度分析、建立强度理论公式的重要依据。

混凝土强度值(抗压强度和抗拉强度)大小与采用的水泥品种、标号和水灰比大小有很大关系,其它如骨料(砂、石)的性质、混凝土的级配、添加剂或掺和料的使用、制作方法(人工或机械的)、硬化时的环境条件及混凝土龄期等都有或多或少的影响。

在试验时还因为所选择试件的大小和形状、试验方法或加载时间长短的不同,测得的强度值也不同。

因此各种单向受力时的混凝土强度指标必须以统一规定的标准试验方法为依据。

1.混凝土的抗压强度混凝土的抗压强度是混凝土力学性能中最主要的指标。

人们通过抗压强度标准值作为混凝土强度分级的标准,也是施工过程中控制混凝土质量的主要依据。

混凝土抗压强度之所以如此重要,是因为钢筋混凝土结构中最主要的就是利用其抗压强度。

此外,混凝土的其它力学性能,如抗拉强度,弹性模量等也都与混凝土抗压强度有内在联系,因而建立了它们之间的关系,也就可以通过抗压强度推断出混凝土的其它力学性能。

目前,国际上为确定混凝土抗压强度所采用的混凝土试件有圆柱体和立方体两种,我国采用立方体试件。

(1)立方体抗压强度混凝土立方体试件的强度比较稳定,我国以该值作为混凝土强度的基本指标。

《规范》规定,按照标准方法制作养护(在20o C±3o C的温度和相对湿度90%以上条件的空气中养护)的边长为150mm的立方体试件在28天龄期后,用标准试验方法测得的具有95%保证率的抗压强度,叫做立方体抗压强度标准值,用符号f表示。

根据混凝土立方体抗强度标准值的数值,《混凝土结构设计规范》GB50010-2001(以下简称《规范》)规定,cuk混凝土强度等级分为14级:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。

其中符号C表示混凝土(Concrete),后面的数字表示立方体抗压强度标准值,单位N/mm2。

测定混凝土强度时,试块放在压力机上下垫板之间加压,试块纵向受压缩短,而横向将扩展。

由于压力机垫板与试块上、下表面之间的摩擦力影响,垫板好象起了“箍”的作用一样,将试块上下端箍住,阻碍了试块上下端的变形,提高了试件的抗压极限强度。

接近试块中间部分“箍”的约束影响减小,混凝土比较容易发生横向变形。

随着荷载的增加,当压力使试件应力水平达到极限值时,试块由于受到竖向和水平摩擦力的复合作用,首先沿斜向破裂,中间部分的混凝土最先达到极限应变而鼓出塌落,形成对顶的两个角锥体,如图2-8a。

如果在试件和压力机之间加一些润滑剂,这时试件与压力机垫板间的摩擦力减小,其横向变形几乎不受约束。

试件沿着几乎与力的作用方向平行地产生几条裂缝而破坏,如图2-8b。

这样所测得的混凝土抗压强度较低。

《规范》规定的标准试验方法中不加润滑剂,这比较符合实际使用情况。

试块的尺寸不同,试验时试块上下表面的摩擦力产生“箍”的作用亦将不同,因此,当试件上下表面不涂润滑剂加压测试,得到的抗压强度值与试件尺寸有很大关系,立方体越小,抗压强度值越高。

根据大量试验结果的统计规律,对于边长为非标准的立方体试块,其立方体抗压强度应乘以换算系数来得到标准立方体强度。

我国过去曾经长期采用过以200mm边长的立方体测试混凝土的立方强度,由于用料多、重量大,试验时又需大吨位的试验机。

为节约材料,减少工作量,一些单位往往采用边长为100mm的立方试块。

用这两种尺寸的试块测得的强度与用150mm的强度有一定的差异(尺寸效应),这是要进行换算的原因。

根据试验资料分析,当采用边长为200mm和100mm的立方试块时,其换算关系分别取1.05和 0.95。

试验时加载速度对立方体强度也有影响,加载速度越快,测得的强度越高。

通常规定加载速度为:混凝土强度等级低于C30时,取每秒钟0.3N/mm2~0.5N/mm2;当混凝土强度等级等于或高于C30时,取每秒钟0.5N/mm2~0.8N/mm2。

混凝土的抗压强度还与混凝土的龄期有关,试验时,随着混凝土的龄期逐渐增长,抗压强度增长速度开始较快,后来逐渐趋缓,这种强度增长的过程往往延续若干年,在潮湿环境中延续时间会更长。

如图2-10。

(2)轴心抗压强度(或棱柱体强度)混凝土抗压强度还与试件的形状有关,考虑到实际构件以棱柱体为主,因此棱柱体(高度大于边长)试件比立方体试件能更好地反映混凝土构件的实际抗压能力,用棱柱体测得的抗压强度简称为轴心抗压强度(又称棱柱体抗压强度)。

在工程中,钢筋混凝土轴心受压构件,如柱、屋架受压弦杆等,长度比横截面尺寸大得多,构件的混凝土强度,与混凝土棱柱体轴心抗压强度接近。

相关文档
最新文档