烧结钕铁硼磁体可使用的最高温度是多少
烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准磁学名词关于钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1T=10000Gs将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。
它表示磁体所能提供的最大的磁通值。
从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。
钕铁硼的剩磁一般是11500高斯以上。
磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m) 1A/m=磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。
但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。
(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。
钕铁硼的矫顽力一般是10000Oe以上。
内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m)使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。
内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。
在磁体使用中,磁体矫顽力越高,温度稳定性越好。
磁能积((BH)max ) 单位为兆高·奥(MGOe)或焦/米3(J/m3)退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。
磁能积是恒量磁体所储存能量大小的重要参数之一。
在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。
·各向同性磁体:任何方向磁性能都相同的磁体。
·各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。
烧结钕铁硼永磁体是各向异性磁体。
·取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。
也称作"取向轴","易磁化轴"。
烧结钕铁硼磁体可使用的最高温度是多少

烧结钕铁硼磁体可使用的最高温度是多少?磁铁最高使用温度取决于磁体本身的磁性能和工作点的选取。
磁体所处工作点可用磁体的导磁系数来表示。
对同一磁体而言,磁路的导磁系数愈高(即磁路愈闭合),磁铁的最高使用温度就愈高,磁铁的性能就愈稳定。
所以磁铁的最高使用温度并不是一个确定的值,而是随着磁路的闭合程度而变化。
烧结钕铁硼在给定工作点的前提下,各牌号的最高使用温度如下:如果实际工作温度接近于最高使用温度,而磁体出现了较大幅度的退磁,此时要么必须改进磁路,以提高磁路的磁导系数;要么必须选择更高牌号的性能档次,从而保证磁体的正常工作。
一、钕铁硼磁铁有哪些应用?钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。
其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。
二、钕铁硼由那些材料组成?钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。
钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。
但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。
只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。
三、钕铁硼的磁性能可以持续多久?钕铁硼磁铁拥有相当高的矫顽力,自然环境和一般磁场条件下不会出现退磁和磁性变化。
假设环境适当,即使经过长时间的使用,磁体的磁性能损失也不会很大。
所以在实际应用中,我们往往忽略时间因素对磁性能的影响。
四关于取向方向取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。
磁铁分为:1、各向同性磁体:任何方向磁性能都相同的磁体2、各向异性磁体:不同方向上磁性能会有不同;且存在一个方向即取向方向,在该方向取向时所得磁性能最高的磁体。
烧结钕铁硼主要性能参数

烧结钕铁硼主要性能参数1. 磁能产品(BH)max:磁能产品是衡量永磁材料磁性能的指标之一,代表了单位体积内储存的能量,也是磁体吸收和输出磁场能力的重要参数。
烧结钕铁硼具有较高的磁能产品,一般在15-35 MGOe之间。
2.矫顽力(Hc):矫顽力是永磁材料抵抗磁化反转的能力,同时也是永磁材料的磁性能参数之一、烧结钕铁硼的矫顽力较高,通常在1000-3000Oe之间,甚至高达4000Oe以上。
3.重量比(3-5倍):相比于其他永磁材料,烧结钕铁硼具有较高的重量比,也就是单位体积内的磁性能较高。
4.热稳定性:烧结钕铁硼具有优良的耐高温性能,其工作温度可达到250-350℃,甚至更高。
这使得烧结钕铁硼在一些高温环境下的应用成为可能。
5.抗腐蚀性:烧结钕铁硼具有较好的抗腐蚀性能,能够在一些恶劣的环境中长期保持稳定的磁性能和物理化学性能。
6.高磁化度:烧结钕铁硼具有较高的磁化度,即使在较低的磁场下,仍然能够保持强磁性能。
7.低温系数:烧结钕铁硼具有较低的温度系数,即在温度变化时,其磁性能的变化很小。
这使得烧结钕铁硼在一些特殊的低温环境中仍可以保持良好的性能。
8.高矫顽力温度系数:烧结钕铁硼具有较高的矫顽力温度系数,即在温度升高时,其矫顽力的降低程度较小。
这使得烧结钕铁硼在高温环境下具有较好的抗磁场衰减能力。
总结而言,烧结钕铁硼是一种具有优良磁性能和高温稳定性的稀土永磁材料。
其磁能产品高,矫顽力较大,重量比较高,具有较好的抗腐蚀性能和磁化度。
此外,烧结钕铁硼还具有较低的温度系数和较高的矫顽力温度系数,使其在不同温度和环境下都能够稳定工作。
因此,烧结钕铁硼广泛应用于电子、机械、航空航天等领域中的磁性设备和磁性传感器等产品中。
钕铁硼基本信息介绍

钕铁硼介绍:诞生于八十年代初的第三代稀土永磁材料--钕铁硼,是当今世界上磁性最强的永磁材料,可分为烧结钕铁硼磁性材料和粘结钕铁硼磁性材料。
与烧结钕铁硼磁性材料相比,粘结钕铁硼磁性材料具有一次成形,多极取向的特点;主要应用于微电机上。
钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。
其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。
钕铁硼磁铁容易生锈、氧化,所以对钕铁硼磁铁,其表面通常需作电镀处理,如镀锌、镍、银、金等,也可以做磷化处理或喷环氧树脂来减慢其氧化速度。
钕铁硼的其他物理特性:Br 温度系数-0.11%/°C密度7.4g/cm3韦氏温度600Hv拉伸温度8.0kg/mm2比热0.12k Cak(kg°C)弹性模量 1.6x1011N/m2横向变形系数0.24居里温度310-340°C电阻率144Ω.cm挠曲强度25kg/mm2热膨胀系数4x10-6/°C导热系数7.7cal/m.h.°C刚度0.64N/m2压缩率9.8x10-12m2/NiHc温度系数-0.60%/°C表面处理:镀锌、镍、锡、金、银、磷化处理、环氧树脂喷涂特性:钕铁硼永磁材料是以金属间化合物Nd2Fe14B为基础的永磁材料。
钕铁硼具有极高的磁能积和矫力,同时高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。
材质特点:钕铁硼的优点是性价比高,具良好的机械特性;不足之处在于居里温度点低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。
制造工艺:钕铁硼的制造采用粉末冶金工艺。
工艺流程:配料→ 熔炼制锭→ 制粉→ 压型→ 烧结回火→ 磁性检测→ 磨加工→ 销切加工→ 电镀→ 成品。
钕铁硼标准

钕铁硼标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。
在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。
对原标准的技术内容进行了必要的补充和修改。
本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。
本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。
2.对原标准中“术语、符号、单位”修改为“术语与定义”。
由于引用GB/T 9637—1988《磁学基本术语和定义》,取消了原来的磁学术语定义。
采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。
3.修改并增加了材料的牌号。
4.对附录A 的机械物理性能范围值修订为典型值。
5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。
本标准自实施之日起代替GB/T 13560一1992。
本标准的附录A、附录B、附录C 均为提示的附录。
本标准由国家发展计划委员会稀土办公室提出。
本标准由全国稀土标准化技术委员会归口。
本标准由包头稀土研究院负责起草。
本标准主要起草人:刘国征、马婕、王标、李泽军。
1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。
本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。
本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。
烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准本标准是以GB/T 1.3 一1997《标准化工作导则第l 单元:标准的起草与表述规则第3 部分:产品标准编写规定》为原则,对GB/T 13560 一1992《烧结钕铁硼永磁材料》的修订。
在修订本标准时,依据国内生产厂家的产品情况及用户对产品的要求,参考了IEC404-8-1(1986)及其补充2(1992)《磁性材料第8部分:特殊材料规范第一节硬磁材料标准规范》和国内外有关企业标准。
对原标准的技术内容进行了必要的补充和修改。
本标准参考了IEC 标准的永磁材料分类,钕铁硼合金的小类分类代号为R7。
本标准与GB/T 13560 一1992 的主要技术差异如下:1.在“引用标准”项中增加了标准GB/T 8170-1987《数值修约规则》、GB/T 9637-1988 《磁学基本术语和定义》和GB/T 17803一1999《稀土产品牌号表示方法》。
2.对原标准中“术语、符号、单位”修改为“术语与定义”。
由于引用GB/T 9637—1988 《磁学基本术语和定义》,取消了原来的磁学术语定义。
采用了IEC 404-8-l(1986)对永磁材料的磁性能划分为主要磁性能和辅助磁性能的方法,并对这两个术语分别进行了定义。
3.修改并增加了材料的牌号。
4.对附录A 的机械物理性能范围值修订为典型值。
5.新增加了附录C“钕铁硼永磁材料的主要成分、制造工艺及应用”内容。
本标准自实施之日起代替GB/T 13560一1992。
本标准的附录A、附录B、附录C 均为提示的附录。
本标准由国家发展计划委员会稀土办公室提出。
本标准由全国稀土标准化技术委员会归口。
本标准由包头稀土研究院负责起草。
本标准主要起草人:刘国征、马婕、王标、李泽军。
1 范围本标准规定了烧结钕铁硼永磁材料的主要磁性能、试验方法、检验规则和标志、包装、运输、贮存。
本标准同时给出了主要机械性能和辅助磁性能等其他物理性能的典型值。
本标准适用于粉末冶金工艺生产的烧结钕铁硼永磁材料。
烧结钕铁硼居里温度

烧结钕铁硼居里温度烧结钕铁硼(NdFeB)是一种重要的稀土永磁材料,具有高磁能积、高矫顽力和高磁能积等优良磁性能。
而烧结钕铁硼的居里温度是衡量其磁性的重要参数之一。
居里温度,也称为居里点,是指材料在此温度以下会发生铁磁-顺磁相变的临界温度。
在居里温度以下,材料会表现出强磁性,而在居里温度以上,材料会失去磁性,变为顺磁性。
烧结钕铁硼的居里温度通常在310℃到400℃之间。
具体数值取决于材料的配方和烧结工艺等因素。
居里温度越高,材料的磁性就越强,而居里温度越低,材料的磁性就越弱。
烧结钕铁硼的居里温度主要受到两方面因素的影响:钕的含量和晶粒尺寸。
钕的含量越高,居里温度也会相应提高。
晶粒尺寸较小的烧结钕铁硼材料,由于其内部磁畴的界面更多,居里温度也会相对较低。
烧结钕铁硼的居里温度对其在实际应用中的温度稳定性和磁性能起着重要的影响。
在高温环境下,如果超过了烧结钕铁硼的居里温度,材料的磁性将会丧失,影响其使用效果。
因此,在设计和应用烧结钕铁硼永磁材料时,需要考虑其居里温度,并在合适的温度范围内使用,以确保其磁性能的稳定性和可靠性。
为了提高烧结钕铁硼的居里温度,可以采取一些措施。
例如,调整材料的化学成分,增加钕的含量,或者添加其他元素来稳定材料的磁性能。
此外,还可以通过优化烧结工艺,控制晶粒尺寸,以提高材料的居里温度。
烧结钕铁硼的居里温度是衡量其磁性能的重要指标之一。
了解和掌握烧结钕铁硼的居里温度,对于合理设计和应用磁性材料具有重要意义。
通过调整材料的化学成分和优化烧结工艺等方法,可以提高烧结钕铁硼的居里温度,以满足不同应用领域对材料磁性能的需求。
钕铁硼单室真空烧结炉

钕铁硼单室真空烧结炉
钕铁硼单室真空烧结炉是一种用于制备钕铁硼永磁材料的专用设备。
钕铁硼永磁材料是一种具有极高磁能积和良好磁性的材料,广泛应用于电子、电机、磁体等领域。
该炉采用单室结构,即在一个密封的腔体内进行烧结过程。
这种结构设计的优点是热量传递效果好、温度均匀性高,能够保证烧结过程中材料的质量稳定性。
真空烧结是指在高温下将粉末材料进行烧结的过程,并在真空或惰性气氛下进行。
钕铁硼永磁材料的烧结温度通常在1000℃以上,因此需要在真空环境下进行,以避免材料在高温下的氧化和烧损。
在烧结炉内,钕铁硼粉末被放置在石墨容器中,并通过加热源进行加热。
石墨容器具有良好的热传导性能,能够将热量均匀传递给粉末材料。
在烧结过程中,钕铁硼粉末逐渐熔结并形成致密的永磁材料。
为了保持烧结过程中的真空度,烧结炉配备了真空泵和真空计。
真空泵能够将炉内的气体抽出,保持炉内的真空环境。
真空计用于监测炉内的真空度,确保烧结过程的稳定性。
为了提高烧结效率和材料的质量,烧结炉还可以通过控制升温速率、保温时间和降温速率等参数来进行优化。
合理的烧结曲线能够使钕
铁硼材料达到最佳的致密度和磁性能。
钕铁硼单室真空烧结炉的应用不仅限于钕铁硼永磁材料的制备,还可以用于其他粉末材料的烧结过程。
由于其具有高温、真空和均匀加热等特点,可以满足不同材料的烧结需求。
钕铁硼单室真空烧结炉是一种高效、稳定的烧结设备,适用于钕铁硼永磁材料的制备。
通过控制烧结参数和优化烧结曲线,可以获得具有优异磁性能的钕铁硼材料,为电子、电机等领域的应用提供强大的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烧结钕铁硼磁体可使用的最高温度是多少?磁铁最高使用温度取决于磁体本身的磁性能和工作点的选取。
磁体所处工作点可用磁体的导磁系数来表示。
对同一磁体而言,磁路的导磁系数愈高(即磁路愈闭合),磁铁的最高使用温度就愈高,磁铁的性能就愈稳定。
所以磁铁的最高使用温度并不是一个确定的值,而是随着磁路的闭合程度而变化。
烧结钕铁硼在给定工作点的前提下,各牌号的最高使用温度如下:
牌号N
最高工作xx
80
度℃M
100H
120SH
150UH
180EH200如果实际工作温度接近于最高使用温度,而磁体出现了较大幅度的退磁,此时要么必须改进磁路,以提高磁路的磁导系数;要么必须选择更高牌号的性能档次,从而保证磁体的正常工作。
一、钕铁硼磁铁有哪些应用?
钕铁硼永磁体以其优异的性能、丰富的原料、合理的价格正得以迅猛的发展和广泛的应用。
其主要应用在微特电机、永磁仪表、电子工业、汽车工业、石油化工、核磁共振装置、传感器,音响器材、磁悬浮系统、磁性传动机构和磁疗设备等方面。
二、钕铁硼由那些材料组成?
钕铁硼永磁铁的主要原材料有稀土金属钕(Nd)32%、金属元素铁(Fe)64%和非金属元素硼(B)1%(少量添加镝(Dy)、铽(Tb)、钴(Co)、铌(Nb)、镓(Ga)、铝(Al)、铜(Cu)等元素)。
钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分
应与化合物Nd2Fe14B分子式相近。
但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁。
只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时才能获得较好的永磁性能。
三、钕铁硼的磁性能可以持续多久?
钕铁硼磁铁拥有相当高的矫顽力,自然环境和一般磁场条件下不会出现退磁和磁性变化。
假设环境适当,即使经过长时间的使用,磁体的磁性能损失也不会很大。
所以在实际应用中,我们往往忽略时间因素对磁性能的影响。
四关于取向方向
取向方向:
各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。
磁铁分为:
1、"各向同性磁体:
任何方向磁性能都相同的磁体
2、各向异性磁体:
不同方向上磁性能会有不同;且存在一个方向即取向方向,在该方向取向时所得磁性能最高的磁体。
烧结钕铁硼永磁体是各向异性磁体,因而在生产前需要确定取向方向(充磁方向)。
五影响钕铁硼磁铁磁力的因素?
环境温度,由于烧结钕铁硼对工作温度极为敏感,环境的瞬间最高温度和持续最高温度都可能会对磁体产生不同程度的退磁,包括可逆的和不可逆的、可恢复的和不可恢复的。
六钕铁硼磁铁的工作温度范围是怎样的?
钕铁硼磁铁的温度限制引发了一系列等级的磁铁的研发以适应不同的工作温度要求,请参考我们的性能目录比较各等级磁铁工作温度范围。
在选择钕铁硼磁铁之前需要确认最大工作温度。