小学数学应用题常考类型,就这几个知识点!

合集下载

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。

一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

小学应用题分类知识点汇总

小学应用题分类知识点汇总

小学应用题分类知识点汇总一、折扣问题。

1.折扣的意义:折扣又叫打折。

2.几折转化的2种方式:(1)转为小数形式:几折就写成零点几。

例如:七折=0.7,八五折=0.85(2)转为百分数形式:①几折写成百分之几十。

例如:七折=70%,②几几折写成百分之几十几。

例如:八五折=85%3.折扣问题的解题思路:折扣问题中先把折扣数写成小数或百分数的形式,再根据百分数或小数的解题方法来解决问题。

例题(1)一个书包原价100元,现在打八折出售是(80)元,便宜了(20)元。

答案:100×0.8=80(元) 100-80=20(元)例题(2)一个书包先在原价的基础上降价20%,再提价20%,最后是相等于按照原价的(九六)折出售,相对原价是(降低)。

答案:最后售价=原价×(1+20%)(1-20%)=原价×0.96(就是原价的九六折)例题(3)一个书包先在原价的基础上提价20%,再降价20%,最后是相等于按照原价的(九六)折出售,相对原价是(降低)。

答案:最后售价=原价×(1-20%)(1+20%)=原价×0.96(就是原价的九六折)对比例题2和例题3发下都是降低的。

二. 成数问题。

1. 成数的意义:成数又叫做几成。

2. 成数的2种转化形式:(1)转为为小数形式:几成就是零点几。

例如:五成=0.5;七成=0.7(2)转为分数形式:几成就是十分之几。

例如:六成=3.成数问题的解题思路:成数问题中先把成数写成小数或分数的形式,再根据分数或小数的解题方法来解决问题。

三、本金、利率、利息问题。

1.本金的定义:存入银行的钱就是本金。

2.利率的定义:利息除以本金的商就是利率。

利率分为年利率、月利率。

3.利息定义:取出银行存款时,银行支付多出本金那部分的钱就是利息。

4.利息计算公式:利息=本金×利率×时间5.可取出银行全部存款=本金+利息=本金×(1+利率×时间)四、行程问题。

小学数学常考的12种应用题+详解

小学数学常考的12种应用题+详解

小学数学常考的12种应用题+详解1归一问题应用题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买16支同样的铅笔,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

2倍比问题应用题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1100千克油菜籽可以榨油40千克,现在有油菜将3700千克,可以榨油多少?解:(1)3700千克是100千克的多少倍?3700÷100=37(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(干克)答:可以榨油1480千克。

小学数学基本概念和常遇应用题类型

小学数学基本概念和常遇应用题类型

小学数学基本概念和常遇应用题类型自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。

整数:自然数都是整数,整数不都是自然数。

小数:小数是特殊形式的分数。

但是不能说小数就是分数。

混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。

纯小数:小数的整数部分为零的小数,叫做纯小数。

循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

例如:0.333……,1.2470470470……都是循环小数。

纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。

混循环小数:与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。

有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。

无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。

循环小数都是无限小数,无限小数不一定都是循环小数。

例如,圆周率π也是无限小数。

分数:表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。

真分数:分子比分母小的分数叫真分数。

假分数:分子比分母大,或者分子等于分母的分数叫做假分数。

带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。

带分数也是假分数的另一种表示形式,相互之间可以互化。

数与数字的区别:数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。

其他还有中国小写数字,大写数字,罗马数字等等。

数是由数字和数位组成。

0的意义:0既可以表示“没有”,也可以作为某些数量的界限。

如温度等。

0是一个完全有确定意义的数。

0是一个最小的自然数。

0是一个偶数。

0是任何自然数(0除外)的倍数。

0有占位的作用。

0不能作除数。

十进制:十进制计数法是世界各国常用的一种记数方法。

特点是相邻两个单位之间的进率都是十。

10个较低的单位等于1个相邻的较高单位。

常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。

三年级上册数学常考应用题七大题型

三年级上册数学常考应用题七大题型

三年级上册数学常考应用题七大题型
以下是三年级上册数学常考的七大题型:
1. 平均数问题:平均数问题是要求平均数,这需要先求和然后再除以数量。

例如,小明有5个苹果,小红有3个苹果,他们平均每人有多少个苹果?
2. 归一问题:这类问题通常涉及到数量和单位的关系。

例如,一个苹果2元,那么5个苹果多少元?
3. 倍数问题:这类问题涉及到比较两个数量的关系,通常要找出它们的倍数关系。

例如,小红有3本书,小明的书是小红的2倍,小明有多少本书?
4. 分数问题:这类问题涉及到分数和小数的转换,以及分数的加、减、乘、除等运算。

例如,将分数3/4转换为小数是多少?
5. 和差问题:这类问题涉及到两个数量的和与差的关系。

例如,小明和小强共有10本书,小明比小强多2本书,小明和小强各有多少本书?
6. 几何图形问题:这类问题涉及到图形的周长、面积、体积等计算。

例如,求一个长方形周长的计算公式是什么?
7. 排列组合问题:这类问题涉及到组合数学的知识,涉及到排列和组合的计算。

例如,从5个人中选3个人出来排成一排,有多少种不同的排法?
以上是三年级上册数学常考的七大题型,希望对你有所帮助。

小学五年级常考应用题类型

小学五年级常考应用题类型

乘除法应用题
简介:乘除法应用题是小学五年级 常考的应用题类型之一,主要考察 学生对于乘除法运算的理解和应用。
解题思路:在解决乘除法应用题时, 首先要理解题目的意思,然后根据题 目中的条件列出方程,最后通过乘除 法运算求解。
添加标题
添加标题
添加标题
添加标题
举例:例如,小明买了5支铅笔,每 支2元,他需要支付多少钱?这个问 题可以通过乘法运算来解决,即5乘 以2等于10元。
体积计算问题
常见类型:长方体、正方体、圆柱体、圆锥体的体积计算
解题方法:根据公式计算体积
注意事项:单位换算、数据准确性、图形识别
示例题目:一个长方体的长是8厘米,宽是6厘米,高是4厘米,求它的体积是多 少立方厘米?
表面积计算问题
常见类型:长 方体、正方体、 圆柱体、圆锥 体的表面积计

解题思路:根 据几何体的表 面积公式,逐 个计算各个面 的面积,然后
定义:两个物体在水中相对运 动时,所引起的距离变化的问 题。
解题思路:先求出两个物体的 速度,再根据相对运动原理计
算出距离。
注意事项:考虑物体的实际运 动情况,避免出现计算错误。
xx
PART THREE
工程问题类应用 题
工作量与工作效率的关系
工作量是完成任 务的总量,工作 效率是单位时间 内完成的工作量
公式:距离=速度差×时间
解题关键:确定两个物体的速度差和时间,从而求出距离。
常见题型:甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而跑, 乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟。
流水行船问题
公式:顺水速度=静水速度+水 流速度;逆水速度=静水速度水流速度。

小学数学应用题知识梳理(知识点归纳) 通用版

小学数学应用题知识梳理(知识点归纳) 通用版

小学阶段应用题类型梳理新的《数学课程标准》指出:学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。

只有如此,才能使所学数学富有生命力,才能真正实现数学的价值。

因此,在现行教材中,很少有单独教学应用题的情况,但是应用题却蕴涵在每一个章节中。

所以,我们要更为重视应用题的教学。

对学生和老师来说都是很大的挑战。

虽然没有明确讲,但是还是可以说清应用题的各种类型。

现将小学阶段的应用题类型归纳如下:(一)整数和小数的应用题1 、简单应用题只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

答案:根据计算的结果,先口答,逐步过渡到笔答。

(1)加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(2)减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

(3)乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

(4)除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(5)常见的数量关系:总价= 单价×数量路程= 速度×时间工作总量=工作时间×工效总产量=单产量×数量2、复合应用题有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

重点必备!小学数学重要知识点口诀和典型应用题

重点必备!小学数学重要知识点口诀和典型应用题

小数除法法则小数除法高位起,看着除数找规律。

除数是整直接除,除到哪位商哪位。

不够商一零占位,商被除数点对齐。

小数除法变整数,被除数点同位移。

右边数位若不够,应该用零来补齐。

分数加减法法则分数加减很简单,统一单位是关键。

同分母分数相加减,分子加减分母不变。

异分母分数相加减,先通分来后计算。

分数乘法法则分数乘法更简单,分子、分母分别算。

分子相乘作分子,分母相乘作分母。

分子、分母不互质,先约分来后计算。

分数除法法则分数除法最简便,转换乘法来计算。

除号变成乘号后,再乘倒数商出来。

质数、合数分清质数与合数,关键就是看因数。

1的因数只一个,不是质数也非合数;如果因数只两个,肯定无疑是质数;3个因数或更多,那就一定是合数。

分解质因数合数分解质因数,最小质数去整除,得出的商是质数,除数乘商来写出;得出的商是合数,照此方法继续除,直到得出质数商,再用连乘表示出。

求最大公因数要求最大公因数,就用公因数去除,直到商为互质数,除数连乘就得出;如果两数相比较,小是大数的因数,不必再用短除式,小数就是公因数。

求最小公倍数要求最小公倍数,公有质因数去除,直到商为互质数,除数乘商就得出;两数若是互质数,乘积即为公倍数;大是小数的倍数,不必去求已清楚。

100以内的质数二三五七一十一,十三十九和十七,二三二九三十一,三七四三和四一,四七五三和五九,六一六七手拉手,七一七三和七九,还有八三和八九,左看右看没对齐,原来还差九十七。

列方程解应用题列方程解应用题,抓住关键去分析。

已知条件换成数,未知条件换字母,找齐相关代数式,连接起来读一读。

百分数和小数互化小数化成百分数,小数点右移要记住,移动两位并做到:在后面添上百分号。

百分数要化小数,小数点左移要记住,移动两位并做到:一定要去掉百分号。

百分数和分数互化分数要化百分数,先把分数化小数;除不尽时别发愁,三位小数可保留。

化成小数要记住:小数再化百分数。

百分数要化分数,把它改写成分数,能约分的要约分,约到最简即完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题常考类型,就这几个知识点!.DOC
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
二、置换问题
题中有二个未知数;常常把其中一个未知数暂时当作另一个未知数;然后根据已知条件进行假设性的运算。

其结果往往与条件不符合;再加以适当的调整;从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张;总值18元8角。

这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的;那么总值应是20×100=20xx (分);比原来的总值多20xx-1880=120(分)。

而这个多的120分;是把10分一张的看作是20分一张的;每张多算20-10=10(分);如此可以求出10分一张的有多少张。

列式:(20xx-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数;100-12=88(张)→20分一张的张数或是先求出20分一张的张数;再求出10分一张的张数;方法同上;注意总值比原来的总值少。

三、盈亏问题(盈不足问题)
题目中往往有两种分配方案;每种分配方案的结果会出现多(盈)或少(亏)的情况;通常把这类问题;叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时;应该先将两种分配方案进行比较;求出由于每份数的变化所引起的余数的变化;从中求出参加分配的总份数;然后根据题意;求出被分配物品的数量。

其计算方法是:
当一次有余数;另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
例:学校把一些彩色铅笔分给美术组的同学;如果每人分给五支;则剩下45支;如果每人分给7支;则剩下3支。

求美术组有多少同学?彩色铅笔共有几支?
(45—3)÷(7-5)=21(人)21×5+45=150(支)
四、年龄问题
年龄问题的主要特点是两人的年龄差不变;而倍数差却发生变化。

常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例:父亲今年54岁;儿子今年12岁。

几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄;14-12=2(年)→2年后
答:2年后父亲的年龄是儿子的4倍。

五、牛吃草问题(船漏水问题)
若干头牛在一片有限范围内的草地上吃草。

牛一边吃草;草地上一边长草。

当增加(或减少)牛的数量时;这片草地上的草经过多少时间就刚好吃完呢?
例:一片草地;可供15头牛吃10天;而供25头牛吃;可吃5天。

如果青草每天生长速度一样;那么这片草地若供10头牛吃;可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数;那么15头牛吃10天;其中就有草地上原有的草;加上这片草地10天长出草;以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。

原因是因为其一;用的时间少;其二;对应的长出来的草也少。

这个差就是这片草地5天长出来的草。

每天长出来的草可供5头牛吃一天。

如此当供10牛吃时;拿出5头牛专门吃每天长出来的草;余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5 =5(头)→可供5头牛吃一天。

150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天;100÷(10-5)=100÷5 =20(天)
答:若供10头牛吃;可以吃20天。

六、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间。

相关文档
最新文档