第二章-钢筋混凝土材料力学性能

合集下载

2章问答答案

2章问答答案

5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的 力学性能不同。1887 年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或 受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软 化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢 筋 混 凝 土 结 构 及 预 应 力 混 凝 土 结 构 的 钢 筋 , 应 按 下 列 规 定 采 用 :( 1) 普 通钢筋宜采用 HRB400 级和 HRB335 级钢筋,也可采用 HPB235 级和 RRB400 级钢筋;(2) 预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是 HPB235、HRB335、HRB400、RRB400 等热轧钢筋。 (2)强屈比的要求 所以设计中应选择适当的屈强比,对于抗震结构,钢筋应力在地震作用下可考虑进入强 化段,为了保证结构在强震下“裂而不倒”,对钢筋的极限抗拉强度与屈服强度的比值有一 定的要求,一般不应小于1.25。 (3)延性 在工程设计中,要求钢筋混凝土结构承载能力极限状态为具有明显预兆,避免脆性破坏, 抗震结构则要求具有足够的延性,钢筋的应力应变曲线上屈服点至极限应变点之间的应变值 反映了钢筋延性的大小。 (4)粘结性 粘结性是指钢筋与混凝土的粘结性能。粘结力是钢筋与混凝土得以共同工作的基础,其 中钢筋凹凸不平的表面与混凝土间的机械咬合力是粘结力的主要部分,所以变形钢筋与混凝 土的粘结性能最好,设计中宜优先选用变形钢筋。 (5)耐久性 混凝土结构耐久性是指,在外部环境下材料性、构件、结构随时间的退化,主要包括钢 筋锈蚀、冻融循环、碱—骨料反应、化学作用等的机理及物理、化学和生化过程。混凝土结 构耐久性的降低可引起承载力的降低,影响结构安全。 (6)适宜施工性 在施工时钢筋要弯转成型,因而应具有一定的冷弯性能。钢筋弯钩、弯折加工时应避免 裂缝和折断。热轧钢筋的冷弯性能很好,而性脆的冷加工钢筋较差。预应力钢丝、钢绞线不 能弯折,只能以直条形式应用。 同时,要求钢筋具备良好的焊接性能,在焊接后不应产生裂纹及过大的变形,以保证焊 接接头性能良好。 (7)经济性 衡量钢筋经济性的指标是强度价格比,即每元钱可购得的单位钢筋的强度,强度价格比 高的钢筋比较经济。不仅可以减少配筋率,方便了施工,还减少了加工、运输、施工等一系 列附加费用。 8. 简述混凝土的组成结构。并叙述混凝土的结构组成对混凝土破坏强度的影响。 答:混凝土材料结构分为三种基本类型:①微观结构,即水泥石结构,水泥石结构由水 泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的矿物 成份、粉磨细度、水灰比和硬化条件;②亚微观结构,即混凝土的水泥砂浆结构,水泥砂浆 结构可看作以水泥石为基相、砂子为分散相的二组混凝土体系,砂子和水泥石的结合面是薄 弱面。对于水泥砂浆结构,除上述决定水泥石结构的因素外,砂浆配合比、砂的颗粒级配与

钢筋混凝土材料力学性能

钢筋混凝土材料力学性能

冷弯是检验钢筋局部变形能力的指标。 钢筋塑性愈好,构件破坏前预兆愈明显。
*对有明显屈服点的钢筋:检验屈服强度、极限抗拉强度、伸长 率、冷弯性能四项指标,
*对没有明显屈服点的钢筋:只须检验极限抗拉强度、伸长率、 冷弯性能三项指标。
3 可焊性
2.5钢筋的蠕变、松弛和疲劳
蠕变:钢筋在高应力作用下,随时间的增长其应变 继续增长的现象为蠕变。
Ïû ³ý ¦Ó Á¦ ¸Ö Ë¿ ¡¢ ÂÝ Ðý Àß Ö¸ Ë¿ ¡¢ ¿Ì ºÛ ¸Ö Ë¿
¸Ö ½Ê Ïß
Es 2.1Á¡ 105
2.0Á¡ 105
2.05Á¡ 105 1.95Á¡ 105
(2)无明显屈服点的钢筋(硬钢)
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性 a点后:应力-应变关系为非线性, 有一定塑性变形,且没有明显的屈 服点 强度设计指标——条件屈服点
(矾)、Nb(铌)、Ti(钛)、Cr(铬)等合金元 素,既能使钢筋的强度提高,又能保持一定的塑性。
2 钢筋的品种和级别
RRB400 (KL400)级(Ⅳ级) (《钢筋混凝土用余热处 理钢筋》GB1499-1998)钢筋强度太高,不适宜作为钢 筋混凝土构件中的配筋,一般冷拉后作预应力筋。
(2)冷拉钢筋:由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭 加工后而成。
延 伸 率:钢筋拉断后的伸长值与原长的比率,是反映钢筋塑性 性能的指标。延伸率大的钢筋,在拉断前有足够预兆,延性较好。
s
5
or
10

l1/
l1 l1
屈 强 比:反映钢筋的强度储备,
fy/fu=0.6~0.7。 在抗震结构中: fy/fu不小于0.8
µ¯ ÐÔ ±ä ÐÎ ee

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能

Remained heat
treatment
屈服强度 fyk(标准值=钢材废品限值,保证率95%)
HPB235级: fyk = 235 N/mm2
HRB335级: fyk = 335 N/mm2
HRB400级、RRB400级: .fyk = 400 N/mm2
2.1 钢 筋
第二章 钢筋和混凝土的力学性能
HPB235级(Ⅰ级) 为热轧光面钢筋(Plain Bar),符号 ,多 作为现浇楼板的受力钢筋和箍筋。
HRB335级(Ⅱ级)和 HRB400级(Ⅲ级)为热轧带肋钢筋 (Ribbed Bar),符号 。钢筋强度较高,多作为钢筋混凝土构 件的受力钢筋,尺寸较大的构件,也有用Ⅱ级钢筋作箍筋的。 为增强与混凝土的粘结(Bond),外形制作成月牙肋或等高肋 的变形钢筋(Deformed Bar)。
消除应力钢丝、螺旋肋钢丝、刻痕钢丝
钢绞线
.
Es 2.1×105
2.0×105
2.05×105 1.95×105
2.1 钢筋
第二章 钢筋和混凝土的力学性能
◆无明显屈服点的钢筋(Steel bar without yield point)
fu
s0.2
a
0.2%
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性 a点后:应力-应变关系为非线性, 有一定塑性变形,且没有明显的屈 服点 强度设计指标——条件屈服点 残余应变为0.2%所对应的应力
有物理屈服点的钢筋,如热轧钢筋、冷拉钢筋;
无物理屈服点的钢筋,如钢丝、钢绞线及热处理钢筋。
. 2.1 钢筋
第二章 钢筋和混凝土的力学性能
二、钢筋的形式
▪ 普通钢筋(柔性钢筋)

第二章-钢筋混凝土材料的力学性能

第二章-钢筋混凝土材料的力学性能

第2章钢筋混凝土材料的力学性能知识点1. 钢筋的强度和变形, 钢筋的级别和品种, 混凝土结构对钢筋性能的要求;2. 单轴和复合受力状态下混凝土的强度;3. 混凝土在一次短期加荷以及重复荷载和长期荷载作用下的变形性能;4. 混凝土的弹性模量、混凝土的强度和强度等级;5. 钢筋和混凝土的粘结性能。

要点1. 混凝土材料的强度标准值与强度设计值二者的大小关系。

混凝土材料的强度标准值与强度设计值二者的大小关系为标准值大。

2. 有明显流幅的热轧钢筋屈服强度的依据。

有明显流幅的热轧钢筋屈服强度的依据是屈服下限。

3. 混凝土的徐变混凝土承受荷载不变, 而变形随时间增长的现象称为混凝土的徐变4. 混凝土的立方体抗压强度混凝土的立方强度是指按标准方法制作养护的边长为150mm的立方体试件, 在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。

5. 混凝土的轴心抗压强度混凝土的轴心强度是指按标准方法制作养护的边长为150 150 300mm的棱柱体作为标准试件, 试验所测得的具有95%保证率的抗压强度为轴心抗压强度。

6. 光圆钢筋与混凝土的粘结作用的组成光圆钢筋与混凝土的粘结作用由胶结力, 摩阻力, 咬合力三部分组成。

7. 钢筋混凝土结构对钢筋性能的要求有哪些。

钢筋混凝土结构对钢筋性能的要求有强度、塑性或变形能力、可焊性、温度要求及与混凝土的粘结力或称握裹力。

8. 混凝土在荷载作用下的应变包括哪些。

混凝土在荷载作用下的应变包括加载瞬间产生的瞬时应变, 和在长期荷载作用下的徐变。

9. 钢筋与混凝土这两种材料能结合在一起共同工作的原因。

钢筋与混凝土这两种材料能结合在一起共同工作, 其原因是二者之间具有相近的温度线膨胀系数和良好的粘结力。

10. 结构的极限状态分为哪两种。

结构的极限状态分为承载能力极限状态和正常使用极限状态。

钢筋混凝土材料的力学性能

钢筋混凝土材料的力学性能

第2章钢筋混凝土材料的力学性能2.1 钢筋2.1.2 钢筋的力学性能钢筋的主要力学性能包括强度和变形性能,可通过拉伸试验得到的应力-应变曲线来说明。

由此分为有屈服点的钢筋和无屈服点钢筋,即钢筋的应力-应变曲线有的有明显的流幅,如图2-5。

如热轧低碳钢和普通的热轧合金钢制成的钢筋。

有的则没有明显的流幅(图2-6),如光面钢丝等。

从图2-5的典型应力-应变曲线来看,应力值在A点以前,应力和应变按线性比例关系增长,A点对应的应力称为比例极限。

过了A点以后,应变比应力增长地快,到达Bˊ点以后,钢筋开始出现塑流,Bˊ称为屈服上限,它与加载速度、断面形式、试件表面光洁度等不确定因素有关,故Bˊ是不稳定的。

待从Bˊ降至B点(屈服下限)后,应力水平基本不变而应变急剧增加,图形接近水平线,直到C点。

B点到C点的水平部分称为为依据的。

过C点以后,应力又继续增长,钢筋的抗拉能力又开始发挥,随屈服台阶,BC大小称为流幅。

有明显流幅的热轧钢筋屈服强度是以屈服下限着曲线上升,到达最高点D,D对应的应力称为钢筋的极限强度,CD段称为钢筋的强化阶段。

过了D点以后,应变迅速增加,应力随之下降,在测试试件上体现为试件薄弱处的截面突然显著减小,发生局部径缩现象,变形迅速增加达到E点试件被拉断。

而图2-6中没有明显流幅的钢筋应力-应变关系曲线则没有前者的屈服台阶,而是直接到达强度极限,乃至破坏,具有脆性破坏的特点。

钢筋的一个强度代表值是标准值,标准值应具有不小于95%的保证率。

对构件计算配筋时,对于热轧钢筋的强度标准值是根据屈服强度确定,用fyk表示。

因为构件中的钢筋应力达到屈服点后,将产生很大的塑性变形,使钢筋混凝土构件出现很大变形和不可闭合的裂缝,以至不能使用。

对预应力钢绞线、钢丝和热处理钢筋等没有明显屈服点的钢筋强度标准值是根据国家标准极限抗拉强度ζb 确定的,采用钢筋应力为0.85ζb的点作为条件屈服点。

普通钢筋的强度标准值见后面的附表6。

混凝土结构设计原理课件第二章

混凝土结构设计原理课件第二章

3)轴心抗拉强度
混凝土的轴心抗拉强度可以采用直接轴心受拉的试 验方法来测定,但由于试验比较困难,目前国内外主要 采用圆柱体或立方体的劈裂试验来间接测试混凝土的轴 心抗拉强度。
F

a
2020/2/20


F
劈裂试验
f sp

2F
a2
6 2.1 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
压强度fc时,试验机中集聚的弹性应变能大于试件所能吸收的
应变能,会导致试件产生突然脆性破坏,只能测得应力-应变 曲线的上升段。
采用等应变速度加载,或在试件旁附设高弹性元件与试件 一同受压,以吸收试验机内集聚的应变能,可以测得应力-应 变曲线的下降段。
2020/2/20
8 2.1 混凝土的物理力学性能
上。e ×10-3
6
8
10 2.21 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
强度等级越高,线弹性段 越长,峰值应变也有所增 大。但高强混凝土中,砂 浆与骨料的粘结很强,密 实性好,微裂缝很少,最 后的破坏往往是骨料破坏, 破坏时脆性越显著,下降 段越陡。
不同强度混凝土的应力-应变关系曲线
式中: k1为棱柱体强度与立方体强度之比,对不大
于C50级的混凝土取76,对C80取0.82,其间按线性
插值。k2为高强混凝土的脆性折减系数,对C40取1.0,
对C80取0.87,中间按直线规律变化取值。0.88为考虑 实际构件与试件混凝土强度之间的差异而取用的折减系 数。
2020/2/20
5 2.1 混凝土的物理力学性能
考虑到实际结构构件制作、养护和受力情况,实际 构件强度与试件强度之间存在差异,《规范》基于安全 取偏低值,规定轴心抗压强度标准值和立方体抗压强度 标准值的换算关系为:

钢筋混凝土材料力学性能


砼结构对钢筋质量要求 适当强度:屈服和极限强度,屈服强度是计算主要依据; 可焊性好:要求钢筋焊接后不产生裂纹及过大变形;
足够塑性:以伸长率和冷弯性能为主要指标,即要求钢筋断裂前有足够变形,在钢筋混凝土结构 中,能给出构件将要破坏的预告信号,同时保证钢筋冷弯要求。一般而言强度高的钢筋塑性和可 焊性就差些;
1 混凝土立方体抗压强度的定义和强度等级 砼立方体强度的定义:立方体试件的强度比较稳定,我国把立方体强度值作为混 凝土强度的基本指标,并把立方体抗压强度作为评定混凝土强度等级的标准。我国《规 范》规定:,用ƒ表示,单位2。
换句话:混凝土强度等级应按立方体强度标准值确定。
立方体抗压强度标准值(ƒ) 两重含义: 1、采用边长为150㎜的立方体试块,在标准条件(温度为17~23℃,湿度在90%以上) 下养护28d,按照标准的试验方法加压到破坏测得的立方体抗压强度。
1 钢筋强度指标 (1)软钢:屈服强度、极限强度
当某截面钢筋应力达到屈服强度后,试件将在荷载基本不增加情况下产生持续塑性变形,构件 可能在钢筋尚未进入强化阶段之前就已破坏或产生过大的变形与裂缝。因此,钢筋的屈服强度是钢 筋关键性强度指标;此外,钢筋的屈强比(屈服强度与极限强度之比)表示结构可靠性潜力。在抗 震结构中,考虑受拉钢筋可能进入强化阶段,要求其屈强比≤0.8,因而钢筋极限强度是检验钢筋质 量的另一强度指标。
近年来,我国强度高,性能好的预应力钢筋已可充分供应,冷加工钢筋不再列入规范。

1.1.2 钢筋品种、级别和分类
推广具有较好延性、可焊性、机械连接性能及施工适应性的系列普通热轧带肋钢筋。列入采 用控温轧制工艺生产的系列细晶粒带肋钢筋。
系列余热处理钢筋由轧制钢筋经高温淬水,余热处理后提高强度。而其它性能则相应降低, 一般可用于对变形性能及加工性能要求不高的构件中,如基础、大体积混凝土、楼板、墙体及 次要的中小结构构件中。

第2章混凝土结构材料的物理力学性能

钢筋的断后伸长率(伸长率)是指钢筋拉断后的伸长 值与原长的比称为钢筋的断后伸长率(习惯上称为伸 长率)
第 二 章
目录 上一章
下一章
HELP
l l0 100% l0
混凝土结构设计原理
伸长率
l l
1

5 10 : 100 :
l1 l 100% l : l 5d l 10d l 100mm
第 二 章
目录 上一章
低 碳:C<0.25%
含碳万分数 中 碳:C=0.25 ~ 0.6% 高 碳:C>0.6%
下一章
HELP
含锰、硅、钒的百分数,取整。
混凝土结构设计原理
本章重点 了解并掌握土木工程用钢筋的品种、级别、 性能、强度指标及其选用原则; 掌握钢筋混凝土结构中混凝土的强度指标, 重点掌握混凝土的立方体抗压强度指标; 掌握钢筋混凝土结构中钢筋和混凝土的应力 -应变曲线关系; 掌握混凝土在长期荷载作用下随时间增长而 增长的变形—徐变; 掌握混凝土的变形模量,混凝土的收缩变形 以及钢筋和混凝土之间粘结应力的组成。
为了使钢筋冷拉时效后, 既能显著提高强度,又使 钢材具有一定的塑形,应 合理选择张拉控制点K’,K’ 点相对应的应力称为冷拉 控制应力,K点相对应的应 变称为冷拉率。冷拉工艺 分为控制应力和控制应变 (冷拉率)两种方法。
下一章
HELP
混凝土结构设计原理
钢筋的冷弯性能
钢筋的冷弯性能是检验钢筋韧性、内部质量和加工可 适性的有效方法。冷弯性能也是评价钢筋塑性的指标, 弯芯的直径 越小,弯折角 越大,说明钢筋的塑性越好。 冷弯是检验钢筋局部变形能力的指标。 钢筋塑性愈好,构件破坏前预兆愈明显。
下一章

第二章钢筋和混凝土的力学性能

第二章钢筋和混凝土的力学性能主要内容:2.1 钢筋的力学性能2.2 混凝土的力学性能2.3 钢筋与混凝土之间的粘结作用重难点:钢筋的种类及力学指标;混凝土的力学指标及力学性能;钢筋与混凝土共同工作的原理2.1 钢筋的力学性能一、钢筋的品种 (Reinforcement types)表面形状:光圆钢筋、带肋钢筋化学成份:碳素钢(低碳钢)普通低合金钢供货方式:直条式(d≥10mm)——6、9、12m盘圆式生产工艺和强度:热轧钢筋、中高强钢丝、钢绞线、冷加工钢筋。

普通混凝土结构中采用较多的是热轧钢筋。

力学性能不同:软钢——有明显屈服台阶的钢筋(热轧钢筋、冷拉钢筋)硬钢——无明显屈服台阶的钢筋(钢丝、热处理钢筋)1、热轧钢筋(Hot Rolled Steel Reinforcing Bar)HPB300级、HRB335级、HRB400级、HRB500级屈服强度 fyk(标准值)HPB300: fyk = 300 N/mm2HRB400: fyk = 400 N/mm2HPB300钢筋(Ⅰ级)多为光面钢筋,多作为现浇楼板的受力钢筋和各种构件中的箍筋。

HRB335 (Ⅱ级) 、HRB400(RRB400)(Ⅲ级) 强度较高,为表面带肋的钢筋,多作为钢筋混凝土构件的受力钢筋。

2、钢丝 (Wire):中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线的强度为 1470 ~1860MPa;钢丝的直径3~9mm;外形有光面、刻痕和螺旋肋三种,另有二股、三股和七股钢绞线,外接圆直径9.5~15.2 mm。

中高强钢丝和钢绞线均用于预应力混凝土结构。

3、冷加工钢筋 Cold working rebar:是由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭加工后而成。

冷加工的目的是为了提高钢筋的强度,节约钢材。

但经冷加工后,钢筋的延伸率降低。

近年来,冷加工钢筋的品种很多,应根据专门规程使用。

4、热处理钢筋 Heat treatment :是将Ⅳ级钢筋通过加热、淬火和回火等调质工艺处理,使强度得到较大幅度的提高,而延伸率降低不多。

混泥土第2章

第2章混凝土结构材料的 物理力学性能
2.1 混凝土的物理力学性能
2.1.1 单轴向应力状态下的混凝土强度
虽然实际工程中的混凝土结构和构件一般处 于复合应力状态,但是单轴向受力状态下混凝土 的强度是复合应力状态下强度的基础和重要参数。 混凝土试件的大小和形状、试验方法和加载 速率都影响混凝土强度的试验结果,因此各国对 各种单轴向受力下的混凝土强度都规定了统一的 标准试验方法。
2)德国Rüsch建议的模型
图2-12 Rüsch建议的应力-应变曲线
2 0 , fc 2 0 0 0 cu , f c
(3)混凝土轴向受拉时的应力-应变关系
图2-13 不同强度的混凝土拉伸应力-应变全曲线
1 描述完全弹塑性的双直线模型
双直线模型适用于流幅较长的低强度钢材。
s y , s Es s
y s s ,h , s f y
fy Es y
2 描述完全弹塑性加硬化的三折线模型 三折线模型适用于流幅较短的软钢,要求它可以描述屈 服后立即发生应变硬化(应力强化),并能正确地估计高出屈服 应变后的应力。
图2-9 混凝土棱柱体受压应力-应变曲线
图2-10 不同强度的混凝土的应力-应变曲线比较 混凝土应力-应变曲线的形状和特征是混凝土内部结构发生变化的力学标志。 随着混凝土强度的提高,尽管上升段和峰值应变的变 化不很显著,但是下降段的形状有较大的差异,混凝土强 度越高,下降段的坡度越陡,即应力下降相同幅度时变形 越小,延性越差。
2.1.2 复合应力状态下混凝土的强度
1 双向应力状态
混凝土结构构件实际上大多处 于复合应力状态,例如框架梁要承 受弯矩和剪力的作用;框架柱除了 承受弯矩和剪力外还要承受轴向力; 框架节点区混凝土的受力状态就更 复杂。同时,研究复合应力状态下 混凝土的强度,对于认识混凝土的 强度理论也有重要的意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 钢筋的冷加工和热处理
温度的影响:温度达700ºC时恢复到冷拉前的 状态,先焊后拉
3、钢筋的冷加工和热处理 冷拔:用强力把光圆钢筋通过比其直径稍小的硬质合金模上的锥形拔丝孔,使其产生塑 性变形,横截面减小,长度增大。
经过冷拔后钢筋没有明显的屈服点和流幅
冷拔既能提高抗拉强度又能提高抗压强度
3、 钢筋的冷加工和热处理
1)强度:要求钢筋有足够的强度和适宜的强屈比(极限强度与屈服强度的比值)。例 如,对抗震等级为一、二级的框架结构,其纵向受力钢筋的实际强屈比不应小于1.25。
2)塑性:要求钢筋应有足够的变形能力。 3)可焊性:要求钢筋焊接后不产生裂缝和过大的变形,焊接接头性能良好。 4)与混凝土的粘结力:要求钢筋与混凝土之间有足够的粘结力,以保证两者共同工 作。
2 钢筋和混凝土的材料性能 热轧钢筋 Hot Rolled Steel Reinforcing Bar HPB235级、HRB335级、HRB400级、RRB400级
HPB
Bar Plain Hot rolled
Байду номын сангаас
HRB
Bar Ribbed Hot rolled
RRB
Bar
Ribbed
Remained Heat Treatment
2.5 钢筋的蠕变、松弛和疲劳
蠕变
应力不变,随时间的增长应变继续增加
松弛
长度不变,随时间的增长应力降低
对结构,尤其是 预应力结构,产 生不利的影响, 需采取必要的措 施
延 伸 率:钢筋拉断后的伸长值与原长的比率,是反映钢筋塑性性能的指标。延伸率大的钢筋,在拉断 前有足够预兆,延性较好。
5
or
10
l
l0 l0
屈 强 比:反映钢筋的强度储备,要求极限抗拉强度与屈服强度比值不低于1.25。
冷弯性能:检验钢筋塑性的另一种方法。将直径为d的钢筋绕直径为D的钢辊弯 成一定的角度α而不发生裂纹、起层或断裂 。参见教材11页图2.7
2 钢筋和混凝土的材料性能 (2)冷加工钢筋 Cold working rebar:在常温下,由热轧钢筋经冷拉、冷拔、冷轧、冷扭加工后而成。 冷加工的目的是为了提高钢筋的强度,节约钢材。但经冷加工后,钢筋的延伸率降低。近年来,冷加 工钢筋的品种很多,应根据专门规程使用。
(3)热处理钢筋 Heat treatment :是将中碳低合金带肋钢筋通过加热、淬火和回火等调质 工艺处理,使强度得到较大幅度的提高,而延伸率降低不多。用于预应力混凝土结构。
(4)钢丝 Wire:中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线(Strand or Tendon)的为 1470 ~1860MPa;钢丝的直径3~9mm;外形有光面、刻痕和螺旋肋三种,另有二股、三股 和七股钢绞线,外接圆直径9.5~15.2 mm。中高强钢丝和钢绞线均用于预应力混凝土结构。
2、无明显屈服点的钢筋
fu
b
s0.2
a
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性 a点后:应力-应变关系为非线性,有一定塑性变形,且 没有明显的屈服点 强度设计指标——条件屈服点 残余应变为0.2%所对应的应力 《规范》取s0.2 =0.85 fu
0.2%
3、 混凝土结构对钢筋性能的要求
2 钢筋和混凝土的材料性能
2、钢筋的品种(Reinforcement types) 热轧钢筋、钢丝和钢绞线、热处理钢筋和冷加工钢筋。
(1)热轧钢筋:由低碳钢、普通低合金钢在高温状态下扎制而成。根据力学指标的高低,分为热轧光面 钢筋HPB235、热轧带肋钢筋HRB335、热轧带肋钢筋HRB400、余热处理钢筋RRB400 。
热处理
对特定钢号的钢筋进行淬火和回火处理
将钢材加热至723℃以上某一温度,并保持一定时间后,迅速置于水中或机油中冷却,这个过程称钢 材的淬火处理。钢材经淬火后,强度和硬度提高,脆性增大,塑性和韧性明显降低。
将淬火后的钢材重新加热到723℃以下某一温度范围、保温一定时间后再缓慢地或较快地冷却至室 温,这一过程称为回火处理。回火可消除钢材淬火时产生的内应力,使其硬度降低,恢复塑性和韧 性。按回火温度不同,又可分为高温回火(500~650℃)、中温回火(300~500℃)和低温回火 (150~300℃)种。回火温度愈高,钢材硬度下降愈多,塑性和韧性恢复愈好,若钢材淬火后随 即进行高温回火处理,则称调质处理,其目的是使钢材的强度、塑性、韧性等性能均得以改善。
第二章-钢筋混凝土材料力学性能
2.1 钢筋的形式和品种
1、依据化学成分分类 碳素钢(铁、碳、硅、锰、 硫、磷等元素)
普通低合金钢(另加硅、锰、 钛、钒、铬等)
钢筋的力学性能主要取决于它的 化学成分
低碳钢(含碳量<0.25%)
中碳钢(含碳量0.25~0.6%)
高碳钢(含碳量0.6~1.4%) 锰系 硅钒系 硅钛系 硅锰系 硅铬系
2.2 钢筋的力学性能 1.有明显流幅(屈服点)钢筋的应力-应变曲线
s fu
b fy a
a’ c d
e f
标 距 5-10d
e
a´为比例极限 oa为弹性阶段 b为屈服上限 c为屈服下限,即屈服强度 fy cd为屈服台阶 de为强化阶段 e为极限抗拉强度 fu
ef为颈缩阶段
几个指标:
屈服强度是钢筋强度的设计依据,因为钢筋屈服后将发生很大的塑性变形,且卸载时这部分变形不可恢 复,这会使钢筋混凝土构件产生很大的变形和不可闭合的裂缝。屈服上限与加载速度有关,不太稳定, 一般取屈服下限作为屈服强度。
余热处理钢筋: 热轧后立即穿水,进行表面控制冷却,然后利用芯部 余热自身完成回火处理所得的成品钢筋.
HPB235级(Ⅰ级)钢筋多为光面钢筋(Plain Bar),多作为现浇楼板的受力钢筋和箍筋 HRB335级(Ⅱ级)和 HRB400级(Ⅲ级)钢筋强度较高,多作为钢筋混凝土构件的受力钢筋,尺寸较 大的构件,也有用Ⅱ级钢筋作箍筋,为了增强与混凝土的粘结(Bond),外形制作成月牙肋或等 高肋的变形钢筋(Deformed Bar)。 余热处理钢筋的焊接性能与热轧钢筋相比,有一定的差异,延性和强屈比稍低。在工程应用中,与 热轧钢筋的使用范围存在实际的差异(适用于一般结构及抗震等级为三、四的抗震结构 )。
相关文档
最新文档