简易斯特林发动机制作原理
斯特林发动机的原理

斯特林发动机的原理1.热源和冷源:斯特林发动机需要一个热源和一个冷源。
热源可以是燃烧或其他方式提供的热能,冷源可以是环境空气或其他冷却介质。
2.活塞和气缸:斯特林发动机有两个气缸,每个气缸里面都有一个活塞。
一个气缸是高温气缸,另一个是低温气缸。
活塞在气缸中往复运动。
3.曲柄轴和连杆:两个活塞通过连杆和曲柄轴连接在一起。
当活塞运动时,连杆将活塞的直线运动转换为曲柄轴的旋转运动。
4.冷热交换器:冷热交换器是将高温气体和低温气体进行热交换的设备。
它使得高温气体变冷,低温气体变热。
1.排气:开始时,两个活塞都在底死点附近。
高温气缸中的活塞往上移动,低温气缸中的活塞往下移动。
这样做可以排出气缸中的残留气体。
2.加热:高温气缸中的活塞继续向上移动,低温气缸中的活塞继续向下移动。
在这个过程中,燃料会燃烧,释放热能。
热能通过冷热交换器传递到高温气缸中,使高温气体膨胀,增加了压力和温度。
3.膨胀:高温气体的膨胀推动高温气缸中的活塞向下移动,低温气缸中的活塞向上移动。
这样做可以将部分热能转化为机械能。
这个过程是斯特林发动机的主要工作过程。
4.冷却:在膨胀过程后,高温气体通过冷热交换器流向低温气缸,并将部分热能传递给低温气体。
高温气体冷却后,其压力和温度下降。
5.压缩:低温气缸中的活塞继续向上移动,高温气缸中的活塞继续向下移动,将气体压缩。
在这个过程中,低温气体会变得更加冷却,增加了低温气缸中的压力和温度。
整个循环在连续进行,不断地从热源吸收热量,并将部分热量转化为了机械能。
斯特林发动机不需要燃烧,因此没有火花塞和汽缸盖等部件,这使得它具有低噪音、低振动和无排放的优点。
然而,斯特林发动机的缺点是体积较大,重量较重,且启动时间较长。
它主要适用于需要长时间运行和低排放的应用场景,比如太空飞行器、潜艇和太阳能发电等领域。
斯特林发动机原理

斯特林发动机原理
斯特林发动机是一种基于循环热力学原理的热机装置,利用两个不同温度的热源的热量差来产生功,其独特的工作原理和性能具有很大的优势和实用价值。
斯特林发动机的原理是利用两个不同温度的热源之间的温度差来产生热能转化为功。
它由气体循环系统和热源系统两部分组成。
气体循环系统包括一个工作空间、两个活塞和两个换热器,热源系统则包括一个高温热源和一个低温热源。
斯特林发动机的工作是先将活塞移动到离高温热源最近的位置,然后开启气门,让气体在工作空间中进行等温膨胀,此时气体吸收了高温热源的热量,产生功。
随后将活塞移动到离低温热源最近的位置,关闭气门,此时气体在工作空间中进行等温压缩,释放掉一部分热量,此时产生的功会较之前略微减少。
最后把活塞移回初始位置,再次开启气门,气体在工作空间中再次进行等温膨胀。
这个过程不断循环反复,将高温热源的热能转化为机械功输出。
斯特林发动机的效率取决于其工作流程中温度的变化,其中最高温度越接近高温热源,最低温度越接近低温热源,效率越高。
斯特林发动机的优点是实现高效率转换、稳定性好、操作安全可靠、环保无污染、耐久性强等。
它可以使用任何种类的热源,不像内燃机一样需要使用燃油或其他可燃制品,因此对环境的伤害较小。
此外,斯特林发动机还比其他类型的发动机更加耐用,因为它没有旋转部件或内部摩擦,所以不需要进行润滑。
由于斯特林发动机的工作原理独特,使其在各种环境和工况下都有着广阔的应用领域,如农村、山区以及船舶等地方的微型供电系统等。
总之,斯特林发动机是一种非常有潜力的发动机类型,具有许多优点,可以在从微型发电到大型电站等多个领域得到广泛的应用。
斯特林发动机机械效率

斯特林发动机机械效率斯特林发动机是一种热机,利用热量转化为机械能。
其基本工作原理是通过两个热交换器和一个活塞来实现的。
斯特林发动机的机械效率是指其能够将输入的热能转化为输出的机械能的比例。
本文将从斯特林发动机的基本原理、影响机械效率的因素以及提高机械效率的方法三个方面进行详细阐述。
一、斯特林发动机基本原理1.1 斯特林循环斯特林循环是指在恒定体积下进行的一种理想循环过程,它由四个过程组成:等温膨胀、绝热膨胀、等温压缩和绝热压缩。
在等温膨胀过程中,气体从低温热源吸收热量并膨胀;在绝热膨胀过程中,气体不断向高温热源移动,并且不断膨胀;在等温压缩过程中,气体向高温热源放出热量并且被压缩;在绝热压缩过程中,气体不断向低温热源移动,并且不断被压缩。
斯特林循环的效率可以通过卡诺循环效率公式来计算。
1.2 斯特林发动机原理斯特林发动机是基于斯特林循环的一种热机,其基本原理是利用两个热交换器和一个活塞来将输入的热能转化为输出的机械能。
在斯特林发动机中,气体在两个热交换器之间循环流动,其中一个热交换器与高温热源接触,另一个与低温热源接触。
气体在高温热源处膨胀、吸收热量,在低温热源处被压缩、放出热量。
由于气体的膨胀和压缩过程都是通过活塞实现的,因此可以将其转化为机械能输出。
二、影响斯特林发动机机械效率的因素2.1 温差斯特林发动机的工作效率与其所处的温差有关。
当温差越大时,工作效率越高。
因此,在设计和使用斯特林发动机时,需要尽可能地增大温差。
2.2 气体斯特林发动机中的气体对其机械效率也有影响。
理想气体在斯特林循环中的效率比实际气体高。
因此,在设计和使用斯特林发动机时,需要选择适合的气体类型并控制其压力和温度,以提高其效率。
2.3 活塞活塞是将气体膨胀和压缩转化为机械能输出的重要部件。
因此,在设计和制造活塞时,需要考虑其材料、形状、尺寸等因素,以确保其能够有效地转化气体膨胀和压缩产生的能量。
三、提高斯特林发动机机械效率的方法3.1 提高温差通过增大斯特林发动机所处的温差可以有效地提高其工作效率。
斯特林发动机工作原理

斯特林发动机工作原理
斯特林发动机是一种外燃循环热机,其工作原理如下:
1. 压缩气体:发动机通过连杆机构将活塞往复运动转化为连续的压缩和膨胀过程。
在压缩行程中,气体被压缩并推向热交换器。
2. 加热气体:在压缩行程中,气体进入热交换器,与外部加热源接触。
热交换器使气体吸收热量,从而增加其温度和压力。
3. 膨胀气体:在膨胀行程中,由于气体的温度和压力升高,气体向发动机的另一侧推动活塞运动。
这个过程产生的动力通过连杆机构传递到输出轴上。
4. 冷却气体:在膨胀行程结束后,气体被推回至热交换器。
此时,气体被冷却,使其温度和压力降低,为下一个压缩行程做准备。
5. 反复循环:上述的压缩、加热、膨胀和冷却过程在斯特林发动机中反复进行,在外部加热源的作用下不断将热量转化为机械能。
斯特林发动机的工作原理基于热力学循环,由于它使用气体作为工作流体而非常态,因此可以实现高效的能量转换。
与传统的内燃机相比,斯特林发动机的优点是低噪音、低排放和高效率,在某些特定的应用领域有着广泛的应用。
斯特林发动机实验原理

斯特林发动机实验原理斯特林发动机是一种热机,它利用燃烧产生的热能来产生机械功,而不像内燃机那样利用高温与低温之间的热差来产生机械功。
和内燃机相比,斯特林发动机的热效率更高,因此在一些特殊应用,如低温环境或需要长时间运行的应用中得到了广泛的应用。
斯特林发动机的工作原理是通过一个循环过程将热能转化为机械能。
这个循环过程包括以下几个步骤:1. 加热气体:在发动机内部有一个热源(例如一个火炉),它加热气体(通常是氢气或氮气),使气体温度升高。
2. 膨胀气体:加热后的气体进入一个气缸,气缸外围有一个活塞,气体膨胀时会推动活塞向外运动。
3. 冷却气体:气缸的另一侧与一个冷源相连,使气体冷却并收缩。
4. 压缩气体:冷却并收缩后的气体由于压力下降而吸回活塞,回到第一步重新开始循环。
斯特林发动机的实验可以通过以下几个步骤进行:1. 组装:将实验所需的斯特林发动机装配起来,通常包括一个气缸、活塞、曲轴和连接杆。
2. 准备:在发动机中加入气体(如氢气或氮气),并将热源放置在适当位置,以便将气体加热。
3. 启动:点燃热源,加热气体,使气体膨胀并推动活塞运动,从而带动曲轴旋转。
4. 测试:测量发动机的性能参数,例如产生的功率和效率。
可以通过改变热源的位置、调整气缸的尺寸和形状来改变发动机的性能。
5. 分析:分析实验结果并推导出发动机的工作原理和性能规律。
可以通过理论分析和数值计算来验证实验结果,进一步深入理解斯特林发动机的工作原理。
斯特林发动机的优点在于高效、低污染和可靠性高,但也存在一些局限性,例如需要较长的启动时间、重量较大、体积较大等。
随着技术的不断发展,一些新型斯特林发动机已经解决了这些问题,并在特定领域得到了广泛应用。
为了进一步提高斯特林发动机的性能,研究人员开发了许多改进器件和技术,例如:1. 调节调速器:将变速器安装在斯特林发动机上,可以更好地控制发动机的转速,从而提高其效率和性能。
2. 节流阀:通过使用节流阀可以调节发动机的输出功率,从而在运行时节省燃料和能源,同时也能降低机械部件的磨损和维护成本。
DIY斯特林发动机设计制作原理

动手制做动手制做------斯特林发动机模型斯特林发动机模型什么是斯特林热机?热气机(即斯特林发动机)的理想热力循环,为19世纪苏格兰人R.斯特林所提出,因而得名。
它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。
热机在定温(T (T1)1)膨胀过程中从高温热源吸热,而在定温(T2)压缩过程中向低温热源放热。
斯特林循环的热效率为公式中W 为输出的净功;Q1为输入的热量。
根据这个公式,只取决于T1和T2,T1越高、T2越低时,则越高,而且等于相同温度范围内的卡诺循环热效率。
因此,斯特林发动机是一种很有前途的热力发动机。
斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。
斯特林循环可以分为4个过程:①定温压缩过程:配气活塞停留在上止点附近,动力活塞从它的下止点向上压缩工质,工质流经冷却器时将压缩产生的热量散掉,当动力活塞到达它的上止点时压缩过程结束。
②定容回热过程:动力活塞仍停留在它的上止点附近,配气活塞下行,迫使冷腔内的工质经回热器流入配气活塞上方的热腔,低温工质流经回热器时吸收热量,使温度升高。
③定温膨胀过程:配气活塞继续下行,工质经加热器加热,在热腔中膨胀,推动动力活塞向下并对外作功。
④定容储热过程:动力活塞保持在下止点附近,配气活塞上行,工质从热腔经回热器返回冷腔,回热器吸收工质的热量,工质温度下降至冷腔温度。
在理论上,定容储热量等于回热量,其循环效率等于卡诺循环效率。
两个活塞的运动规律是由菱形传动机构来保证的。
—1878)斯特林(Robert Stirling,17901790—英国物理学家,热力学研究专家。
斯特林对于热力学的发展有很大贡献。
他的科学研究工作主要是热机。
热机的研制工作,是18世纪物理学和机械学的中心课题,各种各样的热机殊涌而出,不断互相借鉴,取长补短,热机制造业兴旺起来,工业革命处于高潮时期。
随着热机发展,热力学理论研究提到了重要位置,不少科学家致力于热机理论的研究工作,斯特林便是其中著名的一位。
斯特林发动机原理

斯特林发动机原理
很多朋友都听说过史蒂芬斯特林发动机,但是很少有人真正了解其原理,今天就让我们一起来了解一下史蒂芬斯特林发动机,是如何驱动甚至改变了世界的。
史蒂芬斯特林发动机,又称斯特林反应火箭发动机,是一种特殊的热力发动机,它的结构简单,体积小,可以获得巨大的推力,是现代航天飞行器的主要动力装置。
斯特林发动机的工作原理是,火箭发动机的发动机的燃料是一种类似液氯的混合物,它包括氯化氢(HCl)和亚氯酸(HCIO),在工作状态下,这种特殊的发动机会把气体燃烧,产生极高的温度,温度达到几千度。
燃烧过程中产生的气体及热量会被推力缸接收并转换成动能,使推进剂燃烧出大量的热量和气体,旋转动力发动机,把动能转换成空气动力,这是斯特林发动机能够获得巨大动力的不可替代的原因之一。
史蒂芬斯特林发动机的发明最终改变了世界。
他的发明对航空航天工业的发展产生了深远的影响。
如今,这款发动机推动着各类航天飞行器进入太空,它给我们的科学研究提供了更多的机会,为人类的和平发展做出了重大贡献。
史蒂芬斯特林发动机的结构也是非常复杂的。
它主要由发动机体、喷射装置、润滑系统和控制系统组成。
它的特点是,燃料和氧气可以相互独立,不需要冷却系统,动力输出稳定可控。
另外,斯特林发动机的结构也很紧凑,体积小,比其他发动机节省更多的空间。
总之,史蒂芬斯特林发动机的发明令科学史上留下了不可磨灭的印记。
斯特林发动机是一种具有重大历史意义的发动机,它的出现为航空航天提供了可靠的动力源,并为我们的航天飞行提供了可观的动能,也为人类航天发展做出了重要贡献。
斯特林发动机简单原理

斯特林发动机简单原理
斯特林发动机(Stirling Engine)是一种利用温度差而产生功能的机械装置,它可以将温度差转化为旋转机械能。
该发动机是由英国发明家史蒂文•斯特林于1816年创造的,因此得名。
斯特林发动机是一种循环式热机,其原理很简单。
它利用热量源(如煤、石油、太阳能等)的热能来推动发动机,然后把热量转换成机械能。
斯特林发动机的基本原理是热能转换机械能。
它由三个主要部件组成:一个活塞、一个头箱和一个尾箱。
其中,头箱可以吸收热量,活塞则在头箱和尾箱之间运动,从而将热能转换成机械能。
其工作过程可以分为四个步骤:
第一步:头箱内的气体吸收热量,它会使气体急剧膨胀,产生一个大量的气体压力;
第二步:活塞顺势地沿着箱体内的活塞杆运动,将气压力传达到尾箱;
第三步:尾箱内的气体因受到压力而收缩,释放出一些热量;
第四步:活塞反弹回去,从而形成一次循环。
通过以上四个步骤,斯特林发动机不断循环,将温度差转换成机械能,从而推动发动机发挥作用。
斯特林发动机的特点是体积小、功率小、效率高、噪音小,因此被广泛应用于冷冻制冷、汽车发动机、遥控器等领域。
斯特林发动机是一种高效的发动机,通过不断循环的活塞杆来转换热量,从而提供动力源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易斯特林发动机制作原理史特灵引擎属於外燃引擎,只要高温热源温度够高,无论是使用太阳能、废热、核原料、牛粪、丙烷、天然气、沼气(甲烷)、丁烷与石油在内的任何燃料,皆可使之运转,不同於必须使用特定燃料的汽油引擎、柴油引擎等内燃引擎。
A.基础篇A1气体的特性如图1把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。
A2移气器如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。
这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。
其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。
相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端为冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。
如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。
由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。
国立成功大学航太系郑金祥教授把Displacer命名为”移气器”,实在更为贴切,也比较不容易混淆,比较不会使人误以为它的作用跟输出功率的动力活塞一样。
A3曲柄机构要让移气器上下移动,只要将移气器与一曲轴连结(图6)。
当曲轴旋转时,移气器就会被带上及带下。
将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。
A4动力活塞橡皮的膨胀及收缩运动,可以转换为动力输出,此时,橡皮的作用即如同一动力活塞。
我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换为曲轴的旋转运动。
连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。
橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。
必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。
为何相位角是90度?如图9当移气器移到最顶点的位置时,底部加热空间最大,此时所產生的压力也最大,当移气器移到最底点的位置时,顶部冷却空间最大,此时所產生的压力也最小,如把动力活塞的曲柄连接到曲轴水平位置最远的地方时可產生最大的扭力,此时可看到连接到移气器的曲轴部位与连接到动力活塞的曲轴部位呈90度的角度差,该角度称为相位角。
曲柄连接到曲轴水平的位置也决定了引擎旋转方向。
上述的条件为静态环境的结果,当随著引擎的转速、负载、温度及使用气体的不同则会有不同的最佳相位角,一般以90度作为通用的相位角。
A5飞轮如果只有上述的零件,引擎还是不能运转。
因为利用橡皮的膨胀或收缩(图8,9),并无法让曲轴旋转一整圈。
因此,必须加上一个有旋转惯性的设备,即“飞轮”,才能达成连续的运转。
一般採用的飞轮,最常见的是圆形飞轮,如图10所示。
如果除了惯性需求外,还要考虑平衡问题,则在曲轴旋转面的另一端加一配重物充当飞轮,便可解决平衡问题(图11)。
B.进阶篇史特灵引擎是一种高效率的能量转换装置,係採用封闭气体循环(Closedgascycle)及再生器(Regenerator)设计。
理论上,理想史特灵引擎的热效率(Thermalefficiency)与卡诺引擎(Carnotengine)相当,二者皆属可逆热机(Reversiblecycle),具最高热力循环转换效率。
史特灵引擎的使用的工作气体可为高压之空气、氮气、氦气、或氢气。
一般而言,大致分为两种可能的配置:第一种配置利用一个动力活塞(Piston)压缩或膨胀气体,另利用一个移气器(Displacer)使工作气体在气缸内来回流动;第二种配置则不用移气器,完全利用两个活塞来达到压缩膨胀气体与来回驱赶气体的目的。
当气缸内部气体被驱赶至加热部而受热时,即因膨胀推动动力活塞而对外作功。
以气缸数与动力活塞及移气器的排列构型来区分,史特灵引擎又可以分为下列三种形式:(1)α型—又称双气缸型(twin-cylinderStirlingengine),此型无移气器,然具有二个动力活塞,分别在二个独立的气缸内作动。
(2)β型—又称为同轴活塞型(coaxialpiston-displacerStirlingengine),具有一动力活塞与一移气器,二者位於同一气缸,且沿相同轴移动。
自由活塞式史特灵引擎即属此类。
(3)γ型—具有二个独立气缸,其中一气缸内设置动力活塞,另一气缸则设置一移气器,本模型则属於γ型。
史特灵引擎在不同的额定功率下皆能表现出高效率,且因其乃属常压燃烧供热之外燃机,燃烧较为完全,故排气洁净。
最重要的是,它可以适用不同的热来源,包括汽油、天然气、太阳能、生质能、废热利用等。
近年来,能源工程技术相关的研究者对史特灵引擎的研究兴趣正逐渐加温,极可能成为另一个未来可供选择的动力来源之一。
配合上图,理想史特灵引擎的热力循环概念介绍如下:(1)a→b过程中,工作流体等体积吸热升温;(2)b→c过程中,工作流体等温吸热膨胀;(3)c→d过程中,工作流体等体积冷却降温;(4)d→a过程中,工作流体等温冷却收缩。
史特灵引擎与卡诺引擎比较,前者由两个等温过程和两个等体积过程所构成,而后者係由两个等温过程和两个绝热过程所构成。
换言之,史特灵引擎循环以两个等体积的吸热与排热过程,取代卡诺循环的两个绝热过程。
因此,若史特灵引擎循环欲达成卡诺引擎相同的热效率,必须将c→d过程中,工作流体等体积排热过程所排出的的热量,必须用来提供在a→b过程中,工作流体等体积吸热升温所需的热量,这个步骤,叫作再生(Regeneration),所使用的装置,称为再生器(Regenerator)。
值得注意的是,实际上史特灵引擎内部工作流体的温度和压力,在循环变化过程中并非是完全均匀的。
因此,体积和压力的变化也非如上图所示那样清楚分明。
AIP发动机原理图潜水艇对动力系统的要求,非常苛刻.即要有强大的动力.更要能非常的安安静静.尽量是无声.AIP发动机就是这样的发动机.再加上燃料电池驱动.更是完美的搭配.因为到目前为止.除了声纳探测可发现水下潜艇.还未有真正的探测技术,能发现潜艇AIP发动机原理图斯特林发动机系统斯特林发动机(SE/AIP)系统与闭式循环柴油机系统大致相同,最主要的不同就是发动机。
SE/AIP系统使用的是热气机,而CCD/AIP系统使用的是闭式循环柴油机。
热气机的构想是英国科学家罗伯特•斯特林于1816年率先提出来的,它是一种由外部热源加热,并将热能转换为机械能的热机,其循环是一种闭式、采用定容下回热的气体循环,简称斯特林循环,其具体工作原理是:斯特林发动机的活塞上室为热室,它与另一活塞的下室相连,四个缸相互连接在一起,具体的是1号缸上部的热室与2号缸下部的冷室相连,2号缸上部的热室与3号缸下部的冷室相连,3号缸上部的热室与4号缸下部的冷室相连,4号缸上部的热室与1号缸下部的冷室相连,互相差90°角。
它们使工作气体在热室和冷室之间来回移动,使活塞运动并带动曲柄转动。
斯特林发动机主要是在水下续航状态下工作,与蓄电池并联,向推进电机、全艇辅机及其他用电设备供电。
技术实现的难点和重点主要在于斯特林发动机的水下燃烧系统,因为该系统所使用的氧化剂是纯氧,燃烧方式为燃气再循环,并且是在高于周围海水压力的高压情况下进行燃烧。
主要技术优点机械噪声与振动较小。
因为斯特林发动机是一种从外部对内部气体工质连续加热使之做功的活塞式往复发动机,燃烧过程中没有柴油机的爆燃现象,燃烧过程平稳,因此发动机的噪声与振动较小,但是有些斯特林发动机的部件依然采用往复式运动机械,所以在装备潜艇时仍要加装双层隔振系统以减小水下噪声。
废气排放方便,当热气机的燃烧压力为22公斤/厘米2时,废气水下排放不需要闭式循环柴油机系统的庞大水管理系统,在潜深200米内可以自主排放,即使增加潜深也只需要小型压缩机协助。
当燃烧压力小于20公斤/厘米2时,废气水下自主排放的深度要相应减小。
这种发动机的废气排放深度与燃烧压力有关,这也是技术实现的一个难点。
缺点和不足功率较低,斯特林发动机由于其自身固有的低功率密度的特点,因而决定了整个AIP系统的功率密度小于CCD/AIP系统。
如果要加大功率,需要配几台发动机,但这又影响到整个潜艇的布局与使用,实现功率突破难度较大;燃油消耗量较大,目前要高于普通柴油机。
当前,在SE/AIP系统较有建树的国家是瑞典。
瑞典考库姆公司从上世纪60年代末就开始斯特林发动机的研制工作,目前已经成功研制出71千瓦的V4-275R 型斯特林发动机,装备于1995年2月2日下水的“哥特兰”号潜艇,并使之成为世界上第一艘装备SE/AIP系统的常规潜艇,这也标志着斯特林发动机进入了实用阶段。
近年来,日本也从瑞典引进了斯特林发动机的建造技术,用于装备或改装海上自卫队潜艇。
闭式循环汽轮相系统闭式循环汽轮机系统(MESMA/IP)系统主要由4个分系统构成:液氧储存罐、燃料储存罐及一、二回路系统。
其中燃料通常选择乙醇,存放在储存罐中的橡胶袋中;一回路系统包括高压燃烧室、热交换机、冷凝器;二回路系统包括蒸汽发生器、蒸汽轮机、冷凝器。
具体工作原理及过程:将储存在绝热罐中的低温液氧送到加热器中加温呈气态,乙醇和气态氧在高压燃烧室里燃烧,燃气通过蒸汽发生器后大部分被冷却,这些经冷却的燃气重新回到燃烧室,用于冷却烟道壁,调节燃烧壁壁温,使其保持在1000℃以下,同时稀释乙醇/氧气的混合气体,使其燃烧温度保持在700℃的最佳状态。
一小部分未经冷却的燃气有些直接排出艇外,有些以液态方式储存在艇内。
水在蒸汽发生器吸收燃气热量后变成高温高压蒸汽,温度达500℃,压力大约为18公斤/厘米2,这些蒸汽推动蒸汽轮机做功,驱动交流发电机和整流机组产生直流电,为推进系统提供能量。
水蒸汽冷凝成水后,返回蒸汽发生器,完成循环过程。
技术实现的难点和重点主要在于此系统的液氧采用的是高压储存(60公斤/厘米2)或者低温低压储存(??185℃,2-10公斤/厘米2),无论液氧储存罐置于何处,必须要经得起5g的冲击。
因此液氧储存罐应安装在低频率的弹性基座上,基座固有频率应小于5赫兹。
主要技术优点功率大,可满足潜艇水下航行需要,法国在为巴基斯坦建造的“阿戈斯塔”90B级潜艇上所安装的MESMA/AIP系统的功率为200千瓦;燃烧产物的排放非常隐蔽,由于燃烧时的压力较大,燃烧产物的压力也较大,不需要使用其他机械系统加压就能自动排出艇外,相应也就减少了潜艇的自噪声;另外使用气泡***系统使排出的二氧化碳气泡减小,提高废气的海水溶解度,如果情况危急,可将燃烧产物进行冷凝储存在艇内,此举将大大提高潜艇的隐蔽性。