新人教版七年级数学上册:中点及角平分线(讲义及答案)
七年级数学上册线段和角的定值问题课堂学案及配套作业(解析版)

专题19线段和角的定值问题(解析版)第一部分教学案类型一线段中的定值问题1.(2019秋•北仑区期末)如图,C为射线AB上一点,AB=30,AC比BC的14多5,P、Q两点分别从A、B两点同时出发,分别以2个单位/秒和1个单位/秒的速度在射线AB上沿AB方向运动,当点P运动到点B时,两点同时停止运动,运动时间为t(s),M为BP的中点,N为MQ的中点,以下结论:①BC=2AC;②AB=4NQ;③当BP=12BQ时,t=12;④M,N两点之间的距离是定值.其中正确的结论(填写序号)思路引领:根据线段中点的定义和线段的和差关系即可得到结论.解:∵AB=30,AC比BC的14多5,∴BC=20,AC=10,∴BC=2AC;故①正确;∵P,Q两点分别从A,B两点同时出发,分别以2个单位/秒和1个单位/秒的速度,∴BP=30﹣2t,BQ=t,∵M为BP的中点,N为MQ∴PM=12BP=15﹣t,MQ=MB+BQ=15,NQ=12MQ=7.5,∴AB=4NQ;故②正确;∵BP=30−2t,BQ=t,BP=12 BQ,∴30−2t=t2,解得:t=12,故③正确,∵BP=30﹣2t,BQ=t,∴BM=12PB=15﹣t,∴MQ=BM+BQ=15﹣t+t=15,∴MN=12MQ=152,∴MN的值与t无关是定值,故答案为:①②③④.总结提升:本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.2.(2020秋•东西湖区期末)如图,已知直线l上有两条可以左右移动的线段:AB=a,CD=b,且a,b满足|a﹣2|+(b﹣6)2=0.M为线段AB的中点,N为线段CD中点.(1)求线段AB、CD的长;(2)若线段AB以每秒2个单位长度的速度向右运动,同时线段CD以每秒1个单位长的速度也向右运动,在运动前A点表示的数为﹣2.BC=6,设运动时间为t秒,求t为何值时,MN=4;(3)若将线段CD固定不动,线段AB以每秒2个单位长度的速度向右运动,在运动前AD=36,在线段AB向右运动的某一个时间段内,始终有MN+BC为定值,求出这个定值,并求出t的取值范围.思路引领:(1)根据非负数的性质即可得到结论;(2)t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,然后根据MN=4列出方程可得答案;(3)根据题意分类讨论得到结果.解:(1)∵|a﹣2|+(b﹣6)2=0,∴a﹣2=0,b﹣6=0,∴a=2,b=6,∴AB=2,CD=6;(2)∵运动前A点表示的数为﹣2,BC=6,∴点B表示的数是0,点C、D表示的数分别是6和12,∵M为线段AB的中点,N为线段CD中点,∴点M、N表示的数分别是﹣1和9,t秒后点M表示的数是﹣1+2t,点N表示的数是9+t,∴|(﹣1+2t)﹣(9+t)|=4,解得t=14或6,答:t=14秒或6秒时,MN=4;(3)运动t秒后,MN=|32﹣2t|,BC=|28﹣2t|,当0≤t<14时,MN+BC=32﹣2t+28﹣2t=60﹣4t,当14≤t≤16时,MN+BC=32﹣2t+2t﹣28=4,当t >16时,MN +BC =2t ﹣32+2t ﹣28=4t ﹣60, ∴当14≤t ≤16时,MN +BC 为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.3.(2020秋•遵化市期末)如图,已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(点A 在点B 的左侧,点C 在点D 的左侧),若|m ﹣12|+(6﹣n )2=0. (1)求线段AB ,CD 的长;(2)若点M ,N 分别为线段AC ,BD 的中点,BC =4,求线段MN 的长;(3)当CD 运动到某一时刻时,点D 与点B 重合,点P 是线段AB 的延长线上任意一点,下列两个结论:①PA−PB PC是定值,②PA+PB PC是定值,请选择你认为正确的一个并加以说明.思路引领:(1)先由|m ﹣12|+(6﹣n )2=0,根据非负数的性质求出n =6,m =12,即可得到AB =12,CD =6;(2)需要分类讨论:①如图1,当点C 在点B 的右侧时,根据“M 、N 分别为线段AC 、BD 的中点”,先计算出AM 、DN 的长度,然后计算MN =AD ﹣AM ﹣DN ;②如图2,当点C 位于点B 的左侧时,利用线段间的和差关系求得MN 的长度;(3)计算①或②的值是一个常数的,就是符合题意的结论. 解:(1)∵|m ﹣12|+(6﹣n )2=0, ∴|m ﹣12|=﹣(6﹣n )2, ∴m ﹣12=0,6﹣n =0, ∴n =6,m =12, ∴AB =12,CD =6;(2)如图1,∵M 、N 分别为线段AC 、BD 的中点, ∴AM =12AC =12(AB +BC )=8, DN =12BD =12(CD +BC )=5, ∴MN =AD ﹣AM ﹣DN =9;如图2,∵M 、N 分别为线段AC 、BD 的中点,∴AM =12AC =12(AB ﹣BC )=4, DN =12BD =12(CD ﹣BC )=1,∴MN =AD ﹣AM ﹣DN =12+6﹣4﹣4﹣1=9;(3)②正确.理由如下: ∵PA+PB PC =(PC+AC)+(PC−CB)PC=2PC PC=2,∴②PA+PBPC 是定值2.总结提升:本题考查了一元一次方程的应用,比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.(2018秋•江夏区期末)已知,如图所示,一条直线上依次有A 、B 、C 三个点. (1)若BC =10,AC =3AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 中点,点N 为CD 中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 的中点,点F 是BC 的中点(E ,F 不重合).下列结论中:①EF AC+BP是定值;②EFAC−BP是定值,其中只有一个结论正确,请选择正确结论并求出其值.思路引领:(1)由AC =AB +BC =3AB 可得;(2)分三种情况:①D 在BC 之间时②D 在AB 之间时③D 在A 点左侧时;(3)分三种情况讨论:①F 、E 在BC 之间,F 在E 左侧②F 在BC 之间,E 在CP 之间③F 、E 在BC 之间,F 在E 右侧;解:(1)∵BC =10,AC =AB +BC =3AB ,∴AB=5;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2MN,∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN﹣NB=MN+DM﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①F、E在BC之间,F在E左侧,EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴EFAC−BP =−12.②F在BC之间,E在CP之间,EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =−12.③F、E在BC之间,F在E右侧,EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴EFAC−BP =12,∴只能是②EFAC−BP 是定值,定值为12.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.5.(越秀区期末)已知线段AB=8(点A在点B的左侧)(1)若在直线AB上取一点C AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,请说明P A+PB﹣2PM是一个定值.思路引领:(1)①当点C在线段AB上时,如图1,②当点C在线段AB的延长线上时,如图2,③当点C在BA的延长线上时,明显,次情况不存在;列方程即可得到结论;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,代入P A+PB﹣2PM即可得到结论.解:(1)①当点C在线段AB上时,如图1,∵AC=3BC,设BC=x,则AC=3x,∵AB=AC+BC,∴8=3x+x,∴x=2,∴BC=2,AC=6,∵点D是CB的中点,∴CD=BD=12BC=1,∴AD=AC+CD=6+1=7;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=3BC=3x,∵AB=AC﹣BC=2x=8,∴x=4,∴BC=4,AC=12,AB=8,∵点D是CB的中点,∴BD=CD=12BC=2,∴AD=AB+BD=8+2=10;③当点C在BA的延长线上时,明显,次情况不存在;综上所述,AD的长为7或10;(2)如图3,设BP=x,则P A=AB+BP=8+x,PM=12AB+BP=4+x,∴P A+PB﹣2PM=8+x+x﹣2(4+x)=0,∴P A+PB﹣2PM是一个定值0.总结提升:本题考查了两点间的距离,线段中点的定义,正确的作出图形是解题的关键.6.(2020秋•奉化区校级期末)如图,已知直线l有两条可以左右移动的线段:AB=m,CD=n,且m,n 满足|m﹣4|+(n﹣8)2=0.(1)求线段AB,CD的长;(2)线段AB的中点为M,线段CD中点为N,线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=4,求线段BC的长;(3)将线段CD固定不动,线段AB以每秒4个单位速度向右运动,M、N分别为AB、CD中点,BC=24,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=0,∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M’在点N’左边时,由MN+NN’=MM’+M’N’,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M’在点N’右边时,则MM’=MN+NN’+M’N’,即6×4=2+BC+4+6×1+4,解得BC=8,(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质,一元一次方程的应用以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.7.(2022秋•平南县月考)如图AB=48,C为线段AB的延长线上一点,M,N分别是AC,BC的中点.(1)若BC=10,求MN的长;(2)若BC的长度为不定值,其它条件不变,MN的长还是定值吗?若是,请求出MN的长;若不是,请说明理由.思路引领:(1)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得CM,CN的长,根据线段的和差,可得答案.解:(1)由已知得AC=AB+BC=58.由M,N分别是AC,BC的中点,得CM=29,NC=5.由线段的和差,得MN=CM﹣NC=29+5=24;(2)若BC的长度为不定值,其它条件不变,MN的长是定值.由M,N分别是AC,BC的中点,得CM=12(AB+BC),CN=12BC,MN=CM﹣NC=12(AB+BC)−12BC=12AB=24.总结提升:本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键,又利用了线段的和差.类型二角中的定值问题8.(2017秋•宁海县期末)如图,已知在同一平面内OA⊥OB,OC是OA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.(1)若α=60即∠AOC=60°时,则∠BOC=°,∠DOE=°.(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.思路引领:(1)先得到∠BOC=∠AOB+∠AOC=150°,再根据角平分线的定义得到∠DOC=75°,∠EOC=30°,然后计算∠DOC﹣∠EOC得到∠DOE的度数;(2)根据角平分线的定义∠DOC=12∠BOC=45°+12α,∠EOC=12∠AOC=12α,所以∠DOE=∠DOC﹣∠EOC=45°,从而可判断∠DOE的度数是一个定值.解:(1)∵OA⊥OB,∴∠AOB=90°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,∵OD平分∠BOC,∴∠DOC=12∠BOC=75°,∵OE平分∠AOC,∴∠EOC=12∠AOC=30°,∴∠DOE=∠DOC﹣∠EOC=75°﹣30°=45°;故答案为150°;45°;(2)在α的变化过程中,∠DOE的度数是一个定值,为45°.∵OD平分∠BOC,∴∠DOC=12∠BOC=12(90°+α)=45°+12α∵OE平分∠AOC,∴∠EOC=12∠AOC=12α,∴∠DOE=∠DOC﹣∠EOC=45°+12α−12α=45°,即∠DOE的度数是一个定值.总结提升:本题考查了角度的计算:会利用几何图形计算角度的和与差.也考查了角平分线的定义.9.(2020秋•平山区校级期中)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣2035°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.10.(2019秋•沙坪坝区校级期中)如图,已知∠AOC=80°,∠BOD=30°,若OM平分∠AOB,ON平分∠COD.(1)如图1,当OC 与OB 重合时,求∠MON 的度数;(2)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (0<m <90)时,∠BOM ﹣∠DON 的值是否为定值?若是定值,求出∠BOM ﹣∠DON 的值;若不是定值,请说明理由;(3)如图2,当∠BOD 从图1位置开始绕点O 顺时针旋转m (30<m <70)时,满足∠AOD +∠MON =7∠BOD ,求m 的值.思路引领:(1)由角平分线的定义求∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,然后求∠MON ;(2)用含有m 的式子表示∠AOM 、∠BOD 和∠AOD ,然后利用角的和差关系求∠BOM ﹣∠DON ; (3)分别用含有m AOD 、∠MON 和∠BOD ,然后根据已知条件列出方程,从而得到m 的值.解:(1)∵OM 平分∠AOB ,ON 平分∠COD ,∴∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD , ∵∠AOB =80°,∠COD =30°, ∴∠MOC =40°,∠NOC =15°,∴∠MON =∠MOC +∠NOC =40°+15°=55°; (2)∠BOM ﹣∠DON 为定值25°,理由如下: 由题意可知:∠AOD =∠AOB +∠COD +m =110°+m ,由(1)可知:∠AOM =∠MOB =12∠AOB ,∠DON =∠NOC =12∠COD ,∴∠BOM =∠AOM =∠12(∠AOC +m )=12(80°+m ),∠DON =12(∠BOD +m )=12(30°+m ),∴∠BOM﹣∠DON=12(80°+m)−12(30°+m)=25°,∴∠BOM﹣∠DON的值为25°;(3)由(2)知:∠AOD=110°+m,∠AOM=12(80°+m),∠DON=12(30°+m),∴∠MON=∠AOD﹣∠AOM﹣∠DON=110°+m−12(80°+m)−12(30°+m)=55°,∵∠AOD+∠MON=7∠BOD,∠BOD=30°,∴110°+m+55°=7×30°,∴m=45°.总结提升:本题考查了角平分线的定义和图形的旋转,探究角与角之间的关系时,要注意先理清楚所求角与已知角的和差关系,然后再逐步求解.11.(2022秋•沁阳市期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,∠AOE﹣∠BOF=;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=17°时,t=秒.思路引领:(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+17)°,故3t+17=20+32t,解方程即可求出t的值.解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12×110°=55°,∠BOF=12∠BOD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°.故答案为:35°;(2)∠AOE﹣∠BOF的值是定值.由题意∠BOC=3t°,则∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOC=12(110°+3t°)=55°+32t°,∠BOF=12∠BOD=12(40°+3t°)=20°+32t°,∴∠AOE﹣∠BOF=(55°+32t°)−(20°+32t°)=35°,∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+17)°,∴3t+17=20+32 t,解得t=2.故答案为2.总结提升:本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.12.(2017秋•宿豫区期末)如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;(2)试说明∠CAE﹣∠BAD=30°;(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.思路引领:(1)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角的和差即可得到结论;(2)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,列方程即可得到结论;(3)根据题意得到∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,根据角平分线的定义和角的和差即可得到结论.解:(1)∠BAE+∠CAD=150°,理由:∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAE=∠BAD+∠CAD+∠CAE=60°+90°﹣∠CAD,∴∠BAE+∠CAD=150°;(2)∵∠BAD+∠CAD=60CAE+∠CAD=90°,∴∠CAD=60°﹣∠BAD,∠CAD=90°﹣∠CAE,∴60°﹣∠BAD=90°﹣∠CAE,∴∠CAE﹣∠BAD=90°﹣60°=30°;(3)在旋转过程中∠MAN的值不会发生变化,如图,∵∠BAD+∠CAD=60°,∠CAE+∠CAD=90°,∴∠BAD=60°﹣∠CAD,∠CAE=90°﹣∠CAD,∵AM,AN分别是∠∠BAD和∠CAE的平分线,∴∠MAD=12∠BAD=30°−12∠CAD,∠NAC=12∠CAE=45°−12∠CAD,∵∠MAN=∠MAD+∠CAD+∠NAC=30°−12∠CAD+∠CAD+45°−12∠CAD=75°.总结提升:本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.13.(2022秋•晋州市期中)如图所示,以直线AB上的一点O为端点,在直线AB的上方作射线OP,使∠BOP=68°,将一块直角三角尺(∠MON=90°)的直角顶点放在点O处,且直角三角尺在直线AB的上方.设∠BOM=n°(0<n<90).(1)当n=30时,求∠PON的大小;(2)当OP恰好平分∠MON时,求n的值;(3)当n≠68时,嘉嘉认为∠AON与∠POM的差为定值,淇淇认为∠AON与∠POM的和为定值,且二人求得的定值相同,均为22°,老师说,要使两人的说法都正确,需要对n分别附加条件.请你补充这个条件:当n满足时,∠AON POM=22°;当n满足时,∠AON+∠POM=22°.思路引领:(1)根据角的和差关系可得答案;(2)根据角平分线的定义与角的和差关系可得答案;(3)分两种情况:OM在OP的左侧和右侧时,根据角的和差关系可得结论.解:(1)当n=30°时,∠BOM=30°,∵∠POB=68°,∴∠POM=68°﹣30°=38°,∵∠MON=90°,∴∠PON=90°﹣38°=52°;(2)∵OP恰好平分∠MON,∠MON=90°,∴∠POM=45°,∵∠POB=68°,∴n=68﹣45=23;(3)当0<n<68时,如图1,∠AON﹣∠POM=22°,理由如下:∵∠POB=68°,∴∠POM=68°﹣n°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°﹣n°,∴∠AON﹣∠POM=(90°﹣n°)﹣(68°﹣n°)=22°;当68<n<90时,如图2,理由如下:∵∠POB=68°,∴∠POM=n°﹣68°,∵∠MON=90°,∴∠AON=180°﹣90°﹣n°=90°﹣n°,∴∠AON+∠POM=(90°﹣n°)+(n°﹣68°)=22°;故答案为:0<n<68,68<n<90.总结提升:本题考查了角的和差,平角的定义,角平分线的定义,熟练掌握角的和与差关系,角平分线的定义的应用,分情况讨论是解题关键.14.(2021秋•迁安市期末)如图1,把∠APB放置在量角器上,P与量角器的中心重合,射线P A、PB分别对准刻度117°和153°,将射线P A绕点P逆时针旋转90°得到射线PC.(1)∠APB=度;(2)求出∠CPB的度数;(3)小红在图1的基础上,在∠CPB内部任意做一条射线PD,并分别做出了∠CPD和∠BPD的平分线PE和PF,如图2,发现PD在∠CPB内部的不同位置,∠EPF的度数都是一个定值,请你求出这个定值.思路引领:(1)∠APB=153°﹣117°;(2)根据∠CPB=∠APB+∠APC,可得∠CPB的度数;(3)根据角平分线的定义得到∠EPD=12∠CPD,∠FPD=12∠BPD,再根据角的和差可得答案.解:(1)由图可得,∠APB=153°﹣117°=36°.故答案为:36;(2)由题意得,∠APC=90°,∴∠CPB=∠APB+∠APC=36°+90°=126°.答:∠CPB的度数是126°;(3)∵∠CPD和∠BPD的平分线是PE和PF,∴∠EPD=12∠CPD,∠FPD=12∠BPD,∴∠EPF =∠EPD +∠FPD =12∠CPD +12∠BPD =12∠CPB =63°.∴当PD 在∠CPB 内部的不同位置时,∠EPF 的度数都是一个定值是63°. 总结提升:本题考查角的计算,熟练掌握角平分线的定义和角的和差是解题关键. 15.(2022秋•硚口区期末)∠AOB 与它的补角的差正好等于∠AOB 的一半 (1)求∠AOB 的度数;(2)如图1,过点O 作射线OC ,使∠AOC =4∠BOC ,OD 是∠BOC 的平分线,求∠AOD 的度数; (3)如图2,射线OM 与OB 重合,射线ON 在∠AOB 外部,且∠MON =40°,现将∠MON 绕O 顺时针旋转n °,0<n <50,若在此过程中,OP 平分∠AOM ,OQ 平分∠BON ,试问∠AOP−∠BOQ∠POQ的值是定值吗?若是,请求出来,若不是,请说明理由.思路引领:(1)设∠AOB =x °,根据题意列方程即可得到结论;(2)①当OC 在∠AOB 的内部时,②当OC 在∠AOB 外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论. 解:(1)设∠AOB =x °,依题意得:x ﹣(180﹣x )=12x ∴x =120答:∠AOB 的度数是120°(2)①当OC 在∠AOB 的内部时,∠AOD =∠AOC +∠COD 设∠BOC =y °,则∠AOC =4y °, ∴y +4y =120,y =24,∴∠AOC =96°,∠BOC =24°, ∴OD 平分∠BOC , ∴∠COD =12∠BOC =12°, ∴∠AOD =96°+12°=108°,②当OC 在∠AOB 外部时,同理可求∠AOD =140°, ∴∠AOD 的度数为108°或140°; (3)∵∠MON 绕O 顺时针旋转n °, ∴∠AOM =(120+n )° ∵OP 平分∠AOM , ∴∠AOP =(120+n 2)°∵OQ 平分∠BON , ∴∠MOQ =∠BOQ =(40+n 2)°,∴∠POQ =120+40+n ﹣∠AOP ﹣∠NOQ , =160+n −120+n 2−40+n 2=160+n −160+2n2=80°, ∴∠AOP ﹣∠BOQ =120+n 2−40+n2=40°, ∴∠AOP−∠BOQ∠POQ=4080=12.总结提升:本题考查了角的计算,余角和补角的定义,解题时注意方程思想和分类思想的灵活运用. 16.(2019秋•莆田期末)定义:若α﹣β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图1,点O 在直线AB 上,射线OE 是∠BOC 的角平分线,若∠COE 是∠AOC 的差余角,求∠BOE 的度数;(2)如图2,点O 在直线AB 上,若∠BOC 是∠AOE 的差余角,那么∠BOC 与∠BOE 有什么数量关系; (3)如图3,点O 在直线AB 上,若∠COE 是∠AOC 的差余角,且OE 与OC 在直线AB 的同侧,∠AOC−∠BOC∠COE请你探究是否为定值?若是,请求出定值;若不是,请说明理由.思路引领:(1)根据角平分线的定义得到∠COE =∠BOE =12∠BOC ,根据题意得到∠AOC ﹣∠COE =∠AOC −12∠BOC =90°,于是得到结论;α (2)根据角的和差即可得到结论;(3)如图3,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE ,如图4,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,于是得到结论. 解:(1)∵OE 是∠BOC 的角平分线, ∴∠COE =∠BOE =12∠BOC , ∵∠COE 是∠AOC 的差余角,∴∠AOC ﹣∠COE =∠AOC −12∠BOC =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC =60°, ∴∠BOE =30°;(2)∵∠BOC 是∠AOE 的差余角,∴∠AOE ﹣∠BOC =∠AOC +∠COE ﹣∠COE ﹣∠BOE =∠AOC ﹣∠BOE =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC +∠BOE =90°;(3)答:是,理由:如图3,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =∠AOE =90°,∴∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值);如图4,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =90°, ∴∠AOC =90°+∠COE ,∵∠BOC =180°﹣∠AOC =180°﹣(90°+∠COE )=90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值),综上所述,∠AOC−∠BOC∠COE为定值.总结提升:本题考查了余角和补角,角的和差的计算,正确的理解题意是解题的关键.17.(2018秋•荔城区期末)如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)【特殊发现】如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)【类比探究】如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)【拓展延伸】如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无需证明)思路引领:(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论;.解:(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°−12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=1 2;②当60°≤∠AOC≤1203,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=1 2;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BODD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12α,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12α)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,∴α﹣β=60°,∴∠AOD=120°+β,∠BOC=60°﹣β,∵OE始终平分∠AOD,OP平分∠COB,∴∠DOE=12∠AOD=60°+12β,∠BOP=12∠BOC=30°−12β,∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+12α)﹣β﹣(30°−12β)=30°;综上所述,∠POE=30°.总结提升:本题考查了角的计算,角平分线的定义,分类讨论是解题的关键.第二部分 配套作业1.(2022秋•成都期末)已知点O 为数轴原点,点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作AB ,且|a +4|+(b ﹣10)2=0.(1)求线段AB 的长;(2)设点P 在数轴上对应的数为x ,当P A +PB =20时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有PM 为定值,下列结论:①v 2v 1的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论并求值.思路引领:(1)根据非负数的和为0,各项都为0即可求解; (2)应考虑到A 、B 、P 三点之间的位置关系的多种可能解题;(3)设运动时间为t ,首先得到PM =AP ﹣AM =3−12v 2t +v 1t ,由M 、N 运动到任一时刻时,总有PM 为定值,得到PM =3,t =1时,t =2时,于是得到结论. 解:(1)∵|a +4|+(b ﹣10)2=0, ∴a =﹣4,b =10,∴AB =|a ﹣b |=14,即线段AB 14;(2)如图1,当P 在点A 左侧时.P A +PB =(﹣4﹣x )+(﹣x +10)=20,即﹣2x +6=20,解得 x =﹣7; 如图2,当点P 在点B 的右侧时,P A +PB =(x +4)+(x ﹣10)=20,即2x ﹣6=20,解得 x =13; 如图3,当点P 在点A 与B 之间时,P A +PB =x +4+10﹣x =20,不存在这样的x 的值, 综上所述,x 的值是﹣7或13;(3)①v 2v 1的值不变.如图4,设运动时间为t ,理由如下:∵PM =AP ﹣AM=12AN ﹣(OA ﹣OM ) =12(AB ﹣BN )﹣OA +OM =12(14﹣v 2t )﹣4+v 1t =3−12v 2t +v 1t ,∵M 、N 运动到任一时刻时,总有PM 为定值, 而t =0时,PM =3, t =1时,PM =3−12v 2+v 1, t =2时,PM =3﹣v 2+2v 1, ∴3﹣v 2+2v 1=3−12v 2+v 1=3, ∴v 1v 2=12,即:v 2v 1的值不变,值为2.总结提升:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.(2022秋•江岸区校级月考)已知:如图,一条直线上依次有A 、B 、C 三点. (1)若BC =60,AC =3AB ,求AB 的长;(2)若点D 是射线CB 上一点,点M 为BD 的中点,点N 为CD 的中点,求BC MN的值;(3)当点P 在线段BC 的延长线上运动时,点E 是AP 中点,点F 是BC 中点,下列结论中: ①AC+BP EF是定值;②|AC−BPEF|是定值.其中只有一个结论是正确的,请选择正确结论并求出其值.思路引领:(1)由AC=AB+BC=3AB可得;(2)分三种情况:①D在BC之间时②D在AB之间时③D在A点左侧时;(3)分三种情况讨论:①F、E在BC之间,F在E左侧②F在BC之间,E在CP之间③F、E在BC之间,F在E右侧;解:(1)∵BC=60,AC=AB+BC=3AB,∴AB=30;(2)∵点M为BD中点,点N为CD中点,∴BM=BD,DN=NC,①D在BC之间时:BC=BD+CD=2MD+2DN=2∴BCMN=2;②D在AB之间时:BC=DC﹣DB=2DN﹣2MB=2(BN+2MB)﹣2MB=2BN+2MB=2MN,∴BCMN=2;③D在A点左侧时:BC=DN+NB=MN+DN﹣NB=MN+MB﹣NB=MN+MN+NB﹣NB=2MN,∴BCMN=2;故BCMN=2;(3)点E是AP的中点,点F是BC的中点.∴AE=EP,BF=CF,①EF=FC﹣EC=12BC﹣AC+AE=12(AC﹣AB)﹣AC+AE=AE−12AB=12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC﹣2AE+AB,∴|AC−BPEF|=2.②EF=12BC+CE=12BC+AE﹣AC=12(AC﹣AB)+AE﹣AC=AE−12AB−12AC,BP=AP﹣AB=2AE﹣AB,AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.③EF=CE﹣CF=CE−12BC=AC﹣AE−12BC=AC﹣AE−12(AC﹣AB)=12AC﹣AE+12AB,BP=AP﹣AB=2AE﹣AB,∴AC﹣BP=AC+AB﹣2AE,∴|AC−BPEF|=2.总结提升:本题考查线段之间量的关系,结合图形,能够考虑到所有分类是解题的关键.3.(2016秋•启东市校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM;(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.思路引领:(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24﹣x,PB=24﹣2x,表示出2BM﹣BP后,化简即可得出结论.(3)P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,分别表示出MN,MN+PN的长度,即可作出判断.解:(1)如图1,设出发x秒后PB=2AM,当点P在点B左边时,P A=2x,PB=24﹣2x,AM=x,由题意得,24﹣2x=2x,解得:x=6;当点P在点B右边时,P′A=2x,P′B=2x﹣24,AM=x,由题意得:2x﹣24=2x,方程无解;综上可得:出发6秒后PB=2AM.(2)∵AM=x,BM=24﹣x,PB=24﹣2x,∴2BM﹣BP=2(24﹣x)﹣(24﹣2x)=24;(3)选①;如图2,∵P A=2x,AM=PM=x,PB=2x﹣24,PN=12PB=x﹣12,∴①MN=PM﹣PN=x﹣(x﹣12)=12(定值);②MN+PN=12+x﹣12=x(变化).总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.4.(2022秋•高新区期中)如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.思路引领:(1)由题意表示:AP=2t,则PB=12﹣2t,根据PB=2AM列方程即可;(2)把BM=12﹣t和BP=12﹣2t代入2BM﹣BP中计算即可;(3)分别代入求MN和MA+PN的值,发现①正确;②不正确.解:(1)如图1,由题意得:AP=2t,则PB=|12﹣2t|,∵M为AP的中点,∴AM=t,由PB=2AM得:|12﹣2t|=2t,即12﹣2t=2t或2t﹣12=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=12BP=12(2t﹣12)=t﹣6,①MN=P A﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.总结提升:本题考查了两点间的距离,解答本题的关键是用含时间的式子表示出各线段的长度,有一定难度.5.(2021秋•双流区期末)如图,已知直线l上有两条可以左右移动的线段:AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0,点M,N分别为AB,CD中点.(1)求线段AB,CD的长;(2)线段AB以每秒4个单位长度向右运动,线段CD以每秒1个单位长度也向右运动.若运动6秒后,MN=4,求此时线段BC的长;(3)若BC=24,将线段CD固定不动,线段AB以每秒4个单位速度向右运动,在线段AB向右运动的某一个时间段t内,始终有MN+AD为定值.求出这个定值,并直接写出t在哪一个时间段内.思路引领:(1)根据非负数的性质即可得到结论;(2)若6秒后,M’在点N’左边时,若6秒后,M’在点N’右边时,根据题意列方程即可得到结论;(3)根据题意分类讨论于是得到结果.解:(1)∵|m﹣4|+(n﹣8)2=∴m﹣4=0,n﹣8=0,∴m=4,n=8,∴AB=4,CD=8;(2)若6秒后,M′在点N′左边时,由MN+NN′=MM′+M′N′,即2+4+BC+6×1=6×4+4,解得BC=16,若6秒后,M′在点N′右边时,则MM′=MN+NN′+M′N′,即6×4=2+BC+4+6×1+4,解得BC=8.综上,BC=16或8;(3)运动t秒后MN=|30﹣4t|,AD=|36﹣4t|,当0≤t<7.5时,MN+AD=66﹣8t,当7.5≤t≤9时,MN+AD=6,当t≥9时,MN+AD=8t﹣66,∴当7.5≤t≤9时,MN+AD为定值.总结提升:本题主要考查了非负数的性质以及数轴和两点间的距离等知识,解答本题的关键是掌握两点间的距离公式,解答第三问注意分类讨论思想,此题难度不大.6.(2021秋•洛川县校级期末)已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图①,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)当∠COD从图①所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10);在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.思路引领:(1AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义得∠AOE=12∠AOC=12(110°+3t°)、∠BOF=12∠BOD=12(40°+3t°),最后根据∠AOE﹣∠BOF求解可得;解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=12∠AOB=12×110°=55°,∠BOF=12∠COD=12×40°=20°,∴∠AOE﹣∠BOF=55°﹣20°=35°;(2)∠AOE﹣∠BOF的值是定值,如图2,由题意∠BOC=3t°,则∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,∵OE平分∠AOC,OF平分∠BOD,。
七年级数学上册专题复习讲义第十二讲角的初步认识(二)(pdf)新人教版

第十三讲角的初步认识(二)一、知识精讲1.角的定义角的定义一:有公共端点的两条射线组成的图形叫做角。
角的定义二:一条射线绕着它的端点旋转而形成的图形。
2.角的大小比较(1)叠合法;(2)度量法3.余角和补角如果两个角的和是90°,那么称这两个角互为余角。
如果两个角的和是180°,那么称这两个角互为补角。
4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.二、典例解析【例1】(2017洪山区期末)如图,点O位直线AB上一点,∠COE=90°,OF平分∠AOE.(1)如图,若∠COF=25°,则∠BOE=.若∠COF=α,则∠BOE=.(2)当射线OE绕点O旋转到如图所示的位置时其他条件不变①中的∠COF与∠B OE的数量关系是否仍然成立?请说明理由。
(3)如图3在(2)的条件下,在∠BOE的内部是否存在射线OD,使得∠BOD=105°,且∠COF=4∠DOE,若存在,求出∠AOC的度数,若不存在,请说明理由.【练1】如图l,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m-420|+(2n -40)=0,射线OP从OB处绕点0以4度/秒的速度逆时针旋转.(1)试求∠AOB的度数;54=∠+∠∠BOC DOE COE (2)如图l,当射线OP 从OB 处绕点O 开始逆时针旋转,同时射线OQ 从OA 处以l 度/秒的速度绕点O 顺时针旋转,当他们旋转多少秒时,使得∠POQ =10°?(3)(2012,青山区)如图2,若射线OD 为∠AOC 的平分线,当射线OP 从OB 处绕点O 开始逆时针旋转,同时射线OT 从射线OD 处以x 度/秒的速度绕点O 顺时针旋转,使得这两条射线重合于射线OE 处(OE 在∠DOC 的内部)时,且试求x .【例2】(2017江汉区期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板点O旋转至图2所示位置,使OM恰好平分∠BOC,问:线段ON的反向延长线是否平分∠AOC?为什么?(2)将图1中的三角板绕点O按每秒6度的速度逆时针方向旋转一周,在旋转的过程中,第t秒时,ON恰好平分∠AOC,则t的值是.(3)将图1中的三角板绕点O顺时针旋转至图3所示位置,请探究:∠AOM与∠NOC之间有什么样的数量关系?并说明理由.【例3】(2017东西湖区期末)∠AOB=80°,∠COD=40°,OF为∠AOD的角平分线.(1)如图1,若∠COF=10°,则∠BOD=________;若∠COF=m°,则∠BOD=;猜想:∠BOD与∠COF的数量关系为_____________;(2)当∠COD绕点O按逆时针旋转至图2的位置时,(1)的数量关系是否仍然成立?请说明理由。
12.3 角的平分线的性质 人教版数学八年级上册堂堂练(含答案)

12.3角的平分线的性质—2023-2024学年人教版数学八年级上册堂堂练1.如图,OP平分,于点A,,点Q是射线OM上的一个动点,则下列结论正确的是( )A. B. C. D.2.如图,在中,,以顶点A为圆心,适当长度为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于的长度为半径画弧,两弧交于点P,作射线AP交BC于点D,若,,则的面积是( )A.15B.30C.45D.603.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是( )A.SSSB.SASC.AASD.ASA4.如图,在中,,AD平分,交BC于点D.已知,,则的面积为( )A.80B.40C.20D.105.如图,的三边AB,BC,CA长分别是20,30,40,其三条角平分线将分为三个三角形,则等于( )A. B. C. D.6.如图,,,若,,则D到AB的距离为________。
7.如图,直线a,b,c表示3条互相交叉的公路.若要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的站址有______________处.8.如图,,M是BC的中点,DM平分,求证:AM平分.答案以及解析1.答案:C解析:平分,于点A,点P到OM的距离等于线段PA的长度,当时,PQ有最小值,的最小值,,即,故选C2.答案:C解析:如图,作于点E,由题意知AD是的角平分线,,,,的面积,故选C.3.答案:A解析:如下图所示:连接CP、DP,在与中,由作图可知:,,故选A.4.答案:B解析:如图,作于E,,,,故选B.5.答案:C解析:过点O作于D,于E,于F,点O是内心,,,故选C.6.答案: 4.解析:作于E,,,,,,,,故答案为:4.7.答案:4解析:如图,根据角平分线的性质定理,可知内部有1个点,另外与的平分线的交点、与的平分线的交点、与的平分线的交点,共4处站址可供选择.8.解析:如图,过点M作于F,,DM平分,,M是BC的中点,,,又,点M在的平分线上,AM平分.。
2017年秋人教版七年级数学上册热点专题高分特训:第4章:中点及角平分线

学生做题前请先回答以下问题问题1:线段上的点把线段分成相等的两条线段,则这个点叫做线段的________.问题2:从一个角的顶点引出一条_________,把这个角分成两个_________的角,这条射线叫做这个角的平分线.问题3:如图,若点C为线段AB的中点,则中点的六种表示是__________________________________________________________________.(1)若已知AC=3,求BC,则用哪一种表示方法:_____________.(2)若已知AC=3,求AB,则用哪一种表示方法:_____________.(3)若已知AB=6,求AC,则用哪一种表示方法:_____________.问题4:如图,若OC为∠AOB的平分线,则角平分线的六种表示是_______________________________________________________________.(1)若已知∠BOC=35°,求∠AOB,则用哪一种表示方法:_____________.(2)若已知∠BOC=35°,求∠AOC,则用哪一种表示方法:_____________.(3)若已知∠AOB=70°,求∠BOC,则用哪一种表示方法:_____________.中点及角平分线(人教版)一、单选题(共10道,每道10分)1.下列关于中点的说法,正确的是( )A.如果MA=MB,那么点M是线段AB的中点B.如果MA=AB,那么点M是线段AB的中点C.如果AB=2AM,那么点M是线段AB的中点D.如果点M是线段AB上一点,并且MA=MB,那么点M是线段AB的中点答案:D解题思路:A,B,C选项均未强调点A,B,M位于同一直线上.故选D.试题难度:三颗星知识点:中点的定义与表示2.点P在∠AOB内部,下面四个等式:①∠POA=∠BOP;②∠AOP=∠AOB;③∠AOP=∠BOP;④∠AOB=2∠BOP,其中能表示OP是∠AOB的平分线的有( )A.1个B.2个C.3个D.4个答案:C解题思路:由角平分线的6种表示可知,正确的有:①②④.故选C.试题难度:三颗星知识点:角平分线的定义及表示3.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成MC:CB=1:2,则线段AC的长度为( )A.2cmB.4cmC.6cmD.8cm答案:D解题思路:试题难度:三颗星知识点:求线段的长4.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是( )A.35°B.55°C.70°D.110°答案:C解题思路:试题难度:三颗星知识点:角度的计算5.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是( )A.2a-bB.a-bC.a+bD.2(a-b)答案:A解题思路:试题难度:三颗星知识点:中点的应用6.如图所示,∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD的度数为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:角的计算7.如图,已知线段AB=12,点C是线段AB的中点,求BC的长.解:如图,∵________________∴________________∵________________∴________________即BC的长为6.①;②AB=2AC;③点C是线段AB的中点;④AC=6;⑤;⑥BC=AC;⑦AB=2BC;⑧;⑨AB=12.以上空缺处依次所填最恰当的是( )A.②①③⑨B.③⑤④⑨C.③①④⑧D.③①⑨⑧答案:D解题思路:试题难度:三颗星知识点:中点过程训练8.如图所示,AM=5,点M为线段AB的中点,点C为线段MB上一点,且MC=2,求BC的长.解:如图,∵________________∴________________∵________________∴________________∵MC=2即BC的长为3.①AB=2AM;②BM=AM;③;④;⑤点M是线段AB的中点;⑥BM=5;⑦AM=5;⑧AB=10.以上空缺处依次所填最恰当的是( )A.⑤①⑦⑧B.⑤②⑦⑥C.⑦⑧④⑥D.⑤③②⑥答案:B解题思路:试题难度:三颗星知识点:中点过程训练9.如图,已知OC平分∠AOB,∠AOC=35°,求∠AOB的度数.解:如图,∵OC平分∠AOB∴________________∵________________∴________________即∠AOB的度数为70°.①∠AOB=2∠AOC;②∠COB=∠AOC;③∠AOC=∠AOB;④∠AOC=35°;⑤.以上空缺处依次所填最恰当的是( )A.①③⑤B.③④⑤C.①④⑤D.②④⑤答案:C解题思路:试题难度:三颗星知识点:角平分线过程训练10.如图,已知∠AOB=90°,∠AOC=40°,OM平分∠AOB,求∠MOC的度数.解:如图,∵OM平分∠AOB∴________________∵________________∴________________∵________________即∠MOC的度数为5°.①∠AOB=2∠AOM;②;③∠AOM=∠BOM;④∠AOB=90°;⑤∠AOC=40°;⑥.以上空缺处依次所填最恰当的是( )A.②⑤⑥①B.②④⑥⑤C.③④②⑤D.⑥②④⑤答案:B解题思路:试题难度:三颗星知识点:角平分线过程训练。
新人教版数学八年级上册第12章第9课时角平分线的性质习题课(教师版)

新人教版八年级数学上册角平分线的性质习题课导学案一、学习目标熟练掌握角平分线的性质和判定;了解常用的辅助线,掌握角平分线辅助线的作法,会利用辅助线证明问题.二、知识回顾1.角平分线的性质定理是什么?在角平分线上的点到角的两边的距离相等.∵∠1=∠2,PD⊥OA,PE⊥OB,∴PD=PE.2.角平分线的判定定理是什么?角的内部到角的两边的距离相等的点在角的平分线上.∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的平分线上(OP是∠AOB的平分线).三、新知讲解由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看.角平分线具有两条性质:a.对称性;b.角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边).通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线,其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.四、典例探究扫一扫,有惊喜哦!1.添加一条垂线为辅助线【例1】(2014秋•西城区校级期中)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.总结:已知一个点到角的一边的距离,过这个点作另一边的垂线段,可得垂线段相等,或利用角平分线的性质可证三角形全等,继而可证边角相等.练1.(2014秋•鼓楼区校级期中)如图,在四边形ABCD中,AD∥BC,AE平分∠BAD交DC于点E,连接BE,且AE⊥BE,求证:AB=AD+BC.2.添加两条垂线为辅助线【例2】(2014秋•西城区校级期中)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠B AD+∠B CD=180°.总结:当题目已知条件中出现角平分线的时候,我们应立刻想到它的两个性质:1.把已知角平分成两个相等的小角;2.角平分线性质定理,若此时作角的两边的垂线,则两条垂线段相等.练2.(2010秋•柘城县校级月考)如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.五、课后小测解答题1.(2014秋•五华区校级期中)四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°.求证:2AE=AB+AD.2.(2014秋•启东市校级期中)如图,四边形ABDC中,∠D=∠ABD=90゜,点D为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.3.(2011秋•兴庆区校级月考)如图,已知BD为∠ABC的平分线,DE⊥BC于E,且AB+BC=2BE.(1)求证:∠BAD+∠BCD=180°;(2)若将条件“AB+BC=2BE”与结论“∠BAD+∠BCD=180°”互换,结论还成立吗?请说明理由.4.如图所示,在△ABC中,已知∠ABC和△ABC的外角∠ACD的平分线相交于点P.求证:点P 到AB、AC的距离相等.5.如图,CE=BF,且S△DCE=S△DBF,求证:AD平分∠BAC.6.如图,BP、CP分别是ABC的外角∠CBD、∠BCE的平分线.求证:P点在∠BAC的平分线上.7.(2014秋•启东市校级月考)如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN 和EM相交于点C.求证:点C在∠AOB的平分线上.8.(2014秋•启东市校级月考)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.9.(2012秋•房山区期末)已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB与M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.10.(2013秋•海安县月考)如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.11.(2012春•定陶县期末)如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.典例探究答案:【例1】【解析】过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,在Rt △PEA 与Rt △PFC 中,PA PC PE PF =⎧⎨=⎩, ∴Rt △PEA ≌Rt △PFC (HL ),∴∠PAE=∠PCB ,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.练1.【解析】过点E 作EF ⊥AB 于F ,根据角平分线上的点到角的两边距离相等可得DE=EF ,然后利用“HL”证明Rt △ADE 和Rt △AFE 全等,根据全等三角形对应角相等可得∠AED=∠AEF ,全等三角形对应边相等可得AD=AF ,再根据等角的余角相等求出∠BEC=∠BEF ,然后根据角平分线上的点到角的两边距离相等可得BC=BF ,再利用AB=AF+BF 等量代换即可得证.证明:如图,过点E 作EF ⊥AB 于F ,∵AE 平分∠BAD ,∴DE=EF ,在Rt △ADE 和Rt △AFE 中,AE AE DE EF =⎧⎨=⎩, ∴Rt △ADE ≌Rt △AFE (HL ),∴∠AED=∠AEF ,AD=AF ,∵AE ⊥BE ,∴∠AEF+∠BEF=∠AED+∠BEC=90°,∴∠BEC=∠BEF ,又∵EF ⊥AB ,CE ⊥BC ,∴BC=BF ,∵AB=AF+BF ,∴AB=AD+BC .点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.【例2】【解析】首先过点D 作DE ⊥BC 于E ,过点D 作DF ⊥AB 交BA 的延长线于F ,由BD 平分∠ABC ,根据角平分线的性质,即可得DE=DF ,又由AD=CD ,即可判定Rt △CDE ≌Rt △ADF ,则可证得∠B AD+∠B CD=180°.证明:过点D 作DE ⊥BC 于E ,过点D 作DF ⊥AB 交BA 的延长线于F ,∵BD 平分∠ABC ,∴DE=DF.在RtCDE 和Rt △ADF 中,CD AD DE DF =⎧⎨=⎩, ∴Rt △CDE ≌Rt △ADF (HL ),∴∠FAD=∠B CD ,∴∠BAD+∠B CD=∠BAD+∠FAD=180°.点评:此题考查了角平分线的性质与全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,掌利用全等把相关角进行转化,使问题得解.练2.【解析】根据AD 平分∠BAC ,作DE ⊥AB ,DF ⊥AC ,由角平分线性质可知DE=DF ,△ABD 与△ACD 等高,面积比即为底边的比.证明:作DE ⊥AB ,DF ⊥AC ,垂足为E 、F ,∵AD 平分∠BAC ,∴DE=DF ,∴S △ABD :S △ACD =(×AB×DE ):(×AC×DF )=AB :AC .点评:本题考查了角平分线性质,三角形计算面积的方法,关键是作辅助线,得出角平分线上一点到角的两边距离相等,又是这两个三角形的高.课后小测答案:解答题1.【解析】证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE,∴2AE=AB+AD.2.【解析】(1)过点O作OE⊥AC于E,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)利用“HL”证明△ABO和△AEO全等,根据全等三角形对应角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根据垂直的定义即可证明;(3)根据全等三角形对应边相等可得AB=AE,CD=CE,然后证明即可.证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA 平分∠BAC ,∴OB=OE ,∵点O 为BD 的中点,∴OB=OD ,∴OE=OD ,∴OC 平分∠ACD ;(2)在Rt △ABO 和Rt △AEO 中,AO AO OE OB =⎧⎨=⎩, ∴Rt △ABO ≌Rt △AEO (HL ),∴∠AOB=∠AOE ,同理求出∠COD=∠COE ,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA ⊥OC ;(3)∵Rt △ABO ≌Rt △AEO ,∴AB=AE ,同理可得CD=CE ,∵AC=AE+CE ,∴AB+CD=AC .点评:本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,以及全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.3.【解析】(1)首先过D 作DF ⊥BA ,垂足为F ,再根据条件AB+BC=2BE 可得AB+EC=BE ,再证明Rt △BFD ≌Rt △BED ,可得FB=BE ,即AB+AF=BE ,进而得到AF=EC ,然后再证明△AFD ≌△CED 可得∠DCE=∠FAD ,再根据∠BAD+∠FAD=180°,可得∠BAD+∠BCD=180°;(2)过D 作DF ⊥BA ,垂足为F ,首先证明∠DCE=∠FAD ,再证明△AFD ≌△CED ,可得AF=EC ,然后证明Rt △BFD ≌Rt △BED 可得FB=BE ,再根据线段的和差关系可得AB+BC=2BE .(1)证明:过D 作DF ⊥BA ,垂足为F ,∵AB+BC=2BE ,∴AB=BE+BE ﹣BC ,AB=BE+BE ﹣BE ﹣EC ,AB=BE ﹣EC ,AB+EC=BE ,∵BD 为∠ABC 的平分线,DE ⊥BC ,DF ⊥BA ,∴DF=DE ,在Rt △BFD 和Rt △BED 中DB DB DF DE=⎧⎨=⎩,∴Rt △BFD ≌Rt △BED (HL ),∴FB=BE ,∴AB+AF=BE ,又∵AB+EC=BE ,∴AF=EC ,在△AFD 和△CED 中,90AF EC DFA DEC DF DE =⎧⎪∠=∠=⎨⎪=⎩,∴△AFD ≌△CED (SAS ),∴∠DCE=∠FAD ,∵∠BAD+∠FAD=180°,∴∠BAD+∠BCD=180°;(2)解:可以互换,结论仍然成立.理由如下:过D 作DF ⊥BA ,垂足为F ,∵∠BAD+∠FAD=180°,∠BAD+∠BCD=180°∴∠DCE=∠FAD ,∵BD 为∠ABC 的平分线,DE ⊥BC ,DF ⊥BA ,∴DF=DE ,在△AFD 和△CED 中,90DF DE FAD ECDDFA DEC ⎧=⎪∠=∠⎨⎪∠=∠=⎩, ∴△AFD ≌△CED (AAS ),∴AF=EC ,在Rt △BFD 和Rt △BED 中,DB DB DF DE=⎧⎨=⎩, ∴Rt △BFD ≌Rt △BED (HL ),∴FB=BE ,∴AB+AF=BE ,AB=BE ﹣AF=BE ﹣EC=BE ﹣(BC ﹣BE )=BE ﹣BC+BE=2BE ﹣BC ,即:AB+BC=2BE .点评:此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是熟练掌握角平分线上的点到线段两端点的距离相等.4.【解析】过点P 作PE ⊥AB ,PF ⊥AC ,PG ⊥BG ,垂足分别为E 、F 、G ,再由角平分线的性质即可得出结论.证明:过点P 作PE ⊥AB ,PF ⊥AC ,PG ⊥BG ,垂足分别为E 、F 、G ,∵BP是∠ABC的平分线,∴PE=PG.∵CP是∠ACD的平分线,∴PF=PG,∴PE=PF,即点P到AB、AC的距离相等.点评:本题考查的是角平分线的性质,根据题意作出辅助线,利用角平分线的性质求解是解答此题的关键.5.【解析】过D作DN⊥AC,DM⊥AB,分别表示出再△DCE和△DBF的面积,再根据条件“△DCE和△DBF的面积相等”可得到BF•DM=DN•CE,由于CE=BF,可得结论DM=DN,根据角平分线性质的逆定理进而得到AD平分∠BAC.证明:过D作DN⊥AC,DM⊥AB,则S△DBF=BF•DM,S△DCE=DN•CE,∵S△DCE=S△DBF,∴BF•DM=DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC.点评:此题主要考查了角平分线的性质,关键是过D作出△DCE和△DBF的高,再证明两高相等.6.【解析】首先过点P作PM⊥AD于点M,作PN⊥BC于点N,作PG⊥AC于点G,由BP、CP分别是ABC的外角∠CBD、∠BCE的平分线,根据角平分线的性质,易证得PM=PN=PG,又由在角内部,且到角两边距离相等的点,在此角的平分线上,证得P点在∠BAC的平分线上.证明:过点P作PM⊥AD于点M,作PN⊥BC于点N,作PG⊥AC于点G,∵BP、CP分别是ABC的外角∠CBD、∠BCE的平分线,∴PM=PN,PG=PN,∴PM=PG,∴P点在∠BAC的平分线上.点评:此题考查了角平分线的性质与判定.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.【解析】首先证明△MOE≌△NOD(SAS),然后利用图形中的面积关系求得S△MDC=S△NEC,已知,两三角形的底相等,所以它们的高也相等,它们的高即是CG,CF,所以点C 在∠AOB的平分线上.证明:作CG⊥OA于G,CF⊥OB于F,如图,在△MOE和△NOD中,OM=ON,∠MOE为公共角,OE=OD,∴△MOE≌△NOD(SAS).∴S△MOE=S△NOD.∴S△MOE﹣S四边形ODCE=S△NOD﹣S四边形ODCE,∴S△MDC=S△NEC,∵OM=ON,OD=OE,∴MD=NE,由三角形面积公式得:DM×CG=×EN×CF,∴CG=CF,又∵CG⊥OA,CF⊥OB,∴点C在∠AOB的平分线上.点评:本题主要考查了角平分线上的点到角两边的距离相等的逆定理.而且考查了三角形全等判定和性质;所以学生所学的知识要系统.正确作出辅助线是解题的关键.8.【解析】过P分别作PE⊥OB于E,PF⊥OA于F,由角平分线的性质易得PE=PF,然后由同角的余角相等证明∠1=∠2,即可由ASA证明△CFP≌△DEP,从而得证.解答:答:PC=PD.证明:过P分别作PE⊥OB于E,PF⊥OA于F,∴∠CFP=∠DEP=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠1+∠FPD=90°,∠AOB=90°,∴∠FPE=90°,∴∠2+∠FPD=90°,∴∠1=∠2,在△CFP和△DEP中,12CFP DEP PE PF∠=∠⎧⎪=⎨⎪∠=⎩, ∴△CFP ≌△DEP (ASA ),∴PC=PD .点评:此题考查了角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.9.【解析】连接BD ,CD ,由角平分线的性质可得DM=DN ,线段垂直平分线的性质可得BD=CD ,所以Rt △BMD ≌Rt △CND (HL ),则BM=CN .解答:解:BM=CN .理由:连接BD ,CD ,∵AD 平分∠BAC ,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分BC ,∴BD=CD ,在Rt △BMD 与Rt △CND 中∵BD CD DM DN =⎧⎨=⎩∴Rt △BDM ≌Rt △CDN (HL ),∴BM=CN .点评:此题主要考查角平分线的性质和线段垂直平分线的性质以及全等三角形的判定和性质,难度中等,作辅助线很关键.10.【解析】首先过D 作DN ⊥AC ,DM ⊥AB ,分别表示出再△DCE 和△DBF 的面积,再根据条件“△DCE 和△DBF 的面积相等”可得到BF•DM=DN•CE ,由于CE=BF ,可得结论DM=DN ,根据角平分线性质的逆定理进而得到AD 平分∠BAC .证明:过D作DN⊥AC,DM⊥AB,△DBF的面积为:BF•DM,△DCE的面积为:DN•CE,∵△DCE和△DBF的面积相等,∴BF•DM=DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC(到角两边距离相等的点在角的平分线上).点评:此题主要考查了角平分线的性质,关键是过D作出△DCE和△DBF的高,再证明两高相等.11.【解析】连接AC,证明△ABC≌△ADC,求得AC平分∠EAF,再由角平分线的性质即可证明CE=CF.证明:连接AC,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.又∵CE⊥AD,CF⊥AB,∴CE=CF(角平分线上的点到角两边的距离相等).点评:本题主要考查平分线的性质,综合利用了三角形全等的判定,辅助线的作法是解决问题的关键.。
(必考题)七年级数学上册第四单元《几何图形初步》-解答题专项知识点(含答案解析)

一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑? 解析:蜗牛需41天才爬到树顶不下滑. 【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答. 【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40° 【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠,∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =. (1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =,∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠,即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠,即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.11.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.12.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。
初中数学七年级下册(五·四学制) 角平分线的性质和判定定理-全国一等奖

《角平分线》教学设计一、教学背景的分析1、教学内容分析《角平分线》选自鲁教版教材《数学》七年级下册第十章第五节.这一节课既是七年级上册《简单的轴对称图形》第二课时的延续,又是在七年级下册学习了《定义与命题》、《证明的必要性》、《基本事实与定理》以及三角形的有关证明一章中的《全等三角形》和《直角三角形》中的互逆命题、互逆定理、HL定理等基础上进行教学的,教材将这一节的内容分两课时进行,第一课时:探索并证明角平分线的性质定理及判定定理。
具体要求学生能准确地表述命题的条件和结论,能用规范的语言来表达证明过程;会用这两个定理解决简单的问题。
第二课时则是角平分线的性质定理和判定定理在三角形中的应用。
考虑到初二的学生在上学期对角平分线已经有了足够的认知,并且本章教材安排是想让学生进一步体会证明的必要性,发展推理能力,结合我们学校学生的特点,第一课时,来研究角平分线的性质和判定定理;第二课时研究角平分线性质定理和判定定理的应用。
这样的安排,通过类比探究线段的垂直平分线的性质定理和判定定理,是想将知识更完整和系统地展现给学生,为第二课时的应用打下牢固的基础。
本节课研究角平线的性质定理和判定定理。
2、教学对象分析初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:探究角平分线性质定理和判定定理的证明,同时为下节定理的灵活运用打好基础.3、教学重点、难点根据教材的内容及作用确定本节课的教学重点为:角的平分线的性质定理和判定定理的证明及应用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)(3)对逆定理中的角的内部的条件的准确理解。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过思维的引导启发学生,培养思维逻辑的严密性.二、教学目标根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:1、能证明角平分线的性质定理2、会用角平分线的性质定理解决简单的问题。
七年级上册数学典中点答案

七年级上册数学典中点答案第一章线段的中点1.1 定义线段的中点是指线段上的一个点,该点到线段两个端点的距离相等。
1.2 性质•任意线段的中点只有一个。
•线段的中点将线段分成两个长度相等的部分。
第二章中点的坐标2.1 坐标系在平面直角坐标系中,我们可以通过坐标来表示点的位置。
横轴被称为x轴,纵轴被称为y轴。
2.2 中点坐标的计算方法对于一个线段的两个端点A和B,设A的坐标为(x1, y1),B的坐标为(x2, y2)。
线段AB的中点M的坐标可以通过以下公式计算:xM = (x1 + x2) / 2yM = (y1 + y2) / 2第三章中点的性质和应用3.1 性质•中点的横坐标等于线段两个端点横坐标之和的一半。
•中点的纵坐标等于线段两个端点纵坐标之和的一半。
3.2 应用中点的性质在数学中有着广泛的应用。
以下是一些常见的应用场景:3.2.1 几何图形的中点在几何图形中,我们经常需要计算线段的中点坐标。
例如,在平面直角坐标系中,已知一个线段的两个端点坐标,我们可以通过计算中点坐标,进而确定线段的位置和长度。
3.2.2 平衡力的计算在物理学中,平衡力是指物体所受的力的合力为零的状态,即物体处于平衡状态。
当物体受到多个力的作用时,可以通过计算力的中点,来确定合力的作用点。
3.2.3 数据分析的中点数在数据分析中,我们经常需要计算一组数据的中点数。
例如,在统计学中,我们可以通过计算一组数据的中点数,来描述数据的集中趋势。
第四章线段的延长线上的点4.1 定义线段的延长线上的点是指在线段上,并且在线段的延长线上的点。
4.2 点到线段两个端点距离的关系设点P到线段AB的距离为d1,点P到线段CD(延长线)的距离为d2。
如果d1 < d2,则P在线段AB上;如果d1 = d2,则P在线段CD上;如果d1 > d2,则P在线段BC(延长线)上。
第五章线段的中点与延长线上的点的关系5.1 性质若点P既是线段AB的中点,又在线段CD的延长线上,则有以下关系:•线段AB上的点分割线段CD成两段,使得线段AP与线段PD的长度相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中点及角平分线(讲义)
知识点睛
1.线段上的点把线段分成相等的两条线段,则这个点叫做线段的________.
2.如图,若点C为线段AB的中点,则中点的六种表示是
____________________________________________________
___________________________________________________.
3.从一个角的顶点引出一条______,把这个角分成两个相等的角,这条_______叫做
这个角的平分线.
4.如图,若OC为∠AOB的平分线,则角平分线的六种表示是
___________________________________________________
__________________________________________________.
精讲精练
1.已知:如图,线段AB=10 cm,点C是线段AB的中点,求AC的长.
2.已知:如图,点C是线段AB的中点,AC=4 cm,求AB的长.
3.已知:如图,线段AB=10 cm,AD=6 cm,点C是线段AD的中点,求BC的长.
4.如图,线段AB=4,点O是线段AB上一点,点C,D分别是线段OA,OB的中点,
求CD的长.
5.已知:如图,∠AOB=70°,OC平分∠AOB,求∠AOC的度数.
6.如图,已知OC平分∠AOB,OD平分∠AOC,且∠COD=25°,求∠AOB的度数.
7.如图,∠AOB=90°,∠AOC=50°,OM平分∠BOC,ON平分∠AOC,求∠MON的
度数.
8.如图,点O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)通过计算说明OE是否平分∠BOC.
【参考答案】
知识点睛
1.中点
2.AC=BC,BC=AC
,
AB=2AC,AB=2BC
3.射线,射线
4.∠AOC=∠BOC,∠BOC=∠AOC,
∠AOC=∠AOB,∠BOC=∠AOB ∠AOB=2∠AOC,∠AOB=2∠BOC
精讲精练
1. 5 cm
2.8 cm
3.7 cm
4. 2
5.35°
6.100°
7.45°
8.(1)155°;(2)平分,理由略。